Characteristics, controlling factors and exploration prospects of microbial dolomite reservoirs in the second member of Dengying Formation, Penglai-Zhongjiang area of central Sichuan Basin
-
摘要: 四川盆地震旦系灯影组白云岩储集层的形成与演化是近期重点关注的对象,确定其主控因素及发育规律,对天然气勘探与开发具有重要指导意义。基于四川盆地蓬莱—中江地区的钻井、地震资料,通过岩心、薄片观察与实验分析数据,对灯二段优质储集层特征及发育的主控因素进行了研究。该区灯二段储集层岩性主要为微生物白云岩、颗粒白云岩以及角砾状白云岩;储集空间以溶蚀孔洞、残余格架孔、角砾间孔为主,孔隙度主要分布在2.0%~8.0%,平均为4.39%,渗透率平均为0.53×10-3 μm2;储集层厚170~320 m。同沉积断裂造成沉积地貌分异,形成水下高垒地块,为微生物丘(礁)滩体发育提供了有利条件;且断层活动可使弱固结沉积物发生破碎形成角砾状,构成角砾状白云岩优质储层。准同生溶蚀作用是灯二段优质储集层发育的关键,纵向上集中发育在向上变浅旋回的上部。沉积微相分异导致了早期成岩作用的差异,浅埋藏胶结程度决定了孔隙保存的程度。预测川中古隆起北斜坡灯二段发育蓬莱—中江、盐亭—绵阳、苍溪—广元三大断控型台缘丘滩带,面积分别为1 600、1 870、2 280 km2,具有多阶多带特征。盐亭—绵阳、苍溪—广元地区灯二段台缘微生物丘滩体与三套优质烃源岩可形成多种有利源储配置关系,成藏条件优越,预计资源量超万亿立方米,是碳酸盐岩超深层勘探的有利区,有望成为四川盆地下一个万亿立方米气田的突破地。Abstract: The formation and evolution of dolomite reservoirs in the Sinian Dengying Formation in the Sichuan Basin have attracted much attention recently. Due to their economic significance for hosting natural gas resources, determining the key factors that govern the formation and evolution of these dolomite reservoirs are important for hydrocarbon exploration and development. Based on the drilling and seismic data in the Penglai-Zhongjiang area of the Sichuan Basin, the main controlling factors for the development of high-quality reservoirs in the second member of Dengying Formation are investigated by integrating core and thin section observation and geochemical analysis. Lithologies of the reservoirs in the second member of Dengying Formation are dominantly microbial dolomites, dolo-grainstones, and brecciaed dolomites. Moreover, reservoir spaces in these dolomites are mostly dissolution pores, residual framework pores, and breccia pores. The porosity ranges from 2.0% to 8.0% with an average of 4.39%, and the average permeability is 0.53×10-3 μm2, and the reservoir thickness is 170-320 m. Synsedimentary faulting had caused the differentiation of depositional paleo-geomorphology and led to the formation of submarine high barriers, which provided favorable conditions for the development of microbial mound (reef) and shoal complexes. Furthermore, fault activities could have broken the weakly consolidated carbonate sediments into breccias, thus resulting in the brecciaed dolomite reservoir. Penecontemporaneous dissolution is the key to the development of high-quality reservoirs in the second member of the Dengying Formation, which is consistent with their occurrence in the upper part of the shallowing-upward cycles. Differentiation in microfacies leads to distinct diagenetic pathways and porosity evolution of these microbial-dominant carbonate sediments. Overall, dolomite cementation during shallow burial had controlled thedegree of pore preservation. It is predicted that three fault-controlled, platform-margin mound regions in the study area, i.e., Penglai-Zhongjiang, Yanting-Mianyang, and Cangxi-Guangyuan, with areas of 1 600 km2, 1 870 km2 and 2 280 km2, respectively, had been developed in the second member of Dengying Formation in the north slope of the central Sichuan paleo-uplift, showing multi-stage and multi-zone characteristics. Microbial mounds in the platform margin of the second member of Dengying Formation in the Yanting-Mianyang and Cangxi-Guangyuan areas, with three sets of high-quality source rocks, may form a variety of favorable source-reservoir combinations. Additionally, the accumulation conditions may have been superior. The estimated natural gas resources in the study area, over one trillion square meters, makes it a favorable area for ultra-deep carbonate exploration and is expected to be a breakthrough site for the next one trillion square gas field in the Sichuan Basin.
-
图 2 川中蓬莱—中江地区灯影组二段微生物白云岩储集层特征图片
a.蓬探1井,灯二段,5 730.03~5 730.1 m,葡萄状白云岩,岩心;b.蓬探1井,灯二段,5 747.74 m,藻凝块白云岩,微裂缝发育,岩心;c.蓬探1井,灯二段,5 769.51 m,藻粘结白云岩,窗格孔发育,亮晶白云石胶结,铸体薄片单偏光;d.蓬探102井,灯二段,5 846.16 m,藻格架白云岩,残余格架孔发育,见沥青充填,铸体薄片单偏光;e.蓬探1井,灯二段,5 731.30 m,泡沫绵层白云岩,体腔孔发育,铸体薄片单偏光;f.蓬探103井,灯二段,6 103.93 m,核形石白云岩,普通薄片单偏光。
Figure 2. Photographs showing characteristics of microbial dolomite reservoirs in the second member of Dengying Formation in Penglai-Zhongjiang area, central Sichuan Basin
图 3 川中蓬莱—中江地区灯影组二段角砾状白云岩储集层特征图片
a.蓬探1井,灯二段,5 747.85 m,角砾状白云岩,原岩为藻砂屑—藻凝块白云岩,亮晶白云石胶结,微裂缝发育,普通薄片单偏光;b.蓬探101井,灯二段,5 760.31 m,角砾状白云岩,角砾间见两期白云石胶结物,角砾间溶孔发育,铸体薄片单偏光;c.蓬探102井,5 878.83 m,角砾状白云岩,砾间见两期白云石胶结物,残余砾间孔发育在白云石胶结物间,铸体薄片单偏光;d.蓬探101井,灯二段,5 773.76~5 773.91 m,角砾状白云岩,孔洞发育,孔洞内充填白云石,岩心;e.蓬探101井,灯二段,5 759.34 m,角砾状白云岩,残余砾间孔发育,角砾间发育两期白云石胶结物,第一期为栉壳状白云石,第二期为粗晶白云石,铸体薄片单偏光;f.为e中红框放大,角砾间两期白云石胶结物;g.为f同一视域下的阴极发光照片。
Figure 3. Photographs showing characteristics of brecciated dolomite reservoirs in the second member of Dengying Formation in Penglai-Zhongjiang area, central Sichuan Basin
图 4 川中蓬莱—中江地区灯影组二段颗粒白云岩储集层特征图片
a.蓬探1井,灯二段,5 731.08~5 731.18 m,砂屑白云岩,针孔、溶孔发育,岩心;b.蓬探1井,灯二段,5 734.5 m,藻砂屑白云岩,残余粒间孔发育,颗粒之间亮晶白云石胶结,铸体薄片单偏光;c.蓬探103井,6 102.82 m,藻砂屑白云岩,残余粒间孔发,亮晶白云石胶结,铸体薄片单偏光;d.蓬探102井,灯二段,5 867.86 m,砾屑白云岩,残余砾间孔发育,砾间发育三期白云石胶结物,见沥青,铸体薄片单偏光;e.中江2井,灯二段,6 548.24 m,砂砾屑白云岩,少量残余砾间孔发育,铸体薄片单偏光;f.蓬探103井,灯二段,5 949.47 m,藻砂屑白云岩,残余粒间孔与粒内孔发育,铸体薄片单偏光。
Figure 4. Photographs showing characteristics of granular dolomite reservoirs in the second member of Dengying Formation in Penglai-Zhongjiang area, central Sichuan Basin
图 7 川中蓬莱—中江地区灯影组二段顶部同沉积断裂地震特征
剖面位置见图 1。
Figure 7. Seismic characteristics of synsedimentary faults on the top of the second member of Dengying Formation in Penglai-Zhongjiang area, central Sichuan Basin
-
[1] 邹才能, 杜金虎, 徐春春, 等. 四川盆地震旦系—寒武系特大型气田形成分布、资源潜力及勘探发现[J]. 石油勘探与开发, 2014, 41(3): 278-293. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201403006.htmZOU Caineng, DU Jinhu, XU Chunchun, et al. Formation, distribution, resource potential and discovery of the Sinian-Cambrian giant gas field, Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2014, 41(3): 278-293. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201403006.htm [2] 周进高, 姚根顺, 杨光, 等. 四川盆地安岳大气田震旦系—寒武系储层的发育机制[J]. 天然气工业, 2015, 35(1): 36-44. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201501005.htmZHOU Jingao, YAO Genshun, YANG Guang, et al. Genesis mecha-nism of the Sinian-Cambrian reservoirs in the Anyue Gas Field, Sichuan basin[J]. Natural Gas Industry, 2015, 35(1): 36-44. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201501005.htm [3] 杜金虎, 汪泽成, 邹才能, 等. 上扬子克拉通内裂陷的发现及对安岳特大型气田形成的控制作用[J]. 石油学报, 2016, 37(1): 1-16. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201601002.htmDU Jinhu, WANG Zecheng, ZOU Caineng, et al. Discovery of intra-cratonic rift in the upper Yangtze and its control effect on the formation of Anyue giant gas field[J]. Acta Petrolei Sinica, 2016, 37(1): 1-16. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201601002.htm [4] 马新华, 杨雨, 文龙, 等. 四川盆地海相碳酸盐岩大中型气田分布规律及勘探方向[J]. 石油勘探与开发, 2019, 46(1): 1-13. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201901001.htmMA Xinhua, YANG Yu, WEN Long, et al. Distribution and exploration direction of medium- and large-sized marine carbonate gas fields in Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2019, 46(1): 1-13. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201901001.htm [5] 赵路子, 汪泽成, 杨雨, 等. 四川盆地蓬探1井灯影组灯二段油气勘探重大发现及意义[J]. 中国石油勘探, 2020, 25(3): 1-12. doi: 10.3969/j.issn.1672-7703.2020.03.001ZHAO Luzi, WANG Zecheng, YANG Yu, et al. Important discovery in the second member of Dengying Formation in well Pengtan1 and its significance, Sichuan Basin[J]. China Petroleum Exploration, 2020, 25(3): 1-12. doi: 10.3969/j.issn.1672-7703.2020.03.001 [6] 徐春春, 沈平, 杨跃明, 等. 四川盆地川中古隆起震旦系—下古生界天然气勘探新认识及勘探潜力[J]. 天然气工业, 2020, 40(7): 1-9. doi: 10.3787/j.issn.1000-0976.2020.07.001XU Chunchun, SHEN Ping, YANG Yueming, et al. New understandings and potential of Sinian-Lower Paleozoic natural gas exploration in the central Sichuan paleo-uplift of the Sichuan Basin[J]. Natural Gas Industry, 2020, 40(7): 1-9. doi: 10.3787/j.issn.1000-0976.2020.07.001 [7] 杨雨, 黄先平, 张健, 等. 四川盆地寒武系沉积前震旦系顶界岩溶地貌特征及其地质意义[J]. 天然气工业, 2014, 34(3): 38-43. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201403009.htmYANG Yu, HUANG Xianping, ZHANG Jian, et al. Features and geologic significances of the top Sinian karst landform before the Cambrian deposition in the Sichuan Basin[J]. Natural Gas Industry, 2014, 34(3): 38-43. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201403009.htm [8] 李勇, 王兴志, 冯明友, 等. 四川盆地北部及周缘地区震旦系灯影组二段、四段储集层特征及成因差异[J]. 石油勘探与开发, 2019, 46(1): 52-64. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201901005.htmLI Yong, WANG Xingzhi, FENG Mingyou, et al. Reservoir characte-ristics and genetic differences between the second and fourth members of Sinian Dengying Formation in northern Sichuan Basin and its surrounding areas[J]. Petroleum Exploration and Development, 2019, 46(1): 52-64. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201901005.htm [9] ZHAI Xiufen, LUO Ping, GU Zhidong, et al. Microbial mineralization of botryoidal laminations in the Upper Ediacaran dolostones, western Yangtze Platform, SW China[J]. Journal of Asian Earth Sciences, 2020, 195: 104334. doi: 10.1016/j.jseaes.2020.104334 [10] 宋金民, 刘树根, 李智武, 等. 四川盆地上震旦统灯影组微生物碳酸盐岩储层特征与主控因素[J]. 石油与天然气地质, 2017, 38(4): 741-752. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201704011.htmSONG Jinmin, LIU Shugen, LI Zhiwu, et al. Characteristics and controlling factors of microbial carbonate reservoirs in the Upper Sinian Dengying Formation in the Sichuan Basin, China[J]. Oil & Gas Geology, 2017, 38(4): 741-752. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201704011.htm [11] XU Zhehang, LAN Caijun, ZHANG Benjian, et al. Impact of diagenesis on the microbial reservoirs of the terminal Ediacaran Dengying Formation from the central to northern Sichuan Basin, SW China[J]. Marine and Petroleum Geology, 2022, 146: 105924. [12] KOESHIDAYATULLAH A, AL-RAMADAN K, COLLIER R, et al. Variations in architecture and cyclicity in fault-bounded carbonate platforms: Early Miocene Red Sea Rift, NW Saudi Arabia[J]. Marine and Petroleum Geology, 2016, 70: 77-92. [13] WEN Long, RAN Qi, TIAN Weizhen, et al. Strike-slip fault effects on diversity of the Ediacaran mound-shoal distribution in the central Sichuan intracratonic basin, China[J]. Energies, 2022, 15(16): 5910. [14] 宋泽章, 葛冰飞, 王文之, 等. 超深层古油藏的定量表征及其对气藏形成的指示意义: 以川中古隆起北斜坡灯影组为例[J]. 地球科学, 2023, 48(2): 517-532. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202302011.htmSONG Zezhang, GE Bingfei, WANG Wenzhi, et al. Quantitative characterization of ultra-deep paleo-oil reservoirs and its indication for deep gas accumulation: a case study on the Dengying Formation, the north slope of central Sichuan paleo-uplift[J]. Editorial Committee of Earth Science-Journal of China University of Geosciences, 2023, 48(2): 517-532. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202302011.htm [15] 汪泽成, 姜华, 陈志勇, 等. 中上扬子地区晚震旦世构造古地理及油气地质意义[J]. 石油勘探与开发, 2020, 47(5): 884-897. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202005006.htmWANG Zecheng, JIANG Hua, CHEN Zhiyong, et al. Tectonic paleogeography of Late Sinian and its significances for petroleum exploration in the middle-upper Yangtze region, South China[J]. Petroleum Exploration and Development, 2020, 47(5): 884-897. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202005006.htm [16] 杨雨, 汪泽成, 文龙, 等. 扬子克拉通西北缘震旦系油气成藏条件及勘探潜力[J]. 石油勘探与开发, 2022, 49(2): 238-248. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202202001.htmYANG Yu, WANG Zecheng, WEN Long, et al. Sinian hydrocarbon accumulation conditions and exploration potential at the northwest margin of the Yangtze region, China[J]. Petroleum Exploration and Development, 2022, 49(2): 238-248. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202202001.htm [17] 马奎, 文龙, 张本健, 等. 四川盆地德阳—安岳侵蚀裂陷槽分段性演化分析和油气勘探意义[J]. 石油勘探与开发, 2022, 49(2): 274-284. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202202004.htmMA Kui, WEN Long, ZHANG Benjian, et al. Segmented evolution of Deyang-Anyue erosion rift trough in Sichuan Basin and its significance for oil and gas exploration, SW China[J]. Petroleum Exploration and Development, 2022, 49(2): 274-284. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202202004.htm [18] 付小东, 陈娅娜, 罗冰, 等. 中上扬子区下寒武统麦地坪组—筇竹寺组烃源岩与含油气系统评价[J]. 中国石油勘探, 2022, 27(4): 103-120. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY202204008.htmFU Xiaodong, CHEN Ya'na, LUO Bing, et al. Evaluation of source rocks and petroleum system of the Lower Cambrian Maidiping Formation-Qiongzhusi Formation in the Middle-Upper Yangtze region[J]. China Petroleum Exploration, 2022, 27(4): 103-120. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY202204008.htm [19] 刘树根, 孙玮, 罗志立, 等. 兴凯地裂运动与四川盆地下组合油气勘探[J]. 成都理工大学学报(自然科学版), 2013, 40(5): 511-520. https://www.cnki.com.cn/Article/CJFDTOTAL-CDLG201305003.htmLIU Shugen, SUN Wei, LUO Zhili, et al. Xingkai taphrogenesis and petroleum exploration from Upper Sinian to Cambrian Strata in Sichuan Basin, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2013, 40(5): 511-520. https://www.cnki.com.cn/Article/CJFDTOTAL-CDLG201305003.htm [20] 周进高, 张建勇, 邓红婴, 等. 四川盆地震旦系灯影组岩相古地理与沉积模式[J]. 天然气工业, 2017, 37(1): 24-31. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201701005.htmZHOU Jingao, ZHANG Jianyong, DENG Hongying, et al. Lithofacies paleogeography and sedimentary model of Sinian Dengying Fm in the Sichuan Basin[J]. Natural Gas Industry, 2017, 37(1): 24-31. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201701005.htm [21] 谢继容, 张自力, 钟原, 等. 四川盆地中部—北部地区灯影组二段天然气勘探新认识及潜力分析[J]. 海相油气地质, 2022, 27(3): 225-235. https://www.cnki.com.cn/Article/CJFDTOTAL-HXYQ202203001.htmXIE Jirong, ZHANG Zili, ZHONG Yuan, et al. New understanding and potential analysis of natural gas exploration of the Dengying Member 2 in central-northern area of Sichuan Basin[J]. Marine Origin Petroleum Geology, 2022, 27(3): 225-235. https://www.cnki.com.cn/Article/CJFDTOTAL-HXYQ202203001.htm [22] 徐哲航, 兰才俊, 郝芳, 等. 四川盆地震旦系灯影组不同古地理环境下丘滩储集体的差异性[J]. 古地理学报, 2020, 22(2): 235-250. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX202002003.htmXU Zhehang, LAN Caijun, HAO Fang, et al. Difference of mound-bank complex reservoir under different palaeogeographic environment of the Sinian Dengying Formation in Sichuan Basin[J]. Journal of Palaeogeography, 2020, 22(2): 235-250. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX202002003.htm [23] 陈娅娜, 沈安江, 潘立银, 等. 微生物白云岩储集层特征、成因和分布: 以四川盆地震旦系灯影组四段为例[J]. 石油勘探与开发, 2017, 44(5): 704-715. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201705006.htmCHEN Yana, SHEN Anjiang, PAN Liyin, et al. Features, origin and distribution of microbial dolomite reservoirs: a case study of 4th member of Sinian Dengying Formation in Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2017, 44(5): 704-715. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201705006.htm [24] 徐哲航, 兰才俊, 马肖琳, 等. 四川盆地震旦系灯影组丘滩体储层沉积模式与物性特征[J]. 地球科学, 2020, 45(4): 1281-1294. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202004013.htmXU Zhehang, LAN Caijun, MA Xiaolin, et al. Sedimentary models and physical properties of mound-shoal complex reservoirs in Sinian Dengying Formation, Sichuan Basin[J]. Earth Science, 2020, 45(4): 1281-1294. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202004013.htm [25] 姜华, 汪泽成, 杜宏宇, 等. 乐山—龙女寺古隆起构造演化与新元古界震旦系天然气成藏[J]. 天然气地球科学, 2014, 25(2): 192-200. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201402007.htmJIANG Hua, WANG Zecheng, DU Hongyu, et al. Tectonic evolution of the Leshan-Longnvsi paleo-uplift and reservoir formation of Neoproterozoic Sinian gas[J]. Natural Gas Geoscience, 2014, 25(2): 192-200. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201402007.htm [26] 汪泽成, 姜华, 王铜山, 等. 四川盆地桐湾期古地貌特征及成藏意义[J]. 石油勘探与开发, 2014, 41(3): 305-312. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201403008.htmWANG Zecheng, JIANG Hua, WANG Tongshan, et al. Paleo-geomorphology formed during Tongwan tectonization in Sichuan Basin and its significance for hydrocarbon accumulation[J]. Petroleum Exploration and Development, 2014, 41(3): 305-312. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201403008.htm [27] 李伟, 刘静江, 邓胜徽, 等. 四川盆地及邻区震旦纪末—寒武纪早期构造运动性质与作用[J]. 石油学报, 2015, 36(5): 546-556. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201505003.htmLI Wei, LIU Jingjiang, DENG Shenghui, et al. The nature and role of Late Sinian-Early Cambrian tectonic movement in Sichuan Basin and its adjacent areas[J]. Acta Petrolei Sinica, 2015, 36(5): 546-556. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201505003.htm [28] 陈宗清. 四川盆地震旦系灯影组天然气勘探[J]. 中国石油勘探, 2010, 15(4): 1-14. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201004003.htmCHEN Zongqing. Gas exploration in Sinian Dengying Formation, Sichuan Basin[J]. China Petroleum Exploration, 2010, 15(4): 1-14. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201004003.htm [29] 武赛军, 魏国齐, 杨威, 等. 四川盆地桐湾运动及其油气地质意义[J]. 天然气地球科学, 2016, 27(1): 60-70. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201601008.htmWU Saijun, WEI Guoqi, YANG Wei, et al. Tongwan Movement and its geologic significances in Sichuan Basin[J]. Natural Gas Geoscience, 2016, 27(1): 60-70. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201601008.htm [30] 邢凤存, 侯明才, 林良彪, 等. 四川盆地晚震旦世—早寒武世构造运动记录及动力学成因讨论[J]. 地学前缘, 2015, 22(1): 115-125. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201501012.htmXING Fengcun, HOU Mingcai, LIN Liangbiao, et al. The records and its dynamic genesis discussion of tectonic movement during the Late Sinian and the Early Cambrian of Sichuan Basin[J]. Earth Science Frontiers, 2015, 22(1): 115-125. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201501012.htm [31] 寿建峰, 邵文斌, 陈子炓, 等. 柴西地区第三系藻灰(云)岩的岩石类型与分布特征[J]. 石油勘探与开发, 2003, 30(4): 37-39. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK200304011.htmSHOU Jianfeng, SHAO Wenbin, CHEN Ziliao, et al. Lithological types and distribution features of Tertiary algal-limestone in Chaixi area, Qaidam Basin[J]. Petroleum Exploration and Development, 2003, 30(4): 37-39. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK200304011.htm [32] ARROWSMITH J R, ZIELKE O. Tectonic geomorphology of the San Andreas fault zone from high resolution topography: an example from the Cholame segment[J]. Geomorphology, 2009, 113(1/2): 70-81. [33] 鲁雪松, 马行陟, 范俊佳, 等. 深层油气成藏实验与评价技术进展及川中古隆起海相多层系油气成藏过程[R]. 成都: 中国石油西南油气田公司四川盆地研究中心, 2022: 1-55.LU Xuesong, MA Xingzhi, FANG Junjia, et al. Advances in deep oil and gas formation experiments and evaluation techniques and the process of oil and gas formation in the marine multi-formation system of the Chuanzhong paleo-high[R]. Chengdu: Sichuan Basin Research Center of PetroChina Southwest Oil and Gas Field Company, 2022: 1-55. [34] 沈安江, 胡安平, 程婷, 等. 激光原位U-Pb同位素定年技术及其在碳酸盐岩成岩—孔隙演化中的应用[J]. 石油勘探与开发, 2019, 46(6): 1062-1074. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201906006.htmSHEN Anjiang, HU Anping, CHENG Ting, et al. Laser ablation in situ U-Pb dating and its application to diagenesis-porosity evolution of carbonate reservoirs[J]. Petroleum Exploration and Development, 2019, 46(6): 1062-1074. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201906006.htm [35] JIANG Lei, SHEN Anjiang, WANG Zichen, et al. U-Pb geochronology and clumped isotope thermometry study of Neoproterozoic dolomites from China[J]. Sedimentology, 2022, 69(7): 2925-2945. [36] 兰才俊, 徐哲航, 马肖琳, 等. 四川盆地震旦系灯影组丘滩体发育分布及对储层的控制[J]. 石油学报, 2019, 40(9): 1069-1084. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201909005.htmLAN Caijun, XU Zhehang, MA Xiaolin, et al. Development and distribution of mound-shoal complex in the Sinian Dengying Formation, Sichuan Basin and its control on reservoirs[J]. Acta Petrolei Sinica, 2019, 40(9): 1069-1084. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201909005.htm [37] LI Zhaoqi, GOLDSTEIN R H, FRANSEEN E K. Ascending freshwater-mesohaline mixing: a new scenario for dolomitization[J]. Journal of Sedimentary Research, 2013, 83(3): 277-283. [38] 张本健, 钟原, 周刚, 等. 四川盆地中部蓬莱地区灯二段沉积微相演化及气藏综合评价[J]. 海相油气地质, 2023, 28(1): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-HXYQ202301001.htmZHANG Benjian, ZHONG Yuan, ZHOU Gang, et al. Sedimentary microfacies evolution and comprehensive evaluation of gas reservoir of the Dengying Member 2 in Penglai area, central Sichuan Basin[J]. Marine Origin Petroleum Geology, 2023, 28(1): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-HXYQ202301001.htm