Characteristics, controlling factors and exploration prospects of microbial dolomite reservoirs in the second member of Dengying Formation, Penglai-Zhongjiang area of central Sichuan Basin
-
摘要: 四川盆地震旦系灯影组白云岩储集层的形成与演化是近期重点关注的对象,确定其主控因素及发育规律,对天然气勘探与开发具有重要指导意义。基于四川盆地蓬莱—中江地区的钻井、地震资料,通过岩心、薄片观察与实验分析数据,对灯二段优质储集层特征及发育的主控因素进行了研究。该区灯二段储集层岩性主要为微生物白云岩、颗粒白云岩以及角砾状白云岩;储集空间以溶蚀孔洞、残余格架孔、角砾间孔为主,孔隙度主要分布在2.0%~8.0%,平均为4.39%,渗透率平均为0.53×10-3 μm2;储集层厚170~320 m。同沉积断裂造成沉积地貌分异,形成水下高垒地块,为微生物丘(礁)滩体发育提供了有利条件;且断层活动可使弱固结沉积物发生破碎形成角砾状,构成角砾状白云岩优质储层。准同生溶蚀作用是灯二段优质储集层发育的关键,纵向上集中发育在向上变浅旋回的上部。沉积微相分异导致了早期成岩作用的差异,浅埋藏胶结程度决定了孔隙保存的程度。预测川中古隆起北斜坡灯二段发育蓬莱—中江、盐亭—绵阳、苍溪—广元三大断控型台缘丘滩带,面积分别为1 600、1 870、2 280 km2,具有多阶多带特征。盐亭—绵阳、苍溪—广元地区灯二段台缘微生物丘滩体与三套优质烃源岩可形成多种有利源储配置关系,成藏条件优越,预计资源量超万亿立方米,是碳酸盐岩超深层勘探的有利区,有望成为四川盆地下一个万亿立方米气田的突破地。Abstract: The formation and evolution of dolomite reservoirs in the Sinian Dengying Formation in the Sichuan Basin have attracted much attention recently. Due to their economic significance for hosting natural gas resources, determining the key factors that govern the formation and evolution of these dolomite reservoirs are important for hydrocarbon exploration and development. Based on the drilling and seismic data in the Penglai-Zhongjiang area of the Sichuan Basin, the main controlling factors for the development of high-quality reservoirs in the second member of Dengying Formation are investigated by integrating core and thin section observation and geochemical analysis. Lithologies of the reservoirs in the second member of Dengying Formation are dominantly microbial dolomites, dolo-grainstones, and brecciaed dolomites. Moreover, reservoir spaces in these dolomites are mostly dissolution pores, residual framework pores, and breccia pores. The porosity ranges from 2.0% to 8.0% with an average of 4.39%, and the average permeability is 0.53×10-3 μm2, and the reservoir thickness is 170-320 m. Synsedimentary faulting had caused the differentiation of depositional paleo-geomorphology and led to the formation of submarine high barriers, which provided favorable conditions for the development of microbial mound (reef) and shoal complexes. Furthermore, fault activities could have broken the weakly consolidated carbonate sediments into breccias, thus resulting in the brecciaed dolomite reservoir. Penecontemporaneous dissolution is the key to the development of high-quality reservoirs in the second member of the Dengying Formation, which is consistent with their occurrence in the upper part of the shallowing-upward cycles. Differentiation in microfacies leads to distinct diagenetic pathways and porosity evolution of these microbial-dominant carbonate sediments. Overall, dolomite cementation during shallow burial had controlled thedegree of pore preservation. It is predicted that three fault-controlled, platform-margin mound regions in the study area, i.e., Penglai-Zhongjiang, Yanting-Mianyang, and Cangxi-Guangyuan, with areas of 1 600 km2, 1 870 km2 and 2 280 km2, respectively, had been developed in the second member of Dengying Formation in the north slope of the central Sichuan paleo-uplift, showing multi-stage and multi-zone characteristics. Microbial mounds in the platform margin of the second member of Dengying Formation in the Yanting-Mianyang and Cangxi-Guangyuan areas, with three sets of high-quality source rocks, may form a variety of favorable source-reservoir combinations. Additionally, the accumulation conditions may have been superior. The estimated natural gas resources in the study area, over one trillion square meters, makes it a favorable area for ultra-deep carbonate exploration and is expected to be a breakthrough site for the next one trillion square gas field in the Sichuan Basin.
-
四川盆地震旦系灯影组微生物白云岩具有重要勘探地位,是天然气增储上产的重点领域。2011年,位于乐山—龙女寺古隆起区的高石1井在灯影组二段(以下简称灯二段)测试获气102×104 m3/d,拉开了安岳碳酸盐岩万亿立方米整装气藏勘探开发的序幕[1-4]。2020年,在德阳—安岳裂陷北段蓬莱—中江地区灯二段台缘带部署的蓬探1井,测试获气121.98×104 m3/d,实现了乐山—龙女寺古隆起北斜坡战略性突破[5];其后多口探井获得高产,引领四川盆地震旦系天然气勘探由古隆起高部位向斜坡区、裂陷区拓展。回顾以往,灯影组白云岩储层的形成与演化一直是重点关注的对象,针对灯二段微生物白云岩储集层形成与演化已开展了大量沉积学与储层地质学研究,但对储集层发育主控因素的认识尚存争议。例如,多数观点认为灯影组储层发育受丘滩相与表生岩溶作用双重控制,沿裂陷槽两侧分布[1-3, 6-8]。然而,周进高等[2]认为丘滩体沉积及准同生溶蚀是灯二段储集层形成的关键,桐湾运动造成的表生岩溶作用对储层发育贡献不大;李勇等[8]认为川北地区灯四段储集层明显受丘滩体与埋藏溶蚀作用控制,灯二段储集层则受丘滩相与表生岩溶作用共同控制。此外,还有学者强调了与微生物有关的成岩作用及表生和埋藏溶蚀作用对储层发育的关键意义[9-11]。前人研究发现,同沉积断裂的发育可能导致沉积环境的转变[12],因此会影响灯影组丘滩体储层的分布[13],进而控制古油藏和现今气藏的发育分布[14]。
位于川中古隆起北斜坡的蓬莱—中江地区灯二段普遍埋深6 000~7 000 m,含气性良好,是“十四·五”期间天然气勘探的重点;而灯二段微生物岩优质储层的形成机制与主控因素认识不清是制约勘探部署的关键因素之一。有鉴于此,本文利用最新钻井资料,探讨蓬莱—中江地区灯二段微生物储集层的特征与主控因素,分析勘探有利区及潜力,以期为滚动勘探评价提供指导,夯实储量基础,乃至为扬子西北缘埋深8 000~9 500 m的万亿立方米远景区提供储集依据。
1. 区域地质概况
震旦纪—寒武纪之交,受罗迪尼亚超大陆裂解影响,扬子克拉通西北缘处于拉张环境。在川中—川西地区,由于对构造分异的地质响应,发育近南北向的德阳—安岳裂陷槽,控制了震旦纪—寒武纪的沉积格局[3, 15-17]。本次的研究区蓬莱—中江地区在区域上位于德阳—安岳裂陷槽北段(图 1a)。震旦系自下而上发育陡山沱组和灯影组(图 1b),其中,陡山沱组厚10~500 m,岩性主要为泥质粉砂岩、砂岩、白云质粉砂岩、白云质泥岩。四川盆地的灯一段—灯二段厚度变化较大,介于80~1 000 m,岩性以藻纹层白云岩、藻砂砾屑白云岩、藻凝块白云岩与角砾状白云岩为主,具典型的葡萄花边构造,而在蓬莱—中江地区灯一段—灯二段整体厚350~730 m,是近期灯影组天然气勘探的重点。灯三段厚10~60 m,主要为泥岩和粉砂岩,夹砂质白云岩。灯四段厚50~350 m,岩性主要为藻砂屑白云岩、藻白云岩与泥—粉晶白云岩,局部夹硅质条带,在蓬莱—中江地区的部分井中缺失。灯影组上覆寒武系麦地坪组—筇竹寺组厚300~1 000 m,岩性以黑色硅质、碳质泥页岩、泥质粉砂岩为主,夹泥晶石灰岩、白云质磷块岩,被认为是四川盆地震旦系—下古生界油气藏最优质的烃源岩[18]。
2. 沉积相与储集层特征
2.1 沉积相特征
灯一段—灯二段沉积期,受扬子西北缘拉张活动影响,四川盆地构造分异增强,发育德阳—安岳裂陷槽[16, 19-20]。该裂陷槽向盆地内延伸至资阳地区,呈“U”形展布(图 1a),灯一段—灯二段沉积物在裂陷区薄、裂陷两侧厚。此时,古隆起北斜坡主要发育斜坡—盆地相、台缘相以及局限台地相(台内)(图 1a)。台缘带的发育受同沉积断裂控制,主要分布在蓬莱—中江—盐亭—广元—宁强一带,呈近南北向多阶展布,宽40~130 km,厚650~1 000 m[21],岩性以藻纹层白云岩、藻砂屑白云岩、藻凝块白云岩和角砾状白云岩为主[22],是蓬莱气区灯二段储集层最有利的发育区。斜坡—盆地相主要分布在青川—江油—中江及以西地区,岩性主要为深灰—灰黑色泥晶白云岩、硅质白云岩夹灰黑色硅质岩、深灰色泥晶石灰岩[17]。台内裂陷以资阳地区资阳1井、施探1井为代表,灯一段—灯二段岩性为瘤状泥晶白云岩,夹少量藻白云岩。裂陷两侧台缘带之后的局限台地内部分布台坪微相,岩性以藻纹层白云岩、泥—粉晶白云岩为主,储集层较发育。
2.2 储集层特征
2.2.1 储集层岩石学特征
蓬莱—中江地区灯二段储集层主要为丘滩复合体,从岩性上可以划分为3种类型:微生物白云岩、角砾状白云岩和颗粒白云岩,其中以微生物白云岩与角砾状白云岩为主。
微生物白云岩是蓬莱—中江地区最重要的储集体,系底栖微生物群落(主要指蓝细菌、小型藻菌)捕获和粘结碳酸盐颗粒,或由其诱发的矿物沉淀的结果[10, 23]。蓬莱—中江地区灯二段钻井岩心与薄片观察揭示,常见的微生物岩主要包括葡萄状白云岩(图 2a)、藻凝块白云岩(图 2a)、藻纹层—藻叠层白云岩(藻格架白云岩)(图 2b-d)、泡沫绵层状白云岩(图 2e)和核形石白云岩(图 2f)等。岩心上可见顺层溶蚀孔洞发育,孔洞内充填白云石胶结物、沥青(图 2a, b),同时也可以见石英与萤石等热液矿物充填;微观上常见残余格架孔、窗格孔与体腔溶孔(图 2c-e),亮晶白云石胶结,沥青充填。
图 2 川中蓬莱—中江地区灯影组二段微生物白云岩储集层特征图片a.蓬探1井,灯二段,5 730.03~5 730.1 m,葡萄状白云岩,岩心;b.蓬探1井,灯二段,5 747.74 m,藻凝块白云岩,微裂缝发育,岩心;c.蓬探1井,灯二段,5 769.51 m,藻粘结白云岩,窗格孔发育,亮晶白云石胶结,铸体薄片单偏光;d.蓬探102井,灯二段,5 846.16 m,藻格架白云岩,残余格架孔发育,见沥青充填,铸体薄片单偏光;e.蓬探1井,灯二段,5 731.30 m,泡沫绵层白云岩,体腔孔发育,铸体薄片单偏光;f.蓬探103井,灯二段,6 103.93 m,核形石白云岩,普通薄片单偏光。Figure 2. Photographs showing characteristics of microbial dolomite reservoirs in the second member of Dengying Formation in Penglai-Zhongjiang area, central Sichuan Basin角砾状白云岩由多种类型的角砾经多期胶结而成,为研究区另一类重要的储集岩。角砾的原岩成分多样,包括但不限于藻砂屑—藻凝块白云岩(图 3a)、微生物白云岩(图 3c, d)、泥晶白云岩(图 3a)以及葡萄花边状白云岩(图 3b);角砾大小不一,一般0.2~5 cm。角砾状白云岩溶蚀孔洞发育,通常充填2~3期白云石胶结物:其中第一期为栉壳状(叶片状)白云石,沿孔隙呈等厚环边分布;第二期为自形(或他形)白云石胶结物(图 3e-g);第三期胶结物局部发育,为鞍状白云石胶结,常与石英、萤石等热液矿物伴生。在蓬莱—中江地区前两期普遍发育,当角砾之间的孔隙未被完全充填时,残余砾间孔为现今的储集空间。
图 3 川中蓬莱—中江地区灯影组二段角砾状白云岩储集层特征图片a.蓬探1井,灯二段,5 747.85 m,角砾状白云岩,原岩为藻砂屑—藻凝块白云岩,亮晶白云石胶结,微裂缝发育,普通薄片单偏光;b.蓬探101井,灯二段,5 760.31 m,角砾状白云岩,角砾间见两期白云石胶结物,角砾间溶孔发育,铸体薄片单偏光;c.蓬探102井,5 878.83 m,角砾状白云岩,砾间见两期白云石胶结物,残余砾间孔发育在白云石胶结物间,铸体薄片单偏光;d.蓬探101井,灯二段,5 773.76~5 773.91 m,角砾状白云岩,孔洞发育,孔洞内充填白云石,岩心;e.蓬探101井,灯二段,5 759.34 m,角砾状白云岩,残余砾间孔发育,角砾间发育两期白云石胶结物,第一期为栉壳状白云石,第二期为粗晶白云石,铸体薄片单偏光;f.为e中红框放大,角砾间两期白云石胶结物;g.为f同一视域下的阴极发光照片。Figure 3. Photographs showing characteristics of brecciated dolomite reservoirs in the second member of Dengying Formation in Penglai-Zhongjiang area, central Sichuan Basin颗粒白云岩常与微生物岩相伴生,多发育在微生物丘附近[24]。颗粒主要包括砂屑(图 4a)、藻(砂)屑(图 4b, c, f)与(砂)砾屑(图 4d, e)。颗粒白云岩经历后期成岩作用后,颗粒间、颗粒内孔隙部分残留,是该类储集层的重要储集空间,显微镜下可见粒间发育1~3期白云石胶结物。此外,在经历表生成岩作用时颗粒可被进一步溶蚀,使粒间孔进一步扩大;而在埋藏期时,残余的孔洞多被石英、鞍状白云石(图 4d)、萤石等热液矿物充填。
图 4 川中蓬莱—中江地区灯影组二段颗粒白云岩储集层特征图片a.蓬探1井,灯二段,5 731.08~5 731.18 m,砂屑白云岩,针孔、溶孔发育,岩心;b.蓬探1井,灯二段,5 734.5 m,藻砂屑白云岩,残余粒间孔发育,颗粒之间亮晶白云石胶结,铸体薄片单偏光;c.蓬探103井,6 102.82 m,藻砂屑白云岩,残余粒间孔发,亮晶白云石胶结,铸体薄片单偏光;d.蓬探102井,灯二段,5 867.86 m,砾屑白云岩,残余砾间孔发育,砾间发育三期白云石胶结物,见沥青,铸体薄片单偏光;e.中江2井,灯二段,6 548.24 m,砂砾屑白云岩,少量残余砾间孔发育,铸体薄片单偏光;f.蓬探103井,灯二段,5 949.47 m,藻砂屑白云岩,残余粒间孔与粒内孔发育,铸体薄片单偏光。Figure 4. Photographs showing characteristics of granular dolomite reservoirs in the second member of Dengying Formation in Penglai-Zhongjiang area, central Sichuan Basin2.2.2 储集空间与物性特征
钻井岩心、铸体薄片的观察表明,蓬莱—中江地区灯二段储集空间主要包括溶蚀孔洞、格架孔、窗格孔、残余砾(粒)间孔、粒内孔与裂缝等(图 2—图 4)。其中溶蚀孔洞发育在与丘滩复合体相关的各种岩石内,是灯二段最主要的储集空间。
蓬莱—中江地区灯二段181个全直径岩心样品物性测试结果表明,孔隙度介于0.22%~13.08%,发育储集层(>2.0%)的个数占比70%。其中储集层孔隙度为2.0%~13.08%,平均为4.39%,集中分布在2.0%~8.0%,大于4.0%的占比43.7%(图 5a);渗透率平均为0.53×10-3 μm2,大于0.1×10-3 μm2的样品占70.3%(图 5b)。测井解释结果显示,灯二段储集层累计厚度为150~300 m。
3. 储层成因和展布
3.1 准同生溶蚀作用为主、表生岩溶作用为辅
与加里东运动、印支运动这些大规模造山运动形成多期古隆起及多个区域性不整合面不同,桐湾运动是由海平面变化而引起的幕式暴露,可划分为Ⅲ幕,以平行不整合面为主,少见大型角度不整合面[25-29]。研究表明,不同地区桐湾Ⅰ幕(灯二段沉积期末)构造作用导致的岩溶强度不同,表现为盆地边缘活动较强,例如在四川盆地北缘的南江杨坝剖面,灯二段顶部可见明显的岩溶角砾[30]。川中古隆起北斜坡的钻井揭示,灯二段优质储集层纵向上主要发育在中下部,距桐湾Ⅰ幕不整合面近百米。如蓬探1井优质储集层距灯二顶98 m,蓬探102井距灯二顶90 m,磨溪11井距灯二顶87 m,且钻井岩心上未见大规模岩溶角砾及其伴生的沉积构造,镜下亦未见明显大型风化壳岩溶特征,说明表生岩溶作用不是本区优质储层发育的主控因素。从已钻井取心段来看,灯二段优质储集层主要分布在向上变浅旋回的中上部,纵向上多个旋回叠置,单个旋回2~10 m不等。如蓬探101井储集层累计厚度纵向叠置可占取心段的75%(图 6),且溶蚀孔洞多呈层状或准层状展布,暗示海平面间歇暴露造成准同生溶蚀改造作用是储集层形成的关键。
3.2 同沉积断裂控制的高能丘滩体是基础
研究表明断层的掀斜作用可在水下造成古地貌差异,即上升盘形成高垒块,为微生物丘(礁)滩体的规模发育提供有利生长基底。例如在柴达木盆地跃进地区,受阿拉尔断层控制,在上升盘构成的水下低隆部位发育古近系规模藻灰岩储层[31];同样,受加州圣安得列斯断裂带影响,在中南部乔莱姆段发育多个构造地貌现象,如阶地、槽谷等,形成多个古地貌高垒块[32]。本次研究利用最新钻井与地震资料,对川中古隆起北斜坡灯二段顶部同沉积断裂进行了刻画,显示发育近南北向与北西向两组断裂(图 1和图 7)。其中,近南北向断裂呈弧形展布,控制了台缘带走向;西北向断裂切割灯二段台缘带,形成垒堑结构,在相对古地貌高处发育丘滩相沉积,古地貌低洼区则表现为致密岩性带[5, 16]。由此可见,川中古隆起北斜坡灯二段台缘分布受同沉积断裂控制,具有多阶多带特征。
图 7 川中蓬莱—中江地区灯影组二段顶部同沉积断裂地震特征剖面位置见图 1。Figure 7. Seismic characteristics of synsedimentary faults on the top of the second member of Dengying Formation in Penglai-Zhongjiang area, central Sichuan Basin另外,同沉积断层间歇式活动(海底地震)可使台缘带弱固结沉积物发生崩塌破碎,形成原地或就近堆积的角砾,如蓬探101井取心67 m,其中角砾状白云岩达32 m。众多学者对角砾间充填的第一期白云石胶结物开展的U-Pb定年结果显示为接近灯影期,如鲁雪松等[33]对蓬探1井灯二段第一期白云石胶结物U-Pb定年结果为543 Ma±29 Ma,这与沈安江[34]所测高石6井灯二段545.7 Ma±8.5 Ma具有一致性。这些角砾的形成显然不会晚于角砾间的第一期胶结物,其形成时间应接近沉积期[35]。进一步而言,邻近同沉积断层,地貌高、坡度陡,利于丘滩相优质储层发育。如蓬探1井距断层1.6 km,测井解释灯二段储层厚291 m,其中孔隙度为4%~12%的优质储层厚71 m;蓬探101井距断层1.2 km,测井解释灯二段储层厚度318 m,孔隙度为4%~12%的优质储层厚81 m;而蓬探103井距断层2.4 km,灯二段储层厚度265 m,孔隙度为4%~12%的优质储层厚38 m。蓬莱—中江地区的钻井已证实,纵向上微生物丘滩白云岩与角砾白云岩空间密切共生,垂向上多层分布(图 6),进一步表明灯影期同沉积断层活动频繁,奠定了灯二段丘滩相与同沉积角砾白云岩优质储层发育的物质基础。
3.3 沉积微相分异导致孔隙保存差异
钻探揭示,同位于台缘带的蓬探101井与蓬探103井,其储层发育情况却大不相同,表明灯二段台缘带沉积微相具有分异性,非均质性强。本研究认为是由两种因素造成的:一是由于蓬探101井距同沉积断层较近,相对蓬探103井具有更适合高能丘滩发育的沉积背景。薄片观察揭示蓬探103井以暗色纹层状泥晶白云岩与核形石白云岩为主,常见石膏假晶,显示了相对低能环境下蒸发海水沉积特点;且蓬探101井第一期胶结物呈栉壳状,而蓬探103井第一期胶结物呈针状、皮壳状(图 8a, b)。相对蓬探101井,蓬探103井围岩碳同位素值偏正,也指示沉积环境确实存在差异(图 8c)。另一种因素是浅埋藏胶结程度[36],蓬探101井第一期胶结物充填之后,胶结物含量较少,孔隙得以保留;而蓬探103井第二期它形白云石将残余孔隙完全充填,推测其可能是在浅埋藏期,蒸发海水与淡水的混合导致了白云石胶结作用而破坏孔隙[37]。
4. 勘探领域前景
由上文可知,蓬莱—中江地区灯二段微生物白云岩储层发育受到准同生溶蚀作用、同沉积断裂展布和高能丘滩体发育三重控制。其中,准同生溶蚀作用是储层形成的关键[11],同沉积断裂控制的高能丘滩体分布是储层发育的基础[13],而沉积微相的差别会影响孔隙的保存效果[22]。
前人研究表明,川中古隆起北斜坡发育震旦系陡山沱组与寒武系麦地坪组、筇竹寺组3套厚层优质烃源岩,其中麦地坪组—筇竹寺组烃源岩生烃强度达(100~200)×108 m3/km2,陡山沱组生烃强度为(5~40)×108 m3/km2,烃源供给充足[16, 18],可与灯二段断控台缘丘滩形成“旁生侧储”、“下生上储”及“上生下储”等多种优越的源—储配置。基于井震标定,灯二段微生物丘滩体储集层具有中—低频、断续—弱连续中—弱振幅反射特征,丘滩间致密岩性带则为中频、连续、中—强振幅反射。井震结合刻画川中古隆起北斜坡发育蓬莱—中江、盐亭—绵阳、苍溪—广元三大断控台缘丘滩带:①蓬莱—中江一带发育13个丘滩体,面积共1 600 km2;②盐亭—绵阳一带发育7个丘滩体,面积共计1 870 km2;③苍溪—广元一带发育7个丘滩体,累计面积2 280 km2(图 9)。综合现今勘探现状与源储配置及优质储层分布认识,聚焦规模与效益勘探,指出川中古隆起北斜坡(蓬莱气区及其以北地区)具备形成岩性气藏群的条件,蓬莱—中江、盐亭—绵阳及苍溪—广元是目前3个最有利勘探区带。其中蓬莱—中江地区灯二段埋深5 500~7 000 m,已获重大战略突破[5, 38];盐亭—绵阳地区灯二段埋深7 000~9 000 m,是碳酸盐岩超深层最现实的勘探领域,预计资源量约为5 600亿立方米;苍溪—广元地区灯二段埋深8 500~ 10 000 m,预计资源量约为6 800亿立方米。因此,盐亭—绵阳、苍溪—广元地区灯二段大型断控丘滩带是碳酸盐岩超深层乃至万米勘探的最有利区,微生物丘滩体面积共计4 150 km2,储量规模超万亿立方米,有望成为继安岳大气田获得万亿立方米探明储量、蓬莱大气区获得勘探突破之后,下一个万亿立方米大气田的远景区。
5. 结论和建议
(1) 蓬莱气区灯二段储集层岩性主要为微生物白云岩、颗粒白云岩以及角砾状白云岩,储集空间以溶蚀孔洞、残余格架孔、砾间孔为主,灯二段储集层孔隙度介于2.0%~13.08%,平均4.39%,渗透率平均0.53×10-3 μm2。
(2) 蓬莱气区灯二段优质储集层受准同生溶蚀、同沉积断裂与沉积微相三元联合控制。优质储集层主要发育在丘滩体,受控于准同生溶蚀作用,纵向上集中发育在向上变浅旋回的上部。同沉积断裂控制的高能丘滩体是优质规模储层形成的基础,一是同沉积断裂活动可造成沉积地貌分异,形成水下高垒地块,为微生物丘(礁)滩体发育提供有利条件;二是同沉积断裂活动可使弱固结的沉积物发生崩塌破碎,形成原地或就近堆积的角砾状白云岩,角砾间残余孔洞是蓬莱气区最有利的储集空间之一。灯二段沉积微相分异导致了早期成岩作用的差异,浅埋藏白云石胶结物含量决定了孔隙保存结果,从而造成了储集层现今不同的优劣程度。
(3) 川中古隆起北斜坡灯二段发育蓬莱—中江、盐亭—绵阳、苍溪—广元三大断控台缘丘滩带,具有多阶多带特征。盐亭—绵阳、苍溪—广元地区断控台缘微生物丘滩体面积4 150 km2,发育陡山沱组、麦地坪组与筇竹寺组3套优质烃源岩,可形成“旁生侧储”、“下生上储”及“上生下储”多种源—储配置,成藏条件佳,预计资源量超万亿立方米,是碳酸盐岩超深层勘探的有利突破区,有望成为四川盆地下一个万亿立方米气田的突破地。
利益冲突声明/Conflict of Interests所有作者声明不存在利益冲突。All authors disclose no relevant conflict of interests.作者贡献/Authors’Contributions文龙、马华灵、李文正、黎荣参与论文写作和修改;张建勇、谢武仁、汪泽成、付小东参与实验设计;潘立银、李泽奇、王永骁完成实验操作。所有作者均阅读并同意最终稿件的提交。The manuscript was drafted and revised by WEN Long, MA Hualing, LI Wenzheng, and LI Rong. The study was designed by ZHANG Jianyong, XIE Wuren, WANG Zecheng, and FU Xiaodong. The experimental operation was completed by PAN Liyin, LI Zeqi, and WANG Yongxiao. All the authors have read the last version of paper and consented for submission. -
图 2 川中蓬莱—中江地区灯影组二段微生物白云岩储集层特征图片
a.蓬探1井,灯二段,5 730.03~5 730.1 m,葡萄状白云岩,岩心;b.蓬探1井,灯二段,5 747.74 m,藻凝块白云岩,微裂缝发育,岩心;c.蓬探1井,灯二段,5 769.51 m,藻粘结白云岩,窗格孔发育,亮晶白云石胶结,铸体薄片单偏光;d.蓬探102井,灯二段,5 846.16 m,藻格架白云岩,残余格架孔发育,见沥青充填,铸体薄片单偏光;e.蓬探1井,灯二段,5 731.30 m,泡沫绵层白云岩,体腔孔发育,铸体薄片单偏光;f.蓬探103井,灯二段,6 103.93 m,核形石白云岩,普通薄片单偏光。
Figure 2. Photographs showing characteristics of microbial dolomite reservoirs in the second member of Dengying Formation in Penglai-Zhongjiang area, central Sichuan Basin
图 3 川中蓬莱—中江地区灯影组二段角砾状白云岩储集层特征图片
a.蓬探1井,灯二段,5 747.85 m,角砾状白云岩,原岩为藻砂屑—藻凝块白云岩,亮晶白云石胶结,微裂缝发育,普通薄片单偏光;b.蓬探101井,灯二段,5 760.31 m,角砾状白云岩,角砾间见两期白云石胶结物,角砾间溶孔发育,铸体薄片单偏光;c.蓬探102井,5 878.83 m,角砾状白云岩,砾间见两期白云石胶结物,残余砾间孔发育在白云石胶结物间,铸体薄片单偏光;d.蓬探101井,灯二段,5 773.76~5 773.91 m,角砾状白云岩,孔洞发育,孔洞内充填白云石,岩心;e.蓬探101井,灯二段,5 759.34 m,角砾状白云岩,残余砾间孔发育,角砾间发育两期白云石胶结物,第一期为栉壳状白云石,第二期为粗晶白云石,铸体薄片单偏光;f.为e中红框放大,角砾间两期白云石胶结物;g.为f同一视域下的阴极发光照片。
Figure 3. Photographs showing characteristics of brecciated dolomite reservoirs in the second member of Dengying Formation in Penglai-Zhongjiang area, central Sichuan Basin
图 4 川中蓬莱—中江地区灯影组二段颗粒白云岩储集层特征图片
a.蓬探1井,灯二段,5 731.08~5 731.18 m,砂屑白云岩,针孔、溶孔发育,岩心;b.蓬探1井,灯二段,5 734.5 m,藻砂屑白云岩,残余粒间孔发育,颗粒之间亮晶白云石胶结,铸体薄片单偏光;c.蓬探103井,6 102.82 m,藻砂屑白云岩,残余粒间孔发,亮晶白云石胶结,铸体薄片单偏光;d.蓬探102井,灯二段,5 867.86 m,砾屑白云岩,残余砾间孔发育,砾间发育三期白云石胶结物,见沥青,铸体薄片单偏光;e.中江2井,灯二段,6 548.24 m,砂砾屑白云岩,少量残余砾间孔发育,铸体薄片单偏光;f.蓬探103井,灯二段,5 949.47 m,藻砂屑白云岩,残余粒间孔与粒内孔发育,铸体薄片单偏光。
Figure 4. Photographs showing characteristics of granular dolomite reservoirs in the second member of Dengying Formation in Penglai-Zhongjiang area, central Sichuan Basin
图 7 川中蓬莱—中江地区灯影组二段顶部同沉积断裂地震特征
剖面位置见图 1。
Figure 7. Seismic characteristics of synsedimentary faults on the top of the second member of Dengying Formation in Penglai-Zhongjiang area, central Sichuan Basin
-
[1] 邹才能, 杜金虎, 徐春春, 等. 四川盆地震旦系—寒武系特大型气田形成分布、资源潜力及勘探发现[J]. 石油勘探与开发, 2014, 41(3): 278-293. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201403006.htmZOU Caineng, DU Jinhu, XU Chunchun, et al. Formation, distribution, resource potential and discovery of the Sinian-Cambrian giant gas field, Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2014, 41(3): 278-293. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201403006.htm [2] 周进高, 姚根顺, 杨光, 等. 四川盆地安岳大气田震旦系—寒武系储层的发育机制[J]. 天然气工业, 2015, 35(1): 36-44. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201501005.htmZHOU Jingao, YAO Genshun, YANG Guang, et al. Genesis mecha-nism of the Sinian-Cambrian reservoirs in the Anyue Gas Field, Sichuan basin[J]. Natural Gas Industry, 2015, 35(1): 36-44. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201501005.htm [3] 杜金虎, 汪泽成, 邹才能, 等. 上扬子克拉通内裂陷的发现及对安岳特大型气田形成的控制作用[J]. 石油学报, 2016, 37(1): 1-16. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201601002.htmDU Jinhu, WANG Zecheng, ZOU Caineng, et al. Discovery of intra-cratonic rift in the upper Yangtze and its control effect on the formation of Anyue giant gas field[J]. Acta Petrolei Sinica, 2016, 37(1): 1-16. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201601002.htm [4] 马新华, 杨雨, 文龙, 等. 四川盆地海相碳酸盐岩大中型气田分布规律及勘探方向[J]. 石油勘探与开发, 2019, 46(1): 1-13. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201901001.htmMA Xinhua, YANG Yu, WEN Long, et al. Distribution and exploration direction of medium- and large-sized marine carbonate gas fields in Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2019, 46(1): 1-13. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201901001.htm [5] 赵路子, 汪泽成, 杨雨, 等. 四川盆地蓬探1井灯影组灯二段油气勘探重大发现及意义[J]. 中国石油勘探, 2020, 25(3): 1-12. doi: 10.3969/j.issn.1672-7703.2020.03.001ZHAO Luzi, WANG Zecheng, YANG Yu, et al. Important discovery in the second member of Dengying Formation in well Pengtan1 and its significance, Sichuan Basin[J]. China Petroleum Exploration, 2020, 25(3): 1-12. doi: 10.3969/j.issn.1672-7703.2020.03.001 [6] 徐春春, 沈平, 杨跃明, 等. 四川盆地川中古隆起震旦系—下古生界天然气勘探新认识及勘探潜力[J]. 天然气工业, 2020, 40(7): 1-9. doi: 10.3787/j.issn.1000-0976.2020.07.001XU Chunchun, SHEN Ping, YANG Yueming, et al. New understandings and potential of Sinian-Lower Paleozoic natural gas exploration in the central Sichuan paleo-uplift of the Sichuan Basin[J]. Natural Gas Industry, 2020, 40(7): 1-9. doi: 10.3787/j.issn.1000-0976.2020.07.001 [7] 杨雨, 黄先平, 张健, 等. 四川盆地寒武系沉积前震旦系顶界岩溶地貌特征及其地质意义[J]. 天然气工业, 2014, 34(3): 38-43. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201403009.htmYANG Yu, HUANG Xianping, ZHANG Jian, et al. Features and geologic significances of the top Sinian karst landform before the Cambrian deposition in the Sichuan Basin[J]. Natural Gas Industry, 2014, 34(3): 38-43. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201403009.htm [8] 李勇, 王兴志, 冯明友, 等. 四川盆地北部及周缘地区震旦系灯影组二段、四段储集层特征及成因差异[J]. 石油勘探与开发, 2019, 46(1): 52-64. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201901005.htmLI Yong, WANG Xingzhi, FENG Mingyou, et al. Reservoir characte-ristics and genetic differences between the second and fourth members of Sinian Dengying Formation in northern Sichuan Basin and its surrounding areas[J]. Petroleum Exploration and Development, 2019, 46(1): 52-64. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201901005.htm [9] ZHAI Xiufen, LUO Ping, GU Zhidong, et al. Microbial mineralization of botryoidal laminations in the Upper Ediacaran dolostones, western Yangtze Platform, SW China[J]. Journal of Asian Earth Sciences, 2020, 195: 104334. doi: 10.1016/j.jseaes.2020.104334 [10] 宋金民, 刘树根, 李智武, 等. 四川盆地上震旦统灯影组微生物碳酸盐岩储层特征与主控因素[J]. 石油与天然气地质, 2017, 38(4): 741-752. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201704011.htmSONG Jinmin, LIU Shugen, LI Zhiwu, et al. Characteristics and controlling factors of microbial carbonate reservoirs in the Upper Sinian Dengying Formation in the Sichuan Basin, China[J]. Oil & Gas Geology, 2017, 38(4): 741-752. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201704011.htm [11] XU Zhehang, LAN Caijun, ZHANG Benjian, et al. Impact of diagenesis on the microbial reservoirs of the terminal Ediacaran Dengying Formation from the central to northern Sichuan Basin, SW China[J]. Marine and Petroleum Geology, 2022, 146: 105924. [12] KOESHIDAYATULLAH A, AL-RAMADAN K, COLLIER R, et al. Variations in architecture and cyclicity in fault-bounded carbonate platforms: Early Miocene Red Sea Rift, NW Saudi Arabia[J]. Marine and Petroleum Geology, 2016, 70: 77-92. [13] WEN Long, RAN Qi, TIAN Weizhen, et al. Strike-slip fault effects on diversity of the Ediacaran mound-shoal distribution in the central Sichuan intracratonic basin, China[J]. Energies, 2022, 15(16): 5910. [14] 宋泽章, 葛冰飞, 王文之, 等. 超深层古油藏的定量表征及其对气藏形成的指示意义: 以川中古隆起北斜坡灯影组为例[J]. 地球科学, 2023, 48(2): 517-532. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202302011.htmSONG Zezhang, GE Bingfei, WANG Wenzhi, et al. Quantitative characterization of ultra-deep paleo-oil reservoirs and its indication for deep gas accumulation: a case study on the Dengying Formation, the north slope of central Sichuan paleo-uplift[J]. Editorial Committee of Earth Science-Journal of China University of Geosciences, 2023, 48(2): 517-532. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202302011.htm [15] 汪泽成, 姜华, 陈志勇, 等. 中上扬子地区晚震旦世构造古地理及油气地质意义[J]. 石油勘探与开发, 2020, 47(5): 884-897. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202005006.htmWANG Zecheng, JIANG Hua, CHEN Zhiyong, et al. Tectonic paleogeography of Late Sinian and its significances for petroleum exploration in the middle-upper Yangtze region, South China[J]. Petroleum Exploration and Development, 2020, 47(5): 884-897. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202005006.htm [16] 杨雨, 汪泽成, 文龙, 等. 扬子克拉通西北缘震旦系油气成藏条件及勘探潜力[J]. 石油勘探与开发, 2022, 49(2): 238-248. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202202001.htmYANG Yu, WANG Zecheng, WEN Long, et al. Sinian hydrocarbon accumulation conditions and exploration potential at the northwest margin of the Yangtze region, China[J]. Petroleum Exploration and Development, 2022, 49(2): 238-248. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202202001.htm [17] 马奎, 文龙, 张本健, 等. 四川盆地德阳—安岳侵蚀裂陷槽分段性演化分析和油气勘探意义[J]. 石油勘探与开发, 2022, 49(2): 274-284. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202202004.htmMA Kui, WEN Long, ZHANG Benjian, et al. Segmented evolution of Deyang-Anyue erosion rift trough in Sichuan Basin and its significance for oil and gas exploration, SW China[J]. Petroleum Exploration and Development, 2022, 49(2): 274-284. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202202004.htm [18] 付小东, 陈娅娜, 罗冰, 等. 中上扬子区下寒武统麦地坪组—筇竹寺组烃源岩与含油气系统评价[J]. 中国石油勘探, 2022, 27(4): 103-120. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY202204008.htmFU Xiaodong, CHEN Ya'na, LUO Bing, et al. Evaluation of source rocks and petroleum system of the Lower Cambrian Maidiping Formation-Qiongzhusi Formation in the Middle-Upper Yangtze region[J]. China Petroleum Exploration, 2022, 27(4): 103-120. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY202204008.htm [19] 刘树根, 孙玮, 罗志立, 等. 兴凯地裂运动与四川盆地下组合油气勘探[J]. 成都理工大学学报(自然科学版), 2013, 40(5): 511-520. https://www.cnki.com.cn/Article/CJFDTOTAL-CDLG201305003.htmLIU Shugen, SUN Wei, LUO Zhili, et al. Xingkai taphrogenesis and petroleum exploration from Upper Sinian to Cambrian Strata in Sichuan Basin, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2013, 40(5): 511-520. https://www.cnki.com.cn/Article/CJFDTOTAL-CDLG201305003.htm [20] 周进高, 张建勇, 邓红婴, 等. 四川盆地震旦系灯影组岩相古地理与沉积模式[J]. 天然气工业, 2017, 37(1): 24-31. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201701005.htmZHOU Jingao, ZHANG Jianyong, DENG Hongying, et al. Lithofacies paleogeography and sedimentary model of Sinian Dengying Fm in the Sichuan Basin[J]. Natural Gas Industry, 2017, 37(1): 24-31. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201701005.htm [21] 谢继容, 张自力, 钟原, 等. 四川盆地中部—北部地区灯影组二段天然气勘探新认识及潜力分析[J]. 海相油气地质, 2022, 27(3): 225-235. https://www.cnki.com.cn/Article/CJFDTOTAL-HXYQ202203001.htmXIE Jirong, ZHANG Zili, ZHONG Yuan, et al. New understanding and potential analysis of natural gas exploration of the Dengying Member 2 in central-northern area of Sichuan Basin[J]. Marine Origin Petroleum Geology, 2022, 27(3): 225-235. https://www.cnki.com.cn/Article/CJFDTOTAL-HXYQ202203001.htm [22] 徐哲航, 兰才俊, 郝芳, 等. 四川盆地震旦系灯影组不同古地理环境下丘滩储集体的差异性[J]. 古地理学报, 2020, 22(2): 235-250. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX202002003.htmXU Zhehang, LAN Caijun, HAO Fang, et al. Difference of mound-bank complex reservoir under different palaeogeographic environment of the Sinian Dengying Formation in Sichuan Basin[J]. Journal of Palaeogeography, 2020, 22(2): 235-250. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX202002003.htm [23] 陈娅娜, 沈安江, 潘立银, 等. 微生物白云岩储集层特征、成因和分布: 以四川盆地震旦系灯影组四段为例[J]. 石油勘探与开发, 2017, 44(5): 704-715. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201705006.htmCHEN Yana, SHEN Anjiang, PAN Liyin, et al. Features, origin and distribution of microbial dolomite reservoirs: a case study of 4th member of Sinian Dengying Formation in Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2017, 44(5): 704-715. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201705006.htm [24] 徐哲航, 兰才俊, 马肖琳, 等. 四川盆地震旦系灯影组丘滩体储层沉积模式与物性特征[J]. 地球科学, 2020, 45(4): 1281-1294. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202004013.htmXU Zhehang, LAN Caijun, MA Xiaolin, et al. Sedimentary models and physical properties of mound-shoal complex reservoirs in Sinian Dengying Formation, Sichuan Basin[J]. Earth Science, 2020, 45(4): 1281-1294. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202004013.htm [25] 姜华, 汪泽成, 杜宏宇, 等. 乐山—龙女寺古隆起构造演化与新元古界震旦系天然气成藏[J]. 天然气地球科学, 2014, 25(2): 192-200. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201402007.htmJIANG Hua, WANG Zecheng, DU Hongyu, et al. Tectonic evolution of the Leshan-Longnvsi paleo-uplift and reservoir formation of Neoproterozoic Sinian gas[J]. Natural Gas Geoscience, 2014, 25(2): 192-200. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201402007.htm [26] 汪泽成, 姜华, 王铜山, 等. 四川盆地桐湾期古地貌特征及成藏意义[J]. 石油勘探与开发, 2014, 41(3): 305-312. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201403008.htmWANG Zecheng, JIANG Hua, WANG Tongshan, et al. Paleo-geomorphology formed during Tongwan tectonization in Sichuan Basin and its significance for hydrocarbon accumulation[J]. Petroleum Exploration and Development, 2014, 41(3): 305-312. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201403008.htm [27] 李伟, 刘静江, 邓胜徽, 等. 四川盆地及邻区震旦纪末—寒武纪早期构造运动性质与作用[J]. 石油学报, 2015, 36(5): 546-556. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201505003.htmLI Wei, LIU Jingjiang, DENG Shenghui, et al. The nature and role of Late Sinian-Early Cambrian tectonic movement in Sichuan Basin and its adjacent areas[J]. Acta Petrolei Sinica, 2015, 36(5): 546-556. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201505003.htm [28] 陈宗清. 四川盆地震旦系灯影组天然气勘探[J]. 中国石油勘探, 2010, 15(4): 1-14. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201004003.htmCHEN Zongqing. Gas exploration in Sinian Dengying Formation, Sichuan Basin[J]. China Petroleum Exploration, 2010, 15(4): 1-14. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201004003.htm [29] 武赛军, 魏国齐, 杨威, 等. 四川盆地桐湾运动及其油气地质意义[J]. 天然气地球科学, 2016, 27(1): 60-70. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201601008.htmWU Saijun, WEI Guoqi, YANG Wei, et al. Tongwan Movement and its geologic significances in Sichuan Basin[J]. Natural Gas Geoscience, 2016, 27(1): 60-70. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201601008.htm [30] 邢凤存, 侯明才, 林良彪, 等. 四川盆地晚震旦世—早寒武世构造运动记录及动力学成因讨论[J]. 地学前缘, 2015, 22(1): 115-125. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201501012.htmXING Fengcun, HOU Mingcai, LIN Liangbiao, et al. The records and its dynamic genesis discussion of tectonic movement during the Late Sinian and the Early Cambrian of Sichuan Basin[J]. Earth Science Frontiers, 2015, 22(1): 115-125. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201501012.htm [31] 寿建峰, 邵文斌, 陈子炓, 等. 柴西地区第三系藻灰(云)岩的岩石类型与分布特征[J]. 石油勘探与开发, 2003, 30(4): 37-39. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK200304011.htmSHOU Jianfeng, SHAO Wenbin, CHEN Ziliao, et al. Lithological types and distribution features of Tertiary algal-limestone in Chaixi area, Qaidam Basin[J]. Petroleum Exploration and Development, 2003, 30(4): 37-39. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK200304011.htm [32] ARROWSMITH J R, ZIELKE O. Tectonic geomorphology of the San Andreas fault zone from high resolution topography: an example from the Cholame segment[J]. Geomorphology, 2009, 113(1/2): 70-81. [33] 鲁雪松, 马行陟, 范俊佳, 等. 深层油气成藏实验与评价技术进展及川中古隆起海相多层系油气成藏过程[R]. 成都: 中国石油西南油气田公司四川盆地研究中心, 2022: 1-55.LU Xuesong, MA Xingzhi, FANG Junjia, et al. Advances in deep oil and gas formation experiments and evaluation techniques and the process of oil and gas formation in the marine multi-formation system of the Chuanzhong paleo-high[R]. Chengdu: Sichuan Basin Research Center of PetroChina Southwest Oil and Gas Field Company, 2022: 1-55. [34] 沈安江, 胡安平, 程婷, 等. 激光原位U-Pb同位素定年技术及其在碳酸盐岩成岩—孔隙演化中的应用[J]. 石油勘探与开发, 2019, 46(6): 1062-1074. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201906006.htmSHEN Anjiang, HU Anping, CHENG Ting, et al. Laser ablation in situ U-Pb dating and its application to diagenesis-porosity evolution of carbonate reservoirs[J]. Petroleum Exploration and Development, 2019, 46(6): 1062-1074. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201906006.htm [35] JIANG Lei, SHEN Anjiang, WANG Zichen, et al. U-Pb geochronology and clumped isotope thermometry study of Neoproterozoic dolomites from China[J]. Sedimentology, 2022, 69(7): 2925-2945. [36] 兰才俊, 徐哲航, 马肖琳, 等. 四川盆地震旦系灯影组丘滩体发育分布及对储层的控制[J]. 石油学报, 2019, 40(9): 1069-1084. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201909005.htmLAN Caijun, XU Zhehang, MA Xiaolin, et al. Development and distribution of mound-shoal complex in the Sinian Dengying Formation, Sichuan Basin and its control on reservoirs[J]. Acta Petrolei Sinica, 2019, 40(9): 1069-1084. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201909005.htm [37] LI Zhaoqi, GOLDSTEIN R H, FRANSEEN E K. Ascending freshwater-mesohaline mixing: a new scenario for dolomitization[J]. Journal of Sedimentary Research, 2013, 83(3): 277-283. [38] 张本健, 钟原, 周刚, 等. 四川盆地中部蓬莱地区灯二段沉积微相演化及气藏综合评价[J]. 海相油气地质, 2023, 28(1): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-HXYQ202301001.htmZHANG Benjian, ZHONG Yuan, ZHOU Gang, et al. Sedimentary microfacies evolution and comprehensive evaluation of gas reservoir of the Dengying Member 2 in Penglai area, central Sichuan Basin[J]. Marine Origin Petroleum Geology, 2023, 28(1): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-HXYQ202301001.htm 期刊类型引用(4)
1. 张坤,刘宏,谭磊,梁锋,王立恩,马梓珂,刘博文,杨孟祥. 川中北部蓬莱地区震旦系灯影组二段地震沉积学特征. 岩性油气藏. 2025(02): 189-200 . 百度学术
2. 陈泓位,王时林,和源,王君,秦启荣,赵建民. 四川盆地中北部DB1井区灯影组四段沉积相及储层特征. 油气地质与采收率. 2024(03): 31-41 . 百度学术
3. 王雅萍,鲍志东,张连进,杨东凡,文雯,钟原,唐攀. 四川盆地蓬莱地区埃迪卡拉系灯影组二段微生物岩储层成岩作用:对优质储层形成与演化的启示. 地质力学学报. 2024(04): 579-594 . 百度学术
4. 牛思琪,柳广弟,王云龙,宋泽章,朱联强,赵文智,田兴旺,杨岱林,李亿殊. 川中地区震旦系灯影组—寒武系龙王庙组储层焦沥青赋存特征与成因机制. 石油实验地质. 2024(05): 1039-1049 . 本站查看
其他类型引用(0)
-