Beneficial development practice and countermeasures of Baima block in Fuling shale gas field, Sichuan Basin
-
摘要: 近年来,涪陵页岩气田在积极推进焦石坝等高压页岩气藏开发调整的同时,为了确保气田持续稳产能力,开发对象也向白马等复杂构造区块稳步拓展。基于白马区块构造变形强、地质条件复杂、单井产能低、开发难度大等问题,通过断裂带方解石U-Pb定年、三维应力场建模、地质工程一体化评价等技术方法,深入研究白马区块的构造变形期次、应力场分布特征、开发有利目标、开发技术对策等,取得了积极进展:提出了逆冲推覆作用力是涪陵地区海相常压页岩气藏构造变形差异的主控因素;创建了“两类6项”的开发选区评价参数体系,明确了白马向斜核部以南为效益建产最有利目标;形成了以天然裂缝发育特征为核心的差异化开发技术政策;形成了基于气井埋深、应力性质、裂缝等不同地质特征的工程工艺对策。在上述认识基础上,按照“整体部署、评建一体、平台接替”思路,2021—2022年部署实施开发井位30口,平均机械钻速提高38%,压裂施工速度提升2~3倍,单段压裂费用降至85万元,日产气量稳定在80万方,2022年年产气量达2.24亿方,基本实现了效益开发。Abstract: In recent years, while actively promoting the development and adjustment of high-pressure shale gas reservoirs such as Jiaoshiba shale gas reservoir, Fuling shale gas field has steadily expanded its development targets to Baima block and other complex structural blocks in order to ensure continuous and stable production capacity. Based on the strong structural deformation, complex geological conditions, low single-well productivity, and great development difficulty of Baima block, this paper deeply studies the tectonic deformation stages, stress field distribution characteristics, favorable targets, and development technical countermeasures of Baima block by means of fracture zone calcite U-Pb dating, three-dimensional stress field modeling, geoengineering integration evaluation and other technical methods, and has made positive progress: it is suggested that the thrust nappe force is the main controlling factor of the deformation difference of marine normal pressure shale gas reservoirs in Fuling area; the evaluation parameter system of "two categories, six items" for development area selection is established, and the south of Baima syncline core is identified as the most favorable target for beneficial development; a differentiated development technology policy based on the development characteristics of natural fractures has been formed; the engineering process countermeasures based on different geological characteristics such as gas well buried depth, stress property and crack are formed. On the basis of the above understanding, and in accordance with the idea of "overall deployment, evaluation-construction integration, and platform replacement", 30 development well locations were deployed and implemented in 2021-2022, the average ROP was increased by 38%, the fracturing rate was increased by 2-3 times, the single stage fracturing cost was reduced to 850 000 yuan, the daily gas output was stable at 800 000 square meters, and the annual gas output reached 224 million square meters in 2022, basically realizing beneficial development.
-
Key words:
- normal pressure /
- shale gas /
- beneficial development /
- Fuling shale gas field /
- Sichuan Basin
-
表 1 四川盆地白马区块与焦石坝区块不同沉积微相页岩测井解释统计
Table 1. Statistics for logging interpretation of shales of different sedimentary microfacies in Baima and Jiaoshiba blocks, Sichuan Basin
沉积微相 井号 有机碳含量/% 硅质含量/% 孔隙度/% 吸游比 硅质深水陆棚微相 焦石坝 3.7 53 4.56 0.90 焦页A 3.6 48 3.39 1.21 焦页B 3.6 59 3.53 0.94 含黏土硅质深水陆棚微相 焦石坝 2.6 46 4.99 0.73 焦页A 2.5 44 3.48 0.95 焦页B 2.7 50 3.55 0.87 硅质黏土深水陆棚微相 焦石坝 2.0 43 3.78 0.69 焦页A 1.8 43 3.29 0.78 焦页B 1.9 47 2.26 1.05 黏土质深水陆棚微相 焦石坝 1.6 36 4.97 0.58 焦页A 1.6 36 4.21 0.65 焦页B 1.6 43 2.96 0.84 表 2 四川盆地白马区块与涪陵气田不同产建区构造特征对比
Table 2. Comparison of structural characteristics between different production and construction areas in Baima block and Fuling shale gas field, Sichuan Basin
区块 构造形态 断裂发育程度/(条/km2) 地层产状/(°) 埋深/m 最大主应力方向 焦石坝 箱状背斜 <0.05 <10 2 500~3 500 近东西向 江东 高陡斜坡 <0.1 5~20 3 000~4 000 近东西向 平桥 窄陡背斜 <0.1 5~30 2 500~4 000 北西—南东向 白马 窄陡背斜、高陡斜坡窄陡向斜、宽缓向斜 >0.3 5~50 2 000~4 800 北东—南西向北西—南东向 表 3 四川盆地涪陵地区断裂带方解石U-Pb定年数据
Table 3. U-Pb dating of calcites from fracture zone in Fuling area, Sichuan Basin
断裂方向 典型断层 同位素年/Ma 构造期次 挤压方向 北东向断裂 齐岳山断层 135.43±8.12 燕山晚期 南东—北西向 47.67±5.58 喜马拉雅早期 北西—南东向 南北向断裂 乌江断层 27.8±4.8 喜马拉雅晚期 近东西向 表 4 四川盆地白马区块页岩气开发选区地质参数体系
Table 4. Geological parameter system of shale gas development area selection in Baima block, Sichuan Basin
类别 含气性评价参数 可压性评价参数 孔隙度/% 压力系数 含气饱和度/% 埋深/m 天然裂缝(曲率) 应力性质 Ⅰ类 ≥4.0 ≥1.3 ≥60 ≤3 500 低值斑点状曲率
非均质性弱中—弱挤压 Ⅱ类 3.0~4.0 1.1~1.3 50~60 3 500~4 000 空白曲率或中值条带状曲率
非均质性弱中—弱拉张 Ⅲ类 2.0~3.0 0.9~1.3 40~50 4 000~4 500 单方向高值条带状曲率
非均质性强强挤压
强拉张Ⅳ类 <2.0 <0.9 <40 >4 500 多方向高值条带状曲率
非均质性强强挤压
强拉张 -
[1] 邹才能, 董大忠, 王社教, 等. 中国页岩气形成机理、地质特征及资源潜力[J]. 石油勘探与开发, 2010, 37(6): 641-653. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201006003.htmZOU Caineng, DONG Dazhong, WANG Shejiao, et al. Geological characteristics, formation mechanism and resource potential of shale gas in China[J]. Petroleum Exploration and Development, 2010, 37(6): 641-653. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201006003.htm [2] 马永生, 冯建辉, 牟泽辉, 等. 中国石化非常规油气资源潜力及勘探进展[J]. 中国工程科学, 2012, 14(6): 22-30. https://www.cnki.com.cn/Article/CJFDTOTAL-GCKX201206003.htmMA Yongsheng, FENG Jianhui, MU Zehui, et al. The potential and exploring progress of unconventional hydrocarbon resources in SINOPEC[J]. Strategic Study of CAE, 2012, 14(6): 22-30. https://www.cnki.com.cn/Article/CJFDTOTAL-GCKX201206003.htm [3] 张大伟, 李玉喜, 张金川, 等. 全国页岩气资源潜力调查评价[M]. 北京: 地质出版社, 2012.ZHANG Dawei, LI Yuxi, ZHANG Jinchuan, et al. Evaluation on investigation of China's nationwide shale gas resources potential[M]. Beijing: Geology Press, 2012. [4] 王志刚. 涪陵页岩气勘探开发重大突破与启示[J]. 石油与天然气地质, 2015, 36(1): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201501002.htmWANG Zhigang. Breakthrough of Fuling shale gas exploration and development and its inspiration[J]. Oil & Gas Geology, 2015, 36(1): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201501002.htm [5] 郭旭升, 胡东风, 魏志红, 等. 涪陵页岩气田的发现与勘探认识[J]. 中国石油勘探, 2016, 21(3): 24-37. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201603003.htmGUO Xusheng, HU Dongfeng, WEI Zhihong, et al. Discovery and exploration of Fuling shale gas field[J]. China Petroleum Exploration, 2016, 21(3): 24-37. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201603003.htm [6] 孙健, 罗兵. 四川盆地涪陵页岩气田构造变形特征及对含气性的影响[J]. 石油与天然气地质, 2016, 37(6): 809-818. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201606004.htmSUN Jian, LUO Bing. Structural deformation and its influences on gas storage in Fuling shale gas play, the Sichuan Basin[J]. Oil & Gas Geology, 2016, 37(6): 809-818. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201606004.htm [7] 翟刚毅, 包书景, 王玉芳, 等. 古隆起边缘成藏模式与湖北宜昌页岩气重大发现[J]. 地球学报, 2017, 38(4): 441-447. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201704001.htmZHAI Gangyi, BAO Shujing, WANG Yufang, et al. Reservoir accumulation model at the edge of palaeohigh and significant discovery of shale gas in Yichang area, Hubei Province[J]. Acta Geoscientica Sinica, 2017, 38(4): 441-447. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201704001.htm [8] 马永生, 蔡勋育, 赵培荣. 中国页岩气勘探开发理论认识与实践[J]. 石油勘探与开发, 2018, 45(4): 561-574. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201804004.htmMA Yongsheng, CAI Xunyu, ZHAO Peirong. China's shale gas exploration and development: understanding and practice[J]. Petroleum Exploration and Development, 2018, 45(4): 561-574. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201804004.htm [9] 韩珊, 车明光, 苏旺, 等. 四川盆地威远区块页岩气单井产量预测方法及应用[J]. 特种油气藏, 2022, 29(6): 141-149. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ202206018.htmHAN Shan, CHE Mingguang, SU Wang, et al. Prediction method and application of single shale gas well production in Weiyuan block Sichuan Basin[J]. Special Oil & Gas Reserviors, 2022, 29(6): 141-149. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ202206018.htm [10] 苏海琨, 聂海宽, 郭少斌, 等. 深层页岩含气量评价及其差异变化: 以四川盆地威荣、永川页岩气田为例[J]. 石油实验地质, 2022, 44(5): 815-824. doi: 10.11781/sysydz202205815SU Haikun, NIE Haikuan, GUO Shaobin, et al. Shale gas content evaluation for deep strata and its variation: a case study of Weirong, Yongchuan gas fields in Sichuan Basin[J]. Petroleum Geology & Experiment, 2022, 44(5): 815-824. doi: 10.11781/sysydz202205815 [11] 冯动军. 四川盆地侏罗系大安寨段陆相页岩油气地质特征及勘探方向[J]. 石油实验地质, 2022, 44(2): 219-230. doi: 10.11781/sysydz202202219FENG Dongjun. Geological characteristics and exploration direction of continental shale gas in Jurassic Daanzhai Member, Sichuan Basin[J]. Petroleum Geology & Experiment, 2022, 44(2): 219-230. doi: 10.11781/sysydz202202219 [12] 杨光, 田伟志, 吕江, 等. 威远构造W202区块龙马溪组龙11亚段页岩气储集层岩石学特征[J]. 特种油气藏, 2021, 28(2): 34-40. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ202102005.htmYANG Guang, TIAN Weizhi, LYU Jiang, et al. Petrological characte-ristics of shale gas reservoirs in Long11 sub-member of Longmaxi Formation in W202 block of Weiyuan Structure[J]. Special Oil & Gas Reservoirs, 2021, 28(2): 34-40. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ202102005.htm [13] 舒志国, 王进. 四川盆地涪陵气田焦石坝区块上部气层地质特征分析及有利区优选[J]. 石油实验地质, 2021, 43(1): 34-44. doi: 10.11781/sysydz202101034SHU Zhiguo, WANG Jin. Geological characteristics and optimization of favorable areas in the upper gas reservoir of Jiaoshiba block in the Fuling Shale Gas Field, Sichuan Basin[J]. Petroleum Geology & Experiment, 2021, 43(1): 34-44. doi: 10.11781/sysydz202101034 [14] 柳筠, 张梦吟. 页岩气田储层含气性测井评价: 以四川盆地涪陵页岩气田J区块为例[J]. 石油实验地质, 2021, 43(1): 128-135. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD202101014.htmLIU Yun, ZHANG Mengyin. Gas-bearing property evaluation by petrophysical logging in shale gas reservoirs: a case study in J area of Fuling shale gas field, Sichuan Basin[J]. Petroleum Geology & Experiment, 2021, 43(1): 128-135. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD202101014.htm [15] 胡浩, 赵文韬, 张爱华, 等. 龙马溪组高硅质页岩段定量评价及靶体调整: 以川南地区Z201区块为例[J]. 油气地质与采收率, 2022, 29(4): 25-34. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS202204003.htmHU Hao, ZHAO Wentao, ZHANG Aihua, et al. Quantitative evaluation and target adjustment of high-silica shale sections in Longmaxi Formation: a case from block Z201 in southern Sichuan Basin[J]. Petroleum Geology and Recovery Efficiency, 2022, 29(4): 25-34. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS202204003.htm [16] 马新华, 谢军. 川南地区页岩气勘探开发进展及发展前景[J]. 石油勘探与开发, 2018, 45(1): 161-169. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201801020.htmMA Xinhua, XIE Jun. The progress and prospects of shale gas exploration and exploitation in southern Sichuan Basin, NW China[J]. Petroleum Exploration and Development, 2018, 45(1): 161-169. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201801020.htm [17] 郭彤楼. 页岩气勘探开发中的几个地质问题[J]. 油气藏评价与开发, 2019, 9(5): 14-19. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ201905002.htmGUO Tonglou. A few geological issues in shale gas exploration and development[J]. Reservoir Evaluation and Development, 2019, 9(5): 14-19. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ201905002.htm [18] 马力, 陈焕疆, 甘克文, 等. 中国南方大地构造和海相油气地质[M]. 北京: 地质出版社, 2004: 59-82.MA Li, CHEN Huanjiang, GAN Kewen, et al. Tectonic and marine petroleum geology in South China[M]. Beijing: Geology Press, 2004: 59-82. [19] 蒲泊伶, 董大忠, 管全中, 等. 川南地区龙马溪组页岩气富集高产主控因素分析[J]. 石油物探, 2022, 61(5): 918-928. https://www.cnki.com.cn/Article/CJFDTOTAL-SYWT202205016.htmPU Boling, DONG Dazhong, GUAN Quanzhong, et al. Analysis of main controlling factors for the enrichment and high productivity of the Longmaxi shale gas in southern Sichuan Basin[J]. Geophysical Prospecting For Petroleum, 2022, 61(5): 918-928. https://www.cnki.com.cn/Article/CJFDTOTAL-SYWT202205016.htm [20] 田鹤, 曾联波, 徐翔, 等. 四川盆地涪陵地区海相页岩天然裂缝特征及对页岩气的影响[J]. 石油与天然气地质, 2020, 41(3): 474-483. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202003005.htmTIAN He, ZENG Lianbo, XU Xiang, et al. Characteristics of natural fractures in marine shale in Fuling area, Sichuan Basin, and their influence on shale gas[J]. Oil & Gas Geology, 2020, 41(3): 474-483. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202003005.htm [21] 范存辉, 李虎, 钟城, 等. 川东南丁山构造龙马溪组页岩构造裂缝期次及演化模式[J]. 石油学报, 2018, 39(4): 379-390. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201804002.htmFAN Cunhui, LI Hu, ZHONG Cheng, et al. Tectonic fracture stages and evolution model of Longmaxi Formation shale, Dingshan structure, southeast Sichuan[J]. Acta Petrolei Sinica, 2018, 39(4): 379-390. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201804002.htm [22] 赵文韬, 荆铁亚, 吴斌, 等. 断裂对页岩气保存条件的影响机制: 以渝东南地区五峰组—龙马溪组为例[J]. 天然气地球科学, 2018, 29(9): 1333-1344. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201809011.htmZHAO Wentao, JING Tieya, WU Bin, et al. Controlling mechanism of faults on the preservation conditions of shale gas: a case study of Wufeng-Longmaxi formations in southeast Chongqing[J]. Natural Gas Geoscience, 2018, 29(9): 1333-1344. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201809011.htm [23] 牟传龙, 周恳恳, 梁薇, 等. 中上扬子地区早古生代烃源岩沉积环境与油气勘探[J]. 地质学报, 2011, 85(4): 526-532. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201104009.htmMU Chuanlong, ZHOU Kenken, LIANG Wei, et al. Early Paleozoic sedimentary environment of hydrocarbon source rocks in the Middle-Upper Yangtze region and petroleum and gas exploration[J]. Acta Geologica Sinica, 2011, 85(4): 526-532. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201104009.htm [24] 魏峰, 陈孔全, 庹秀松. 川东齐岳山断层北部差异构造变形特征[J]. 石油实验地质, 2019, 41(3): 348-354. doi: 10.11781/sysydz201903348WEI Feng, CHEN Kongquan, TUO Xiusong. Differential tectonic deformation in the northern Qiyueshan Fault, eastern Sichuan Basin[J]. Petroleum Geology & Experiment, 2019, 41(3): 348-354. doi: 10.11781/sysydz201903348 [25] 唐永, 周立夫, 陈孔全, 等. 川东南构造应力场地质分析及构造变形成因机制讨论[J]. 地质论评, 2018, 64(1): 15-28. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201801004.htmTANG Yong, ZHOU Lifu, CHEN Kongquan, et al. Analysis of tectonic stress field of southeastern Sichuan and formation mechanism of tectonic deformation[J]. Geological Review, 2018, 64(1): 15-28. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201801004.htm [26] 胡东风, 张汉荣, 倪楷, 等. 四川盆地东南缘海相页岩气保存条件及其主控因素[J]. 天然气工业, 2014, 34(6): 17-23. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201406003.htmHU Dongfeng, ZHANG Hanrong, NI Kai, et al. Main controlling factors for gas preservation conditions of marine shales in southeastern margins of the Sichuan Basin[J]. Natural Gas Industry, 2014, 34(6): 17-23. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201406003.htm [27] 胡德高, 刘超. 四川盆地涪陵页岩气田单井可压性地质因素研究[J]. 石油实验地质, 2018, 40(1): 20-24. doi: 10.11781/sysydz201801020HU Degao, LIU Chao. Geological factors of well fracability in Fuling shale gas field, Sichuan Basin[J]. Petroleum Geology & Experiment, 2018, 40(1): 20-24. doi: 10.11781/sysydz201801020