留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

渝东南常压页岩气工程工艺技术进展及下一步攻关方向

姚红生 房启龙 袁明进 张壮

姚红生, 房启龙, 袁明进, 张壮. 渝东南常压页岩气工程工艺技术进展及下一步攻关方向[J]. 石油实验地质, 2023, 45(6): 1132-1142. doi: 10.11781/sysydz2023061132
引用本文: 姚红生, 房启龙, 袁明进, 张壮. 渝东南常压页岩气工程工艺技术进展及下一步攻关方向[J]. 石油实验地质, 2023, 45(6): 1132-1142. doi: 10.11781/sysydz2023061132
YAO Hongsheng, FANG Qilong, YUAN Mingjin, ZHANG Zhuang. Progress of normal-pressure shale gas engineering technology in southeast Chongqing and the research direction of next steps[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2023, 45(6): 1132-1142. doi: 10.11781/sysydz2023061132
Citation: YAO Hongsheng, FANG Qilong, YUAN Mingjin, ZHANG Zhuang. Progress of normal-pressure shale gas engineering technology in southeast Chongqing and the research direction of next steps[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2023, 45(6): 1132-1142. doi: 10.11781/sysydz2023061132

渝东南常压页岩气工程工艺技术进展及下一步攻关方向

doi: 10.11781/sysydz2023061132
基金项目: 

国家科技重大专项 2016ZX05061

中国石化科技开发部项目 P19017-3

详细信息
    作者简介:

    姚红生(1968—),男,正高级工程师,从事油气资源勘探开发研究及管理工作。E-mail:yaohs.hdsj@sinopec.com

  • 中图分类号: TE37

Progress of normal-pressure shale gas engineering technology in southeast Chongqing and the research direction of next steps

  • 摘要: 渝东南地区常压页岩气区块处于盆缘过渡带—盆外褶皱区,具有构造复杂、应力差异大、压力系数低等地质特点,给工程工艺提效增产带来巨大挑战。该区浅表层缝洞发育、漏失层位多,钻完井周期长;构造应力变化快、差异系数大,压裂难以形成复杂缝网;地层能量不足、排液效率低,影响气井连续稳定生产。为此以“四提”为目标,创新实践关键技术,工程工艺持续创效。钻井工程围绕“提速、提效、降本”攻关形成以井身结构优化、强化参数钻井为主,设备、工具一体化配套的常压页岩气钻完井技术,机械钻速年均提高14.90%,钻完井周期降幅10.67%,钻井成本降幅7.64%,刷新同期多项纪录。压裂工程围绕“增效降本”,通过“适度密切割+暂堵转向”提升裂缝复杂度,“高强度加砂+砂陶粒径组合”促进缝网多尺度有效支撑,集成应用低成本压裂材料与提速降本设备工具,形成“复杂缝网+经济型材料+智能压裂装备”的特色压裂工艺及配套,单井归一千米最终可采储量(EUR)由0.34亿立方米提升至0.45亿立方米,费用下降34.6%。排采工程以“全生命周期精细管理、延缓递减、挖潜增效”为目标,攻关建立了早期优选管柱、中期泡排+压缩机降压开采、后期单管射流泵、强力泵+尾管等机械排采的全生命周期排水采气技术体系,实现了分区分类分阶段精准施策,老井年递减率降低2.1%,全气田生产时率从95.9%提升至98.7%。通过工程工艺的全流程攻关,有力支撑了渝东南常压页岩气的效益开发,也可为其他常压页岩气的高效开采提供借鉴。

     

  • 图  1  渝东南南川地区SY9-2HF井身结构方案

    Figure  1.  Wellbore structure scheme of SY9-2HF in Nanchuan area, southeast Chongqing

    图  2  渝东南南川地区SY9-2HF井不同轨道设计方法钻进效果分析

    Figure  2.  Drilling effect of different track design methods of well SY9-2HF in Nanchuan area, southeast Chongqing

    图  3  多人工裂缝条件下应力场变化

    Figure  3.  Variation of stress field under multiple artificial fractures

    图  4  不同射孔模式下的多簇裂缝扩展形态

    Figure  4.  Multi-cluster fracture propagation patterns under different perforating modes

    图  5  不同砂液比下的裂缝导流能力

    Figure  5.  Fracture conductivity under different sand-to-liquid ratios

    图  6  不同压裂模式下的改造面积

    Figure  6.  Remodeling areas under different fracturing modes

    图  7  渝东南常压页岩气支撑剂选择图版

    Figure  7.  Selection chart of normal-pressure shale gas proppant in southeast Chongqing

    图  8  不同井底停泵压力下不同组合测试产量

    Figure  8.  Tested yield of different combinations at different bottom-hole shutdown pressures

    图  9  渝东南LY1HF井“强力泵+尾管”举升工艺试验前后效果对比

    Figure  9.  Comparison of the effect before and after the lifting process test of "heavy-duty pump + liner" of well LY1HF in southeast Chongqing

    表  1  渝东南南川地区超长水平井钻井技术指标

    Table  1.   Technical indexes of ultra-long horizontal well drilling in Nanchuan area in southeast Chongqing

    井号 完钻井深/m 水平段长/m 钻井周期/d 完井时间/d 钻完井周期/d 平均机械钻速/(m/h)
    SY9-2HF 6 455.00 3 583.00 45.50 6.83 52.33 11.03
    SY9-6HF 6 780.00 3 601.00 61.09 8.69 69.78 9.20
    SY9-3HF 6 945.00 4 035.00 51.99 7.88 59.87 12.65
    下载: 导出CSV

    表  2  钻井参数优化方案表

    Table  2.   Drilling parameter reinforcement

    钻头尺寸/mm 地层 推荐参数
    钻压/kN 顶驱转速/(r/min) 排量/(L/s)
    406.4 嘉陵江组—飞仙关组 120~160 60~70 70~75
    311.1 飞仙关组—韩家店组 160~180 60~70 65~70
    215.9 韩家店组—龙马溪组 160~170 60~70 35~37
    215.9 龙马溪组 160~170 50~60 35~37
    下载: 导出CSV

    表  3  不同埋深不同配方减阻水减阻效果

    Table  3.   Water drag reduction effect of different formulas at different depth

    序号 埋深/m 降阻水配方 表观黏度/(mPa·s) 降阻率/%
    1 <2 500 0.03%降阻剂+0.02%杀菌剂 4.8 68.9
    2 2 500~<3 000 0.05%降阻剂+0.02%杀菌剂 6.8 73.2
    3 3 000~<3 500 0.07%降阻剂+0.02%杀菌剂 9.5 75.4
    4 3 500~<4 000 0.10%降阻剂+0.02%杀菌剂 10.3 76.1
    下载: 导出CSV

    表  4  压裂设备升级历程

    Table  4.   Fracturing equipment upgrade process

    类别 第一阶段 第二阶段 现阶段
    压裂模式 柴油压裂 全电压裂 智能压裂
    型号 2500型 6000型 6000型
    压裂管汇 2~7寸管汇/大通径 2~7寸管汇/大通径 130~180直连管汇
    压裂段费/万元 60 40 28
    人员数量/人 48 24 10
    下载: 导出CSV
  • [1] 张培先, 聂海宽, 何希鹏, 等. 渝东南地区古生界天然气成藏体系及立体勘探[J]. 地球科学, 2023, 48(1): 206-222. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202301014.htm

    ZHANG Peixian, NIE Haikuan, HE Xipeng, et al. Paleozoic gas accumulation system and stereoscopic exploration in southeastern Chongqing[J]. Earth Science, 2023, 48(1): 206-222. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202301014.htm
    [2] 姚红生, 蔡勋育, 郭彤楼, 等. 渝东南常压页岩气勘探开发关键技术[M]. 北京: 石油工业出版社, 2023.

    YAO Hongsheng, CAI Xunyu, GUO Tonglou, et al. Exploration and development key technologies of atmospheric shale gas in southeastern Chongqing[M]. Beijing: Petroleum Industry Press, 2023.
    [3] 李东海, 姚红生, 何希鹏, 等. 复杂构造区常压页岩气地质理论与资源潜力[M]. 北京: 地质出版社, 2022.

    LI Donghai, YAO Hongsheng, HE Xipeng, et al. Geological theory and resource potential of atmospheric shale gas in complex structure area[M]. Beijing: Geology Press, 2022.
    [4] 龙志平, 王彦祺, 周玉仓, 等. 平桥南区页岩气水平井钻井优化设计[J]. 探矿工程(岩土钻掘工程), 2017, 44(12): 34-37. https://www.cnki.com.cn/Article/CJFDTOTAL-TKGC201712005.htm

    LONG Zhiping, WANG Yanqi, ZHOU Yucang, et al. Drilling optimization design of shale gas horizontal well in south block of Pingqiao[J]. Exploration Engineering (Rock & Soil Drilling and Tunneling), 2017, 44(12): 34-37. https://www.cnki.com.cn/Article/CJFDTOTAL-TKGC201712005.htm
    [5] 陈安明, 龙志平, 周玉仓, 等. 四川盆地外缘常压页岩气水平井低成本钻井技术探讨[J]. 石油钻探技术, 2018, 46(6): 9-14. https://www.cnki.com.cn/Article/CJFDTOTAL-SYZT201806002.htm

    CHEN Anming, LONG Zhiping, ZHOU Yucang, et al. Discussion on low-cost drilling technologies of normal pressure shale gas in the outer margin of the Sichuan Basin[J]. Petroleum Drilling Techniques, 2018, 46(6): 9-14. https://www.cnki.com.cn/Article/CJFDTOTAL-SYZT201806002.htm
    [6] 樊华, 龙志平. 页岩气水平井JY10HF井钻井关键技术及认识[J]. 石油机械, 2019, 47(1): 14-19. https://www.cnki.com.cn/Article/CJFDTOTAL-SYJI201901003.htm

    FAN Hua, LONG Zhiping. Key technologies and understanding of shale gas horizontal well drilling of well JY10HF[J]. China Petroleum Machinery, 2019, 47(1): 14-19. https://www.cnki.com.cn/Article/CJFDTOTAL-SYJI201901003.htm
    [7] 张金成, 孙连忠, 王甲昌, 等. "井工厂"技术在我国非常规油气开发中的应用[J]. 石油钻探技术, 2014, 42(1): 20-25. https://www.cnki.com.cn/Article/CJFDTOTAL-SYZT201401004.htm

    ZHANG Jincheng, SUN Lianzhong, WANG Jiachang, et al. Application of multi-well pad in unconventional oil and gas development in China[J]. Petroleum Drilling Techniques, 2014, 42(1): 20-25. https://www.cnki.com.cn/Article/CJFDTOTAL-SYZT201401004.htm
    [8] 张金成, 艾军, 臧艳彬, 等. 涪陵页岩气田"井工厂"技术[J]. 石油钻探技术, 2016, 44(3): 9-15. https://www.cnki.com.cn/Article/CJFDTOTAL-SYZT201606005.htm

    ZHANG Jincheng, AI Jun, ZANG Yanbin, et al. Multi-well pad technology in the Fuling shale gas field[J]. Petroleum Drilling Techniques, 2016, 44(3): 9-15. https://www.cnki.com.cn/Article/CJFDTOTAL-SYZT201606005.htm
    [9] 林昕, 苑仁国, 谭伟雄, 等. 地质导向钻井着陆关键技术及分析图版[J]. 断块油气田, 2021, 28(5): 700-705. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT202105024.htm

    LIN Xin, YUAN Renguo, TAN Weixiong, et al. Key technology and analysis chart of geosteering drilling landing[J]. Fault-Block Oil and Gas Field, 2021, 28(5): 700-705. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT202105024.htm
    [10] 林昕, 苑仁国, 秦磊, 等. 地质导向钻井前探技术现状及进展[J]. 特种油气藏, 2021, 28(2): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ202102001.htm

    LIN Xin, YUAN Renguo, QIN Lei, et al. Present situation and progress of geosteering drilling pre-prospecting technology[J]. Special Oil & Gas Reservoirs, 2021, 28(2): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ202102001.htm
    [11] 于欣, 张振, 郭梦扬, 等. 抗高温油基钻井液堵漏剂的研制与应用: 以龙马溪组页岩气井W204H为例[J]. 断块油气田, 2021, 28(2): 168-172. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT202102006.htm

    YU Xin, ZHANG Zhen, GUO Mengyang, et al. Development and application of high temperature resistant oil-based drilling fluid plugging agent: taking shale gas well W204H of Longmaxi Formation as an example[J]. Fault-Block Oil and Gas Field, 2021, 28(2): 168-172. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT202102006.htm
    [12] 宋海, 龙武, 邓雄伟. 页岩气水基钻井液用抗高温环保润滑剂的研制及应用[J]. 断块油气田, 2021, 28(6): 761-764. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT202106009.htm

    SONG Hai, LONG Wu, DENG Xiongwei. Development and application of high temperature resistant and environmental protection lubricant for shale gas water-based drilling fluid[J]. Fault-Block Oil and Gas Field, 2021, 28(6): 761-764. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT202106009.htm
    [13] 周博成, 熊炜, 赖建林, 等. 武隆区块常压页岩气藏低成本压裂技术[J]. 石油钻探技术, 2022, 50(3): 80-85. https://www.cnki.com.cn/Article/CJFDTOTAL-SYZT202203012.htm

    ZHOU Bocheng, XIONG Wei, LAI Jianlin, et al. Low-cost fracturing technology in normal-pressure shale gas reservoirs in Wulong block[J]. Petroleum Drilling Techniques, 2022, 50(3): 80-85. https://www.cnki.com.cn/Article/CJFDTOTAL-SYZT202203012.htm
    [14] 程璇. 白马区块常压页岩气缝控有效体积压裂新技术[J]. 江汉石油职工大学学报, 2023, 36(1): 17-20. https://www.cnki.com.cn/Article/CJFDTOTAL-JSZD202301006.htm

    CHEN Xuan. A new technology for effective fracture-controlled volume fracturing of shale gas under normal pressure in Baima block[J]. Journal of Jianghan Petroleum University of Staff and Workers, 2023, 36(1): 17-20. https://www.cnki.com.cn/Article/CJFDTOTAL-JSZD202301006.htm
    [15] 蒋廷学, 苏瑗, 卞晓冰, 等. 常压页岩气水平井低成本高密度缝网压裂技术研究[J]. 油气藏评价与开发, 2019, 9(5): 78-83. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ201905010.htm

    JIANG Tingxue, SU Yuan, BIAN Xiaobing, et al. Network fracturing technology with low cost and high density for normal pressure shale gas[J]. Reservoir Evaluation And Development, 2019, 9(5): 78-83. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ201905010.htm
    [16] 朱志芳. 川东南地区页岩气常压储层措施工艺技术探讨[J]. 海洋石油, 2019, 39(1): 45-48. https://www.cnki.com.cn/Article/CJFDTOTAL-HYSY201901009.htm

    ZHU Zhifang. Discussion on process technology of shale gas normal pressure reservoir measures in southeast Sichuan[J]. Offshore Oil, 2019, 39(1): 45-48. https://www.cnki.com.cn/Article/CJFDTOTAL-HYSY201901009.htm
    [17] 聂海宽, 汪虎, 何治亮, 等. 常压页岩气形成机制、分布规律及勘探前景: 以四川盆地及其周缘五峰组—龙马溪组为例[J]. 石油学报, 2019, 40(2): 131-143. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202004003.htm

    NIE Haikuan, WANG Hu, HE Zhiliang, et al. Formation mechanism, distribution and exploration prospect of normal pressure shale gas reservoir: a case study of Wufeng Formation-Longmaxi Formation[CS]in Sichuan Basin and its periphery[J]. Acta Petrolei Sinica, 2019, 40(2): 131-143. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202004003.htm
    [18] 蒋廷学, 王海涛, 卞晓冰, 等. 水平井体积压裂技术研究与应用[J]. 岩性油气藏, 2018, 30(3): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-YANX201803001.htm

    JIANG Tingxue, WANG Haitao, BIAN Xiaobing, et al. Volume fracturing technology for horizontal well and its application[J]. Lithologic Reservoirs, 2018, 30(3): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-YANX201803001.htm
    [19] 胥云, 雷群, 陈铭, 等. 体积改造技术理论研究进展与发展方向[J]. 石油勘探与开发, 2018, 45(5): 874-887. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201805016.htm

    XU Yun, LEI Qun, CHEN Ming, et al. Progress and development of volume stimulation techniques[J]. Petroleum Exploration and Development, 2018, 45(5): 874-887. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201805016.htm
    [20] 王伟, 陈祖华, 梅俊伟, 等. 常压页岩气地质工程一体化压后数值模拟研究: 以DP2井区为例[J]. 油气地质与采收率, 2022, 29(3): 153-161. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS202203019.htm

    WANG Wei, CHEN Zuhua, MEI Junwei, et al. Post-fracturing numerical simulation for geology-engineering integration of normal pressure shale gas: a case study of the well area DP2[J]. Petroleum Geology and Recovery Efficiency, 2022, 29(3): 153-161. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS202203019.htm
    [21] 张龙胜, 王维恒. 阴—非体系高温泡排剂HDHP的研究及应用: 以四川盆地东胜页岩气井为例[J]. 油气藏评价与开发, 2023, 13(2): 240-246. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ202302013.htm

    ZHANG Longsheng, WANG Weiheng. Study and application of a high temperature foaming agent in anionic-nonionic system namely HDHP: a case study of shale gas wells in Dongsheng block, Sichuan Basin[J]. Petroleum Reservoir Evaluation and Development, 2023, 13(2): 240-246. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ202302013.htm
    [22] 王维恒, 陆俊华, 韩倩. 二元复合型泡排剂COG的研制及现场试验[J]. 石油钻探技术, 2022, 50(3): 119-124. https://www.cnki.com.cn/Article/CJFDTOTAL-SYZT202203018.htm

    WANG Weiheng, LU Junhua, HAN Qian. Preparation and field test of binary complex foam agent COG[J]. Petroleum Drilling Techniques, 2022, 50(3): 119-124. https://www.cnki.com.cn/Article/CJFDTOTAL-SYZT202203018.htm
    [23] 王彦祺, 贺庆, 龙志平. 渝东南地区页岩气钻完井技术主要进展及发展方向[J]. 油气藏评价与开发, 2021, 11(3): 356-364. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ202103010.htm

    WANG Yanqi, HE Qing, LONG Zhiping. Main progress and development direction of shale gas drilling and completion technologies in southeastern Chongqing[J]. Petroleum Reservoir Evaluation and Development, 2021, 11(3): 356-364. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ202103010.htm
    [24] 艾军, 张金成, 臧艳彬, 等. 涪陵页岩气田钻井关键技术[J]. 石油钻探技术, 2014, 42(5): 9-15. https://www.cnki.com.cn/Article/CJFDTOTAL-SYZT201405002.htm

    AI Jun, ZHANG Jincheng, ZANG Yanbin, et al. The key drilling technologies in Fuling shale gas field[J]. Petroleum Drilling Techniques, 2014, 42(5): 9-15. https://www.cnki.com.cn/Article/CJFDTOTAL-SYZT201405002.htm
    [25] 赵金洲, 任岚, 沈骋, 等. 页岩气储层缝网压裂理论与技术研究新进展[J]. 天然气工业, 2018, 38(3): 1-14. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201803001.htm

    ZHAO Jinzhou, REN Lan, SHEN Cheng, et al. Latest research progresses in network fracturing theories and technologies for shale gas reservoirs[J]. Natural Gas Industry, 2018, 38(3): 1-14. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201803001.htm
    [26] 任岚, 林然, 赵金洲, 等. 基于最优SRV的页岩气水平井压裂簇间距优化设计[J]. 天然气工业, 2017, 37(4): 69-79. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201704013.htm

    REN Lan, LIN Ran, ZHAO Jinzhou, et al. Cluster spacing optimal design for staged fracturing in horizontal shale gas wells based on optimal SRV[J]. Natural Gas Industry, 2017, 37(4): 69-79. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201704013.htm
    [27] 卓仁燕, 马新仿, 李建民, 等. 水平井限流压裂对射孔孔眼冲蚀的影响[J]. 钻采工艺, 2023, 46(2): 77-82. https://www.cnki.com.cn/Article/CJFDTOTAL-ZCGY202302013.htm

    ZHUO Renyan, MA Xinfang, LI Jianmin, et al. Effect of limited entry fracturing for horizontal wells on perforation erosion[J]. Drilling and Production Technology, 2023, 46(2): 77-82. https://www.cnki.com.cn/Article/CJFDTOTAL-ZCGY202302013.htm
    [28] 杨立峰, 田助红, 朱仲义, 等. 石英砂用于页岩气储层压裂的经济适应性[J]. 开发工程, 2018, 38(5): 71-76. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201805011.htm

    YANG Lifeng, TIAN Zhuhong, ZHU Zhongyi, et al. Economic adaptability of quartz sand for shale gas reservoir fracturing[J]. Natural Gas Industry, 2018, 38(5): 71-76. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201805011.htm
    [29] 杨怀成, 夏苏疆, 高启国, 等. 常压页岩气全电动压裂装备及技术示范应用效果分析[J]. 油气藏评价与开发, 2021, 11(3): 348-355. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ202103009.htm

    YANG Huaicheng, XIA Sujiang, GAO Qiguo, et al. Application effect of full-electric fracturing equipment and technology for normal pressure shale gas[J]. Reservoir Evaluation and Deve-lopment, 2021, 11(3): 348-355. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ202103009.htm
    [30] 夏海帮, 包凯, 王睿. 页岩气井用新型无限级全通径滑套压裂技术先导试验[J]. 油气藏评价与开发, 2021, 11(3): 390-394. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ202103014.htm

    XIA Haibang, BAO Kai, WANG Rui. Pilot test of new infinite stage and full-bore sliding sleeve fracturing technology in shale gas wells[J]. Reservoir Evaluation and Development, 2021, 11(3): 390-394. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ202103014.htm
    [31] 段承琏, 魏风玲, 魏瑞玲, 等. 彭水区块常压页岩气高效排采技术研究[J]. 油气藏评价与开发, 2020, 10(1): 64-70. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ202001011.htm

    DUAN Chenglian, WEI Fenglin, WEI Ruilin, et al. High-efficient drainage technology of shale gas reservoirs with normal pressure in Pengshui block[J]. Reservoir Evaluation and Development, 2020, 10(1): 64-70. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ202001011.htm
    [32] 张宏录, 许科, 高咏梅, 等. 页岩气排采工艺技术适应性分析及对策[J]. 油气藏评价与开发, 2020, 10(1): 96-101. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ202001016.htm

    ZHANG Honglu, XU Ke, GAO Yongmei, et al. Analysis and countermeasures for adaptability of drainage and recovery technology for shale gas[J]. Reservoir Evaluation and Development, 2020, 10(1): 96-101. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ202001016.htm
    [33] 张国荣, 王俊方, 张龙富, 等. 南川常压页岩气田高效开发关键技术进展[J]. 油气藏评价与开发, 2021, 11(3): 365-376. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ202103011.htm

    ZHANG Guorong, WANG Junfang, ZHANG Longfu, et al. Key technical progress in efficient development of Nanchuan normal-pressure shale gas field[J]. Petroleum Reservoir Evaluation and Development, 2021, 11(3): 365-376. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ202103011.htm
  • 加载中
图(9) / 表(4)
计量
  • 文章访问数:  366
  • HTML全文浏览量:  143
  • PDF下载量:  61
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-10
  • 修回日期:  2023-10-24
  • 刊出日期:  2023-11-28

目录

    /

    返回文章
    返回