Progress in deep shale gas engineering technology in Weirong gas field in southern Sichuan
-
摘要: 川南威荣气田是国内首个深层页岩气田,具有“一深、一薄、四高”的特点,钻完井、压裂及排采系列工程技术面临钻井周期长、改造体积小、复杂程度低、井筒流动规律复杂等挑战。针对复杂的地质挑战,不断深化地质认识,深度融合气藏地质与工程技术,围绕降本增效,以突破深层页岩气效益关为目标,持续攻关钻采工程工艺。历经三轮探索优化,钻井技术强化提高机械钻速,减少井下复杂情况风险,缩短钻井周期;压裂工艺优化裂缝配置提升复杂裂缝广度,转换思路大排量扩缝高携砂一体化实现了缝控体积的增加和支撑;排采工艺基于气液两相流研究识别井筒流态,形成全生命周期排采工艺决策方法。最终形成了以“精细轨迹控制优快钻井”、“裂缝均衡扩展强支撑压裂”、“全周期有效排采”为核心的工程技术序列,持续推进效益开发进程。所提出的深层页岩气开发工程技术在威荣气田累计新建产能25亿方,为国内外深层页岩气工程技术发展积累了宝贵经验,也为下一步超深层页岩气开发提供了探索方向。Abstract: Weirong gas field is the first deep shale gas field in China, with the characteristics of "deep burial depth, thin high-quality reservoirs, high ground stress, high horizontal stress difference, high plasticity and high formation pressure". The engineering technologies of drilling, completion, fracturing, and drainage face challenges such as long drilling cycles, small renovation volumes, low complexity, and complex wellbore flow laws. In response to complex geological challenges, we continuously enhance geological understanding, deeply integrate gas reservoir geology and engineering technology, and continue to research the drilling and production engineering technology with the goal of reducing costs and increasing efficiency and breaking through the benefits of deep shale gas. After three rounds of exploration and optimization of drilling technology, we strengthen and improve mechanical drilling speed, reduce downhole complexity, and shorten drilling cycles. The optimization of fracture configuration in fracturing technology has increased the breadth of complex fractures, and the integration of large displacement expansion and high sand carrying has achieved the increase and support of fracture control volume. The drainage process is based on gas-liquid two-phase flow research to identify wellbore flow patterns, forming a decision-making method for the entire lifecycle drainage process. Finally, an engineering technology sequence focusing on "fine trajectory control for optimal and fast drilling", "balanced expansion of fractures for strong support fracturing", and "full cycle effective drainage" was formed, continuously promoting the process of benefit deve-lopment. With the deep shale gas development engineering technology proposed herein, an accumulated new production capacity of 2.5 billion cubic meters in Weirong gas field has been completed, providing valuable experience for deep shale gas engineering technology at home and abroad, as well as a direction for further exploration and research in ultra-deep shale gas development.
-
表 1 威荣—永川气藏与国内外典型页岩气藏地质工程参数对比
Table 1. Comparison of geological engineering parameters among Weirong-Yongchuan gas reservoirs and typical shale gas reservoirs at home and abroad
项目 威荣 永川 焦石坝 长宁 Haynesville 埋深/m 3 550~3 880 3 800~4 200 2 400~3 500 2 300~3 200 3 200~3 900 压力系数 1.9~2.1 1.6~2.0 1.35~1.55 1.4~2.03 1.60~2.00 储层厚度/m 27~39 35~50 38~44 25~35 61~107 孔隙度/% 4.6~6.5 5~6 2.5~7.1 3.5~7.0 8.0~9.0 ω(TOC)/% 2.8~3.6 2.2~2.6 2.0~8.0 2.8~5.3 0.5~4.0 含气量/(m3/t) 5~8 5~9 4.7~5.7 4.86~5.5 7.1~8.5 硅质含量/% 38 42 43.78 25.8~67.6 25~52 脆性矿物/% 60 55 56~83 57.8~60.1 65~80 泊松比 0.23 0.25 0.19~0.24 0.16~0.24 0.23~0.27 杨氏模量/GPa 21.6 26.8 25~49 13~41 14~21 脆性指数 0.43 0.4 0.45~0.54 0.42~0.43 0.37~0.55 最小水平应力/MPa 86~98 90~100 48.3~58.4 49~60 <84 应力差/MPa 10~16 10~20 5~8.2 16.7~18.3 <5 表 2 钻井工艺参数优化
Table 2. Optimization of drilling process parameters
开次 钻头Φ/mm 型号 钻压/kN 优化前转速/(r/min) 排量/(L/s) 钻压/kN 优化后转速/(r/min) 排量/(L/s) 一开 406.4 TS619/KS1662 40~80 60 55~65 60~120 70~80 60~65 二开 311.2 TS716/KMD1663/ES1645 60~160 60 55~60 100~180 70~80 60~70 三开 215.9 AT505/TK56/MDI516 60~120 60 28~30 80~160 70~80 32~35 表 3 深层页岩气差异化排采对策
Table 3. Differential drainage and production measures for deep shale gas
生产通道 生产阶段 参数特征 排采决策 套管 自喷生产 压力系数>1 控压采气 压力系数0.5~1,套压>21 MPa 压力系数0.5~1,套压<21 MPa 下油管 携液困难 压力系数<0.5 油管 自喷生产 环状流型、积液高度<100 m 控压采气 轻度积液 段塞流型,积液高度<400 m 自身能量排采 重度积液 积液高度>400 m 人工增能排采 泡状流型 -
[1] 邹才能, 赵群, 丛连铸, 等. 中国页岩气开发进展、潜力及前景[J]. 天然气工业, 2021, 41(1): 1-14. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202101002.htmZOU Caineng, ZHAO Qun, CONG Lianzhu, et al. Development progress, potential and prospect of shale gas in China[J]. Natural Gas Industry, 2021, 41(1): 1-14. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202101002.htm [2] 马新华, 谢军. 川南地区页岩气勘探开发进展及发展前景[J]. 石油勘探与开发, 2018, 45(1): 161-169. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201801020.htmMA Xinhua, XIE Jun. The progress and prospects of shale gas exploration and exploitation in southern Sichuan Basin, NW China[J]. Petroleum Exploration and Development, 2018, 45(1): 161-169. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201801020.htm [3] 张国荣, 王俊方, 张龙富, 等. 南川常压页岩气田高效开发关键技术进展[J]. 油气藏评价与开发, 2021, 11(3): 365-376. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ202103011.htmZHANG Guorong, WANG Junfang, ZHANG Longfu, et al. Key technical progress in efficient development of Nanchuan normal-pressure shale gas field[J]. Petroleum Reservoir Evaluation and Development, 2021, 11(3): 365-376. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ202103011.htm [4] 梁兴, 单长安, 蒋佩, 等. 浅层页岩气井全生命周期地质工程一体化应用[J]. 西南石油大学学报(自然科学版), 2021, 43(5): 1-18. https://www.cnki.com.cn/Article/CJFDTOTAL-XNSY202105003.htmLIANG Xing, SHAN Chang'an, JIANG Pei, et al. Geology and engineering integration application in the whole life cycle of shallow shale gas wells[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2021, 43(5): 1-18. https://www.cnki.com.cn/Article/CJFDTOTAL-XNSY202105003.htm [5] 何骁, 陈更生, 吴建发, 等. 四川盆地南部地区深层页岩气勘探开发新进展与挑战[J]. 天然气工业, 2022, 42(8): 24-34. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202208003.htmHE Xiao, CHEN Gengsheng, WU Jianfa, et al. Deep shale gas exploration and development in the southern Sichuan Basin: new progress and challenges[J]. Natural Gas Industry, 2022, 42(8): 24-34. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202208003.htm [6] 郭彤楼, 熊亮, 雷炜, 等. 四川盆地南部威荣、永川地区深层页岩气勘探开发进展、挑战与思考[J]. 天然气工业, 2022, 42(8): 45-59. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202208005.htmGUO Tonglou, XIONG Liang, LEI Wei, et al. Deep shale gas exploration and development in the Weirong and Yongchuan areas, south Sichuan Basin: progress, challenges and prospect[J]. Natural Gas Industry, 2022, 42(8): 45-59. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202208005.htm [7] 张金成, 孙连忠, 王甲昌, 等. "井工厂"技术在我国非常规油气开发中的应用[J]. 石油钻探技术, 2014, 42(1): 20-25. https://www.cnki.com.cn/Article/CJFDTOTAL-SYZT201401004.htmZHANG Jincheng, SUN Lianzhong, WANG Jiachang, et al. Application of multi-well pad in unconventional oil and gas development in China[J]. Petroleum Drilling Techniques, 2014, 42(1): 20-25. https://www.cnki.com.cn/Article/CJFDTOTAL-SYZT201401004.htm [8] 路保平, 丁士东. 中国石化页岩气工程技术新进展与发展展望[J]. 石油钻探技术, 2018, 46(1): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-SYZT201801001.htmLU Baoping, DING Shidong. New progress and development prospect in shale gas engineering technologies of SINOPEC[J]. Petroleum Drilling Techniques, 2018, 46(1): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-SYZT201801001.htm [9] 曾义金. 深层页岩气开发工程技术进展[J]. 石油科学通报, 2019, 4(3): 233-241. https://www.cnki.com.cn/Article/CJFDTOTAL-SYKE201903002.htmZENG Yijin. Progress in engineering technologies for the deve-lopment of deep shale gas[J]. Petroleum Science Bulletin, 2019, 4(3): 233-241. https://www.cnki.com.cn/Article/CJFDTOTAL-SYKE201903002.htm [10] 唐嘉贵. 川南探区页岩气水平井钻井技术[J]. 石油钻探技术, 2014, 42(5): 47-51. https://www.cnki.com.cn/Article/CJFDTOTAL-SYZT201405011.htmTANG Jiagui. Discussion on shale gas horizontal drilling technology in southern Sichuan[J]. Petroleum Drilling Techniques, 2014, 42(5): 47-51. https://www.cnki.com.cn/Article/CJFDTOTAL-SYZT201405011.htm [11] 袁建强. 中国石化页岩气超长水平段水平井钻井技术新进展与发展建议[J]. 石油钻探技术, 2023, 51(4): 81-87. https://www.cnki.com.cn/Article/CJFDTOTAL-SYZT202304008.htmYUAN Jianqiang. New progress and development proposals of SINOPEC's drilling technologies for ultra-long horizontal shale gas wells[J]. Petroleum Drilling Techniques, 2023, 51(4): 81-87. https://www.cnki.com.cn/Article/CJFDTOTAL-SYZT202304008.htm [12] 彭兴, 周玉仓, 龙志平, 等. 南川地区页岩气水平井优快钻井技术进展及发展建议[J]. 石油钻探技术, 2020, 48(5): 15-20. https://www.cnki.com.cn/Article/CJFDTOTAL-SYZT202005004.htmPENG Xing, ZHOU Yucang, LONG Zhiping, et al. Progress and development recommendations for optimized fast drilling technology in shale gas horizontal wells in the Nanchuan area[J]. Petroleum Drilling Techniques, 2020, 48(5): 15-20. https://www.cnki.com.cn/Article/CJFDTOTAL-SYZT202005004.htm [13] 曾慧勇, 陈立峰, 陈亚东, 等. 压裂—驱油一体化工作液研究进展[J]. 油气地质与采收率, 2022, 29(3): 162-170. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS202203020.htmZENG Huiyong, CHEN Lifeng, CHEN Yadong, et al. Research progress on fracturing-oil displacement integrated working fluid[J]. Petroleum Geology and Recovery Efficiency, 2022, 29(3): 162-170. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS202203020.htm [14] 付强. 四川盆地页岩气超长水平段水平井钻井实践与认识[J]. 钻采工艺, 2022, 45(4): 9-18. https://www.cnki.com.cn/Article/CJFDTOTAL-ZCGY202204002.htmFU Qiang. Drilling practice and understanding of ultra-long horizontal section wells of shale gas in Sichuan Basin[J]. Drilling & Production Technology, 2022, 45(4): 9-18. https://www.cnki.com.cn/Article/CJFDTOTAL-ZCGY202204002.htm [15] 赵海峰, 梁海杰, 王羽生. 脆性页岩缝网扩展流固热化耦合机制实验研究[J]. 油气地质与采收率, 2021, 28(4): 140-146. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS202104018.htmZHAO Haifeng, LIANG Haijie, WANG Yusheng. Experimental investigation on fluid-solid-thermo-chemical coupling mechanism of fracture network propagation in brittle shale[J]. Petroleum Geology and Recovery Efficiency, 2021, 28(4): 140-146. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS202104018.htm [16] 郑有成, 范宇, 雍锐, 等. 页岩气密切割分段+高强度加砂压裂新工艺[J]. 天然气工业, 2019, 39(10): 76-81. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201910012.htmZHENG Youcheng, FAN Yu, YONG Rui, et al. A new fracturing technology of intensive stage + high-intensity proppant injection for shale gas reservoirs[J]. Natural Gas Industry, 2019, 39(10): 76-81. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201910012.htm [17] 曹学军, 王明贵, 康杰, 等. 四川盆地威荣区块深层页岩气水平井压裂改造工艺[J]. 天然气工业, 2019, 39(7): 81-87. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201907015.htmCAO Xuejun, WANG Minggui, KANG Jie, et al. Fracturing technologies of deep shale gas horizontal wells in the Weirong block, southern Sichuan Basin[J]. Natural Gas Industry, 2019, 39(7): 81-87. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201907015.htm [18] 郑有成, 赵志恒, 曾波, 等. 川南长宁区块页岩气高密度完井+高强度加砂压裂探索与实践[J]. 钻采工艺, 2021, 44(2): 43-48. https://www.cnki.com.cn/Article/CJFDTOTAL-ZCGY202102012.htmZHENG Youcheng, ZHAO Zhiheng, ZENG Bo, et al. Exploration and practice on combination of high-density completion and high-intensity sand fracturing in shale gas horizontal well of Changning block in southern Sichuan Basin[J]. Drilling & Production Technology, 2021, 44(2): 43-48. https://www.cnki.com.cn/Article/CJFDTOTAL-ZCGY202102012.htm [19] 蒋廷学. 非常规油气藏新一代体积压裂技术的几个关键问题探讨[J]. 石油钻探技术, 2023, 51(4): 184-191. https://www.cnki.com.cn/Article/CJFDTOTAL-SYZT202304019.htmJIANG Tingxue. Discussion on several key issues of the new-generation network fracturing technologies for unconventional reservoirs[J]. Petroleum Drilling Techniques, 2023, 51(4): 184-191. https://www.cnki.com.cn/Article/CJFDTOTAL-SYZT202304019.htm [20] 魏娟明. 滑溜水—胶液一体化压裂液研究与应用[J]. 石油钻探技术, 2022, 50(3): 112-118. https://www.cnki.com.cn/Article/CJFDTOTAL-SYZT202203017.htmWEI Juanming. Research and application of slick water and gel-liquid integrated fracturing fluids[J]. Petroleum Drilling Techniques, 2022, 50(3): 112-118. https://www.cnki.com.cn/Article/CJFDTOTAL-SYZT202203017.htm [21] 位云生, 齐亚东, 贾成业, 等. 四川盆地威远区块典型平台页岩气水平井动态特征及开发建议[J]. 天然气工业, 2019, 39(1): 81-86. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201901014.htmWEI Yunsheng, QI Yadong, JIA Chengye, et al. Production performance of and development measures for typical platform horizontal wells in the Weiyuan shale gas field, Sichuan Basin[J]. Natural Gas Industry, 2019, 39(1): 81-86. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201901014.htm [22] 夏海帮, 袁航, 岑涛. 彭水区块页岩气生产井排采方式研究与应用[J]. 石油钻探技术, 2014, 42(4): 21-26. https://www.cnki.com.cn/Article/CJFDTOTAL-SYZT201404006.htmXIA Haibang, YUAN Hang, CEN Tao. Study and application of drainage methods for shale gas wells in Pengshui block[J]. Petroleum Drilling Techniques, 2014, 42(4): 21-26. https://www.cnki.com.cn/Article/CJFDTOTAL-SYZT201404006.htm [23] 李牧. 下倾型页岩气水平井连续油管排水采气工艺[J]. 石油钻采工艺, 2020, 42(3): 329-333. https://www.cnki.com.cn/Article/CJFDTOTAL-SYZC202003013.htmLI Mu. Coiled tubing of drainage gas recovery technology used in shale-gas downdip horizontal wells[J]. Oil Drilling & Production Technology, 2020, 42(3): 329-333. https://www.cnki.com.cn/Article/CJFDTOTAL-SYZC202003013.htm [24] 陈德春, 徐悦新, 孟红霞, 等. 气井气液两相管流压降计算模型评价与优选[J]. 断块油气田, 2017, 24(6): 840-843. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT201706027.htmCHEN Dechun, XU Yuexin, MENG Hongxia, et al. Evaluation and optimization of pressure drop calculation models for gas-liquid two-phase pipe flow in gas well[J]. Fault-Block Oil & Gas Field, 2017, 24(6): 840-843. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT201706027.htm [25] 朱化蜀, 王希勇, 徐晓玲, 等. 威荣深层页岩长水平段工程钻探能力延伸极限研究[J]. 油气藏评价与开发, 2022, 12(3): 506-514. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ202203013.htmZHU Huashu, WANG Xiyong, XU Xiaoling, et al. Extendability limit of engineering drilling in long horizontal section of Weirong deep shale gas[J]. Petroleum Reservoir Evaluation and Deve-lopment, 2022, 12(3): 506-514. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ202203013.htm [26] 兰凯, 董成林, 李光泉, 等. 威荣深层页岩气田水平段安全提速技术对策[J]. 断块油气田, 2023, 30(3): 505-510 https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT202303019.htmLAN Kai, DONG Chenglin, LI Guangquan, et al. Technical strategy to enhance drilling speed safely of horizontal section for deep shale gas field in Weiyuan-Rongchang block[J]. Fault-Block Oil & Gas Field, 2023, 30(3): 505-510. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT202303019.htm [27] 王兴文, 林永茂, 缪尉杰. 川南深层页岩气体积压裂工艺技术[J]. 油气藏评价与开发, 2021, 11(1): 102-108. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ202101014.htmWANG Xingwen, LIN Yongmao, MIAO Weijie. Volume fracturing technology of deep shale gas in southern Sichuan[J]. Reservoir Evaluation and Development, 2021, 11(1): 102-108. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ202101014.htm [28] 王兴文, 刘琦, 栗铁锋, 等. 威荣页岩气田水平井套变段暂堵分段压裂工艺技术研究[J]. 钻采工艺, 2021, 44(6): 55-58. https://www.cnki.com.cn/Article/CJFDTOTAL-ZCGY202106013.htmWANG Xingwen, LIU Qi, LI Tiefeng, et al. Research on temporary plugging fracturing technology in horizontal well with casing deformation in Weirong shale gas reservoir[J]. Drilling & Production Technology, 2021, 44(6): 55-58. https://www.cnki.com.cn/Article/CJFDTOTAL-ZCGY202106013.htm [29] 杜洋, 雷炜, 李莉, 等. 深层页岩气水平井压后生产管理与排采技术[J]. 油气藏评价与开发, 2021, 11(1): 95-101. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ202101013.htmDU Yang, LEI Wei, LI Li, et al. Post-frac production control and drainage technology of deep shale gas wells[J]. Reservoir Evaluation and Development, 2021, 11(1): 95-101. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ202101013.htm [30] 杜洋, 倪杰, 雷炜, 等. 威荣深层页岩气井油管最优参数设计研究[J]. 油气藏评价与开发, 2022, 12(3): 526-533. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ202203015.htmDU Yang, NI Jie, LEI Wei, et al. Optimum time of tubing installation in deep shale gas wells of Weirong[J]. Petroleum Reservoir Evaluation and Development, 2022, 12(3): 526-533. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ202203015.htm