Numerical modeling of in-situ stress and prediction of favorable area of shale gas layer in Wufeng to Longmaxi formations, Nanchuan region, southeastern Chongqing
-
摘要: 南川地区上奥陶统五峰组—下志留统龙马溪组作为重要的页岩气产能层,具有页岩层厚度大,埋藏较深,地应力复杂、方位变化快的特点,地应力场研究对于该区页岩气的有效开发具有重要作用。为明确研究区地应力场特征及展布,通过采用SHELLS有限元应力场模拟方法,以研究区断裂、地形、热流值、岩石物性参数和边界条件为约束,开展了南川地区五峰—龙马溪组的应力场有限元数值模拟研究。结果表明,南川地区最大水平主应力性质以挤压性质为主,总体上存在NW-SE、NE-SW、近EW和近SN四个主应力方向和区域;应变率整体以压应变为主,存在低应变率(数量级别≤-18)、中应变率(数量级别介于-18~-17.6)和高应变率(数量级别≥-17.6)三类区域及相应的NE-SW、NW-SE、SN和EW展布方向;断裂滑移速率性质总体以逆断层性质为主,速率介于0~0.001 2 mm/a之间。将本次模拟的最大水平主应力方向、块体应变率和断裂滑移速率结果分别与实测的钻井最大主应力方向、黔渝地区应变率性质和数量级别、区域断裂发育等数据进行对比,展现出模拟结果与实测结果较高的数据吻合度,说明了模拟结果的准确性。最后,基于模拟结果揭示出的裂缝开启性、裂缝发育情况的信息,对南川地区裂缝储层有利发育区进行了评价,预测了Ⅰ、Ⅱ两类进一步勘探和开发的页岩气裂缝储层有利发育区块。
-
关键词:
- SHELLS有限元数值模拟 /
- 现今应力场 /
- 页岩气 /
- 五峰组—龙马溪组 /
- 南川地区
Abstract: Upper Ordovician Wufeng to Lower Silurian Longmaxi formations in Nanchuan region, as an important shale gas productive layer, is characterized by large shale thickness, deep burial depth, and complex in-situ stress with rapid direction changes. Therefore, the study of in-situ stress field is of significance for effective deve-lopment of shale gas in the study area. In order to clarify the characteristics and distribution of the in-situ stress field, the SHELLS finite element stress field modeling method, with faults, topography, heat flow, petrophysical parameters and boundary conditions as constraints, was used in the study of the stress field in the Wufeng-Longmaxi formations in the Nanchuan region.The results indicate that the maximum compressive horizontal principal stress is in thrust regime and that there are four principal stress directions and regions in general: NW-SE, NE-SW, near EW and near SN. The strain rate is in thrust regime, with three regions of low strain rate (magnitude ≤ -18), medium strain rate (magnitude between -18 and -17.6) and high strain rate (magnitude ≥ -17.6) and their corresponding NE-SW, NW-SE, SN and EW spreading directions. The fault slip rate regime is in thrust, the fault slip rates range from 0 to 0.001 2 mm/a. The modeled results of the maximum compressive horizontal principal stress, the strain rate and fault slip rate were compared with the measured data respectively, including the maximum compressive horizontal principal stress directions measured in drilled wells, the regime and magnitude of strain rate in Guizhou and Chongqing, and the properties of regional faults. The modeled results showed high agreement with the measured data, indicating the accuracy of the predicted results. Finally, based on fracture openness and fracture development revealed by modeled results, favorable fractured reservoir development zones for shale gas was evaluated, and class Ⅰ and Ⅱ zones for further exploration and development were predicted. -
表 1 南川地区上奥陶统五峰组—下志留统龙马溪组主要断裂特征
Table 1. Characteristics of major faults of Upper Ordovician Wufeng-Lower Silurian Longmaxi formations in Nanchuan region
序号 断裂简称 断裂名称 断裂性质 走向 倾向 F1 DQF 大千断裂 逆断层 NE/SN SE/E F2 QLXF 青龙乡断裂 逆断层 NE SE F3 EPQF No.1 平桥东1号断裂 逆断层 NE NW F4 EPQF No.2 平桥东2号断裂 逆断层 NE NW F5 WPQF 平桥西断裂 逆断层 NE SE F6 YJGF 袁家沟断裂 逆断层 NE SE F7 LJQF 龙济桥断裂 逆断层 NE SE F8 YCGF 阳春沟断裂 逆断层 SN E 表 2 SHELLS应力场模拟的岩石物性参数
Table 2. Petrophysical parameters in SHELLS stress field modeling
参数 数值 断裂摩擦系数 0.10 连续介质摩擦系数 0.85 Biot有效应力系数 1.00 主要断裂强度减低系数[18] 0.00 蠕变位错剪应力系数 2.3×109(地壳),9.5×104(地幔) Q/nR/K 4 000(地壳),18 314(地幔) 最大剪应力 5.0×108(地壳),5.0×108(地幔) 常数n 3 上地幔绝热温度/K和温度梯度/(K/m) 1 412,6.1×10-4 岩石圈最大深度/m 1.2×105 运动参考点(欧拉极) EU (61.066~85.819) 底部最大牵引力/N 2.00×107 俯冲剪切带最大剪应力/(N/m) 2.00×1012 孔隙水密度/(kg/m3) 1 032 平均岩石密度/(kg/m3) 2 836(地壳),3 332(地幔) 软流圈密度/(kg/m3) 3 125 热膨胀系数 2.4×10-5(地壳),3.94×10-5(地幔) 热导率/[w/(m·K)] 2.7(地壳),3.0(地幔) 单位体积热辐射 2.4×10-5(地壳),3.94×10-5(地幔) 地壳、地幔岩石圈最大温度/K 1 223(地壳),1 673(地幔) 可接受速度误差/(m/s) 1.00×10-14 注:据文献[14, 39-41]修改。 表 3 南川地区SHELLS应力场模拟边界条件设置
Table 3. Boundary condition setting for SHELLS stress field modeling in Nanchuan region
边界 序号 方向/(°) 大小/(mm/a) 西边界 1~16 116 1.73×10-3 南边界 17~23 75 6.3×10-4 24~37 自由边界 东边界 38~49 296 6.3×10-4 50~54 自由边界 北边界 55~58 自由边界 59~63 255 6.3×10-4 63~74 自由边界 表 4 南川地区SHELLS应力场模拟结果与钻井实测值对比
Table 4. Comparison of modeled results by SHELLS stress field modeling with measured values in drilled wells in Nanchuan region
钻井 实测值/(°) 模拟值/(°) 差值/(°) JY194-3 89 89 0 JY10-10 135 135 0 SY1 60 60 0 JY8 113 111 2 JY10 115 120 5 SY3 60 51 9 SY5 65 75 10 NY1 55 44 11 JY11 85 73 12 JY201-1 105 120 15 SY13-3 75 57 18 SY9-1 135 114 21 SY2 60 95 35 表 5 南川地区上奥陶统五峰组—下志留统龙马溪组页岩气有利区预测原则
Table 5. Principles for prediction of favorable shale gas targets in Upper Ordovician Wufeng-Lower Silurian Longmaxi formations in Nanchuan region
页岩气裂缝储层有利发育区 评价参数及判断标准 Ⅰ类区:
同时满足A和B
Ⅱ类区:
二者只满足一项A.裂缝开启性有利区 1. 最大主应力方向与旁侧断裂夹角≤45°,或
2. 与主断层距离大于2 kmB.裂缝发育有利区 1. 应变率数量级别<-17.6,或
2. 断裂滑移速率<0.00036 mm/a -
[1] 洪太元, 程喆, 许华明, 等. 四川盆地大中型气田形成的主控因素及勘探对策[J]. 石油实验地质, 2021, 43(3): 406-414. doi: 10.11781/sysydz202103406HONG Taiyuan, CHENG Zhe, XU Huaming, et al. Controlling factors and countermeasures for exploring large and medium-sized gas fields in Sichuan Basin[J]. Petroleum Geology & Experiment, 2021, 43(3): 406-414. doi: 10.11781/sysydz202103406 [2] 王濡岳, 胡宗全, 包汉勇, 等. 四川盆地上奥陶统五峰组—下志留统龙马溪组页岩关键矿物成岩演化及其控储作用[J]. 石油实验地质, 2021, 43(6): 996-1005. doi: 10.11781/sysydz202106996WANG Ruyue, HU Zongquan, BAO Hanyong, et al. Diagenetic evolution of key minerals and its controls on reservoir quality of Upper Ordovician Wufeng-Lower Silurian Longmaxi shale of Sichuan Basin[J]. Petroleum Geology & Experiment, 2021, 43(6): 996-1005. doi: 10.11781/sysydz202106996 [3] HU Panpan, YANG Fengli, LI Sanzhong, et al. Opposite thrust systems under the Subei-South Yellow Sea Basin: a synthesis on the closure of the eastern Tethyan Ocean[J]. Earth-Science Reviews, 2022, 231: 104075. doi: 10.1016/j.earscirev.2022.104075 [4] YANG Fengli, HU Panpan, ZHOU Xinhuai, et al. The Late Jurassic to Early Cretaceous strike-slip faults in the Subei-South Yellow Sea Basin, Eastern China: constraints from seismic data[J]. Tectonics, 2020, 39(10): e2020TC006091. doi: 10.1029/2020TC006091 [5] YANG Fengli, ZHOU Xiaofeng, PENG Yunxin, et al. Evolution of Neoproterozoic basins within the Yangtze Craton and its significance for oil and gas exploration in South China: an overview[J]. Precambrian Research, 2020, 337: 105563. doi: 10.1016/j.precamres.2019.105563 [6] 杨瑞青, 杨风丽, 周晓峰, 等. 汉南—川东北灯影组古地理演化: 晚震旦世扬子西北缘拉张背景的沉积学证据[J]. 沉积学报, 2019, 37(1): 189-199. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201901019.htmYANG Ruiqing, YANG Fengli, ZHOU Xiaofeng et al. Paleogeographic evolution of the Dengying Formation in Hannan-northeastern Sichuan Basin: sedimentary evidence of the extensional tectonic setting for the northwest margin of the Yangtze block in the Late Sinian[J]. Acta Sedimentologica Sinica, 2019, 37(1): 189-199. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201901019.htm [7] 印兴耀, 马妮, 马正乾, 等. 地应力预测技术的研究现状与进展[J]. 石油物探, 2018, 57(4): 488-504. https://www.cnki.com.cn/Article/CJFDTOTAL-SYWT201804002.htmYIN Xingyao, MA Ni, MA Zhengqian, et al. Review of in-situ stress prediction technology[J]. Geophysical Prospecting for Petroleum, 2018, 57(4): 488-504. https://www.cnki.com.cn/Article/CJFDTOTAL-SYWT201804002.htm [8] 张斗中, 汤济广, 蔡俊. 渝东南川地区龙马溪组地应力场特征[J]. 油气藏评价与开发, 2021, 11(2): 56-62. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ202102007.htmZHANG Douzhong, TANG Jiguang, CAI Jun. Characteristics of geostress field of Longmaxi Formation in Nanchuan area, eastern Chongqing[J]. Reservoir Evaluation and Development, 2021, 11(2): 56-62. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ202102007.htm [9] 张胜利. 构造应力场模拟—有限元理论、方法和研究进展[J]. 地球物理学进展, 2011, 26(1): 52-60. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201101007.htmZHANG Shengli. The modeling of the tectonic stress field-theroy, method and related research progress on the finite element method[J]. Progress in Geophysics, 2011, 26(1): 52-60. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201101007.htm [10] 向用发, 卢玺, 徐宇浩, 等. 有限元数值模拟法基本原理及其在地质构造变形研究中的应用综述[J]. 四川地质学报, 2019, 39(4): 581-588. doi: 10.3969/j.issn.1006-0995.2019.04.011XIANG Yongfa, LU Xi, XU Yuhao, et al. Basic principle of finite element numerical simulation method and its application to study of tectonic deformation[J]. Acta Geologica Sichuan, 2019, 39(4): 581-588. doi: 10.3969/j.issn.1006-0995.2019.04.011 [11] 吴立新, 卢菁琛, 毛文飞, 等. 基于断层倾角分段变化的玛多地震发震断层构造应力场演化数值模拟分析[J]. 地球物理学报, 2022, 65(10): 3844-3857. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX202210013.htmWU Lixin, LU Jingchen, MAO Wenfei, et al. Sectional fault-inclination-change based numerical simulation of tectonic stress evolution on the seismogenic fault of Madoiearthquake[J]. Chinese Journal of Geophysics, 2022, 65(10): 3844-3857. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX202210013.htm [12] 丁文龙, 曾维特, 王濡岳, 等. 页岩储层构造应力场模拟与裂缝分布预测方法及应用[J]. 地学前缘, 2016, 23(2): 63-74. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201602010.htmDING Wenlong, ZENG Weite, WANG Ruyue, et al. Method and application of tectonic stress field simulation and fracture distribution prediction in shale reservoir[J]. Earth Science Frontiers, 2016, 23(2): 63-74. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201602010.htm [13] 李东东. 武陵山区中新生代古构造应力场分析[D]. 北京: 中国地质大学(北京), 2017.LI Dongdong. Analysis of the characteristics of palaotectonic stress in area of Wuling Mount[D]. Beijing: China University of Geosciences (Beijing), 2017. [14] BIRD P. Thin-plate and thin-shell finite-element programs for forward dynamic modeling of plate deformation and faulting[J]. Computers & Geosciences, 1999, 25(4): 383-394. doi: 10.3321/j.issn:0254-4164.1999.04.008 [15] KONG Xianghong, BIRD P. SHELLS: a thin-shell program for modeling neotectonics of regional or global lithosphere with faults[J]. Journal of Geophysical Research: Solid Earth, 1995, 100(B11): 22129-22131. doi: 10.1029/95JB02435 [16] BIRD P. Testing hypotheses on plate-driving mechanisms with global lithosphere models including topography, thermal structure, and faults[J]. Journal of Geophysical Research: Solid Earth, 1998, 103(B5): 10115-10129. doi: 10.1029/98JB00198 [17] BIRD P, KONG Xianghong. Computer simulations of California tectonics confirm very low strength of major faults[J]. GSA Bulletin, 1994, 106(2): 159-174. doi: 10.1130/0016-7606(1994)106<0159:CSOCTC>2.3.CO;2 [18] LIU Zhen, BIRD P. Finite element modeling of neotectonics in New Zealand[J]. Journal of Geophysical Research: Solid Earth, 2002, 107(B12): 2328. [19] BIRD P, BEN-AVRAHAM Z, SCHUBERT G, et al. Patterns of stress and strain rate in southern Africa[J]. Journal of Geophysical Research: Solid Earth, 2006, 111(B8): B08402. [20] 庄建建, 杨风丽, 赵文芳. 下扬子区印支—早燕山期的构造特征及应力场模拟[J]. 高校地质学报, 2010, 16(4): 475-482. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX201004008.htmZHUANG Jianjian, YANG Fengli, ZHAO Wenfang. Tectonic characteristics and numerical stress field simulation in Indosinian-Early Yanshanian stage, Lower Yangtze region[J]. Geological Journal of China Universities, 2010, 16(4): 475-482. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX201004008.htm [21] ZHANG Ruoyu, YANG Fengli, HU Panpan, et al. Cenozoic tectonic inversion in the Northern Depression, South Yellow Sea Basin, East Asia: structural styles and driving mechanism[J]. Tectonophysics, 2021, 798: 228687. [22] YANG Fengli, ZHOU Zuyi, ZHANG Na, et al. Stress field modeling of northwestern South China Sea since 5.3 Ma and its tectonic significance[J]. Acta Oceanologica Sinica, 2013, 32(12): 31-39. [23] HU Panpan, YANG Fengli, TIAN Lixin, et al. Stress field modelling of the Late Oligocene tectonic inversion in the Liaodong Bay Subbasin, Bohai Bay Basin (northern China): implications for geodynamics and petroleum accumulation[J]. Journal of Geodynamics, 2019, 126: 32-45. [24] HU Panpan, YANG Fengli, ZHANG Rucai, et al. Cenozoic extension to strike-slip transition in the Liaodong Bay Subbasin along the Tan-Lu Fault Zone, Bohai Bay Basin: new insights from stress field modelling[J]. Tectonophysics, 2022, 822: 229163. [25] DENG Jun, WANG Qingfei. Gold mineralization in China: metallogenic provinces, deposit types and tectonic framework[J]. Gondwana Research, 2016, 36: 219-274. [26] 吴福元, 万博, 赵亮, 等. 特提斯地球动力学[J]. 岩石学报, 2020, 36(6): 1627-1674. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202006001.htmWU Fuyuan, WAN Bo, ZHAO Liang, et al. Tethyan geodynamics[J]. Acta Petrologica Sinica, 2020, 36(6): 1627-1674. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202006001.htm [27] 朱日祥, 赵盼, 赵亮. 新特提斯洋演化与动力过程[J]. 中国科学: 地球科学, 2022, 52(1): 1-25. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK202201001.htmZHU Rixiang, ZHAO Pan, ZHAO Liang. Tectonic evolution and geodynamics of the Neo-Tethys Ocean[J]. Science China Earth Sciences, 2022, 65(1): 1-24. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK202201001.htm [28] MVLLER R D, ZAHIROVIC S, WILLIAMS S E, et al. A global plate model including lithospheric deformation along major rifts and orogens since the Triassic[J]. Tectonics, 2019, 38(6): 1884-1907. [29] LI Zhengxiang, LI Xianhua. Formation of the 1300-km-wide intracontinental orogen and postorogenic magmatic province in Mesozoic South China: a flat-slab subduction model[J]. Geology, 2007, 35(2): 179-182. [30] 颜丹平, 金哲龙, 张维宸, 等. 川渝湘鄂薄皮构造带多层拆离滑脱系的岩石力学性质及其对构造变形样式的控制[J]. 地质通报, 2008, 27(10): 1687-1697. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200810012.htmYAN Danping, JIN Zhelong, ZHANG Weichen, et al. Rock mechanical characteristics of the multi-layer detachment fault system and their controls on the structural deformation style of the Sichuan-Chongqing-Hunan-Hubei thin-skinned belt, South Gansu, China[J]. Geological Bulletin of China, 2008, 27(10): 1687-1697. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200810012.htm [31] 梅廉夫, 刘昭茜, 汤济广, 等. 湘鄂西—川东中生代陆内递进扩展变形: 来自裂变径迹和平衡剖面的证据[J]. 地球科学(中国地质大学学报), 2010, 35(2): 161-174. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201002000.htmMEI Lianfu, LIU Zhaoqian, TANG Jiguang, et al. Mesozoic intra-continental progressive deformation in western Hunan-Hubei-Eastern Sichuan Provinces of China: evidence from apatite fission track and balanced cross-section[J]. Earth Science(Journal of China University of Geosciences), 2010, 35(2): 161-174. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201002000.htm [32] 唐永, 梅廉夫, 肖安成, 等. 川东北宣汉—达县地区晚中生代—新生代构造应力场转化及其油气意义[J]. 石油学报, 2013, 34(1): 59-70. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201301006.htmTANG Yong, MEI Lianfu, XIAO Ancheng, et al. Transition of tectonic stress field and hydrocarbon significance of the Late Mesozoic-Cenozoic in Xuanhan-Daxian region, northeastern Sichuan Basin[J]. Acta Petrolei Sinica, 2013, 34(1): 59-70. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201301006.htm [33] LIU Shugen, DENG Bin, LI Zhiwu, et al. Architecture of basin-mountain systems and their influences on gas distribution: a case study from the Sichuan Basin, South China[J]. Journal of Asian Earth Sciences, 2012, 47: 204-215. [34] LIU Shugen, YU Yang, DENG Bin, et al. Tectonic evolution of the Sichuan Basin, Southwest China[J]. Earth-Science Reviews, 2021, 213: 103470. [35] JU Wei, WANG Jilin, FANG Huihuang, et al. Paleostress reconstructions and stress regimes in the Nanchuan region of Sichuan Basin, South China: implications for hydrocarbon exploration[J]. Geosciences Journal, 2017, 21(4): 553-564. [36] 郭卫星, 唐建明, 欧阳嘉穗, 等. 四川盆地南部构造变形特征及其与页岩气保存条件的关系[J]. 天然气工业, 2021, 41(5): 11-19. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202105003.htmGUO Weixing, TANG Jianming, OUYANG Jiasui, et al. Characteristics of structural deformation in the southern Sichuan Basin and its relationship with the storage condition of shale gas[J]. Natural Gas Industry, 2021, 41(5): 11-19. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202105003.htm [37] KIRBY S H. Rheology of the lithosphere[J]. Reviews of Geophysics, 1983, 21(6): 1458-1487. [38] 王玮, 周祖翼, 郭彤楼, 等. 四川盆地古地温梯度和中—新生代构造热历史[J]. 同济大学学报(自然科学版), 2011, 39(4): 606-613. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ201104027.htmWANG Wei, ZHOU Zuyi, GUO Tonglou, et al. Early Cretaceous-Paleocene geothermal gradients and Cenozoic tectono-thermal history of Sichuan Basin[J]. Journal of Tongji University (Natural Science), 2011, 39(4): 606-613. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ201104027.htm [39] 范小林. 中国大陆岩石圈与中新生代盆地构造—热体制[J]. 勘探地球物理进展, 2005, 28(5): 330-334. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ200505006.htmFAN Xiaolin. The tectonic-thermoregime of lithosphere and Meso-Cenozoic basin in China's mainland[J]. Progress in Exploration Geophysics, 2005, 28(5): 330-334. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ200505006.htm [40] GUO Lianghui, GAO Rui. Potential-field evidence for the tectonic boundaries of the central and western Jiangnan belt in South China[J]. Precambrian Research, 2018, 309: 45-55. [41] HE Lijuan. Thermal evolution of the Upper Yangtze Craton: secular cooling and short-lived thermal perturbations[J]. Physics of the Earth and Planetary Interiors, 2020, 301: 106458. [42] 郑文俊, 张培震, 袁道阳, 等. 中国大陆活动构造基本特征及其对区域动力过程的控制[J]. 地质力学学报, 2019, 25(5): 699-721. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX201905007.htmZHENG Wenjun, ZHANG Peizhen, YUAN Daoyang, et al. Basic characteristics of active tectonics and associated geodynamic processes in continental China[J]. Journal of Geomechanics, 2019, 25(5): 699-721. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX201905007.htm [43] 汤济广, 汪凯明, 秦德超, 等. 川东南南川地区构造变形与页岩气富集[J]. 地质科技通报, 2021, 40(5): 11-21. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202105003.htmTANG Jiguang, WANG Kaiming, QIN Dechao, et al. Tectonic deformation and its constraints to shale gas accumulation in Nanchuan area, southeastern Sichuan Basin[J]. Bulletin of Geological Science and Technology, 2021, 40(5): 11-21. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202105003.htm [44] 万天丰. 构造应力场研究的新进展[J]. 地学前缘, 1995, 2(1/2): 226-235. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY502.019.htmWAN Tianfeng. The progress of researches on tectonic stress field[J]. Earth Science Frontiers, 1995, 2(1/2): 226-235. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY502.019.htm [45] 李延兴, 杨国华, 李智, 等. 中国大陆活动地块的运动与应变状态[J]. 中国科学(D辑: 地球科学), 2003, 33(S1): 65-81. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK2003S1007.htmLI Yanxing, YANG Guohua, LI Zhi, et al. Movement and strain conditions of active blocks in the Chinese mainland[J]. Science in China(Series D: Earth Sciences), 2003, 46(2): 82-117. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK2003S1007.htm [46] 李峰. 重庆隔挡式背斜构造的地震危险性研究[D]. 北京: 中国地震局地质研究所, 2015.LI Feng. Seismic hazard analysis on the wide spaced anticlines in Chongqing[D]. Beijing: Institute of Geology, China Earthquake Administrator, 2015. [47] 庹秀松, 陈孔全, 罗顺社, 等. 四川盆地东南缘齐岳山断裂构造特征与页岩气保存条件[J]. 石油与天然气地质, 2020, 41(5): 1017-1027. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202005013.htmTUO Xiusong, CHEN Kongquan, LUO Shunshe, et al. Structural characteristics of Qiyueshan Fault and shale gas preservation at the southeastern margin of Sichuan Basin[J]. Oil & Gas Geology, 2020, 41(5): 1017-1027. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202005013.htm