Shale oil reservoir characteristics and exploration implication in Da'anzhai Member of Jurassic Ziliujing Formation in central Sichuan Basin
-
摘要: 为进一步指导四川盆地侏罗系自流井组大安寨段页岩油的勘探与开发,亟需理清页岩油的有利赋存岩相。通过岩心观察、薄片鉴定、高压压汞、核磁共振、岩石热解等实验,分析大安寨段页岩层系不同岩相的储集空间类型、孔隙结构特征及含油性。结果表明,大安寨段主要发育块状(泥质)介壳灰岩、层状泥质介壳灰岩、层状介壳页岩、纹层状含介壳页岩、块状含介壳黏土质页岩和页理状含粉砂黏土质页岩6类岩相;页岩物性远优于介壳灰岩,且随着灰质含量的增加孔径逐渐增大,但总孔体积和总连通体积逐渐减小;大安寨段页岩层系平均游离油(S1)值为1.31 mg/g,含油性中等,页理状含粉砂黏土质页岩与纹层状含介壳页岩S1值较高,分别为2.37 mg/g与1.82 mg/g。页理状含粉砂黏土质页岩和纹层状含介壳页岩的储集性较好、含油性较高,两者构成的岩相组合可作为大安寨段页岩油的重点勘探对象。Abstract: To further guide the exploration and development of shale oil in the Da'anzhai Member of the Jurassic Ziliujing Formation in the Sichuan Basin, it is urgent to clarify the favorable lithofacies of shale oil. In this study, core observation, thin section authentication, high pressure mercury injection, NMR, rock pyrolysis analysis and other experiments were used to analyze the reservoir space types, pore structure characteristics and oil-bearing properties of different lithofacies of shale series in the Da'anzhai Member. The results show that mainly six types of lithofacies are developed in the Da'anzhai Member: massive (argillaceous) shell limestone, layered argillaceous shell limestone, layered shell shale, laminar shell-bearing shale, massive shell-bearing clay shale and foliated siltstone-bearing clay shale. The physical properties of shale in the Da'anzhai Member are much better than those of shell limestone, and with the increase of calcareous content, the pore size of the shale gradually increases, but the total pore volume and total connected volume gradually decrease. The average free oil value (S1) of the shale series in the Da'anzhai Member is 1.31 mg/g, with moderate oil-bearing property. The S1 values of the foliated siltstone-bearing clay shale and the laminar shell-bearing shale are relatively higher, which are 2.37 mg/g and 1.82 mg/g, respectively. In summary, it is believed that the foliated siltstone-bearing clay shale and the laminar shell-bearing shale have good reservoir properties and high oil-bearing properties. The lithofacies combination of the two can be a key exploration target for shale oil in the Da'anzhai Member.
-
Key words:
- reservoir space /
- oil-bearing property /
- shale oil /
- reservoir characteristics /
- Da'anzhai Member /
- Jurassic /
- Sichuan Basin
-
图 1 四川盆地构造单元划分、研究区位置(a)及侏罗系自流井组大安寨段地层特征(b)
据参考文献[13]修改。
Figure 1. Tectonic unit division of Sichuan Basin, location of study area (a) and stratigraphic characteristics of Da'anzhai Member of Jurassic Ziliujing Formation (b)
图 2 川中侏罗系自流井组大安寨段典型岩性特征
a.RA1井,3 474.74~7 474.99 m,块状泥晶生屑灰岩;b.RA1井,2 438.44~2 438.63 m,块状泥质介壳灰岩;c.RA1井,2 436.95~2 437.16 m,含生屑页岩与介壳灰岩纹层状(毫米级)互层;d.RA1井,2 487.6~2 487.78 m,含生物页岩与介壳灰岩层状(厘米级)互层;e.RA1井,2 443.61~2 443.74 m,块状含介壳泥岩;f.RA1井,3 292.99~3 293.21 m,块状页理状纯页岩;g.RA1井,3 481.28~3 481.53 m,粉砂质泥岩;h.Q20井,2 869.6 m,亮晶介壳灰岩;i.Q25井,2 859.18 m,泥晶生屑灰岩;j.LA1井,3 502.7 m,中层含泥介壳灰岩;k.LA1井,3 514.6 m,叠椎构造;l.LA1井,3 507.3 m,纹层含介壳黏土质页岩;m.LA1井,3 532.3 m,块状含粉砂黏土质页岩;n.LA1井,3 528.55 m,含介壳页岩;o.LA1井,3 487.06 m,页理状含粉砂黏土质页岩。
Figure 2. Typical lithological characteristics of Da'anzhai Member of Jurassic Ziliujing Formation in central Sichuan Basin
图 3 川中侏罗系自流井组大安寨段页岩储集空间类型
a.G6井,2 535.18 m,黏土矿物粒内孔;b.G6井,2 538.31 m,发育粒间孔,微裂缝定向排列;c.RA1井,2 458.6 m,方解石晶间孔;d.G6井,2 538.31 m,方解石晶间孔与微裂缝;e.G6井,2 538.31 m,泥质和钙质条带之间发育微裂缝;f.G6井,2 538.31 m,石英粒间孔;g.RA1井,2 462.1 m,半有机质孔,有机质边缘缝;h.RA1井,2 464.5 m,有机孔;i.RA1井,2 464.5 m,黄铁矿晶间孔。
Figure 3. Shale reservoir space types in Da'anzhai Member of Jurassic Ziliujing Formation in central Sichuan Basin
图 9 川中侏罗系自流井组大安寨段各类岩相典型的单偏光照片及其对应的荧光照片
a.RA1,2 435.28 m,介壳灰岩,完整的介壳不发荧光;b.RA1,2 451.08 m,泥质介壳灰岩,介壳破碎缝和边缘缝含油;c.RA1,2 456.34 m,层状介壳页岩,泥岩基质孔和介壳破碎缝中含油;d.RA1,2 440.35,块状含介壳页岩,泥岩基质孔和介壳破碎缝中含油;e.RA1,2 464.5 m,黏土质泥页岩,微裂缝和基质孔中含油;f.G6井,2 549.32 m,页理状含粉砂黏土质页岩,微裂缝中含油。
Figure 9. Typical single-frequency polarized light photos of various lithofacies in Da'anzhai Member of Jurassic Ziliujing Formation in central Sichuan Basin and their corresponding fluorescence photos
表 1 川中侏罗系自流井组大安寨段页岩孔隙类型及形态特征
Table 1. Pore types and morphologic characteristics of shale in Da'anzhai Member of Jurassic Ziliujing Formation in central Sichuan Basin
孔隙类型 孔隙属性 孔径/μm 样品数/个 圆度 伸长率 面积/μm2 周长/μm 粒内孔 有机质孔 0.37 3.49 1.37 5.09 0.5~10 20 粒内孔 黄铁矿晶间孔 0.41 3.43 1.09 4.78 0.2~5 12 粒内孔 黏土粒内孔 0.31 4.44 0.66 4.34 0.5~5 15 粒间孔 石英粒间孔 0.54 2.10 5.87 9.32 0.2~10 12 粒间孔 方解石晶间孔 0.46 2.59 0.83 4.04 0.5~5 20 粒间孔 有机质边缘孔 0.16 9.08 5.58 34.30 1~20 25 微裂缝 0.07 19.50 329.37 280.64 20~220 32 表 2 川中侏罗系自流井组大安寨段不同岩相页岩(块状样品)高压压汞实验数据统计
Table 2. Statistics of high pressure mercury pressure experimental data of different lithofacies of shale (block samples) in Da'anzhai Member of Jurassic Ziliujing Formation in central Sichuan Basin
井号 编号 深度/m 岩相 门槛压力/MPa 总进汞量/(mL/g) 孔隙度/% 平均孔径/nm 总孔体积/(mL/g) 比表面积/(m2/g) RA1 1 2 471.00 层状介壳页岩 0.039 2 0.008 1.951 205.430 0.008 0.145 RA1 2 2 473.77 块状含介壳黏土质页岩 0.023 6 0.015 3.847 16.500 0.015 3.651 RA1 3 2 487.60 纹层状含介壳页岩 0.004 6 0.010 2.532 36.560 0.010 1.077 G10 4 2 686.70 页理状含粉砂黏土质页岩 0.089 4 0.033 7.680 15.980 0.033 8.254 PC1 5 3 180.01 块状介壳灰岩 0.023 3 0.005 1.401 651.970 0.005 0.033 -
[1] 何文渊, 白雪峰, 蒙启安, 等. 四川盆地陆相页岩油成藏地质特征与重大发现[J]. 石油学报, 2022, 43(7): 885-898.HE Wenyuan, BAI Xuefeng, MENG Qi'an, et al. Accumulation geological characteristics and major discoveries of lacustrine shale oil in Sichuan Basin[J]. Acta Petrolei Sinica, 2022, 43(7): 885-898. [2] 何文渊, 柳波, 张金友, 等. 松辽盆地古龙页岩油地质特征及关键科学问题探索[J]. 地球科学, 2023, 48(1): 49-62.HE Wenyuan, LIU Bo, ZHANG Jinyou, et al. Geological characteristics and key scientific and technological problems of Gulong shale oil in Songliao Basin[J]. Earth Science, 2023, 48(1): 49-62. [3] 付锁堂, 付金华, 牛小兵, 等. 庆城油田成藏条件及勘探开发关键技术[J]. 石油学报, 2020, 41(7): 777-795.FU Suotang, FU Jinhua, NIU Xiaobing, et al. Accumulation conditions and key exploration and development technologies in Qingcheng oilfield[J]. Acta Petrolei Sinica, 2020, 41(7): 777-795. [4] 周立宏, 赵贤正, 柴公权, 等. 陆相页岩油效益勘探开发关键技术与工程实践: 以渤海湾盆地沧东凹陷古近系孔二段为例[J]. 石油勘探与开发, 2020, 47(5): 1059-1066.ZHOU Lihong, ZHAO Xianzheng, CHAI Gongquan, et al. Key exploration & development technologies and engineering practice of continental shale oil: a case study of member 2 of Paleogene Kongdian Formation in Cangdong Sag, Bohai Bay Basin, East China[J]. Petroleum Exploration and Development, 2020, 47(5): 1059-1066. [5] 邹才能, 杨智, 王红岩, 等. "进源找油": 论四川盆地非常规陆相大型页岩油气田[J]. 地质学报, 2019, 93(7): 1551-1562.ZOU Caineng, YANG Zhi, WANG Hongyan, et al. "Exploring petroleum inside source kitchen": Jurassic unconventional continental giant shale oil & gas field in Sichuan Basin, China[J]. Acta Geologica Sinica, 2019, 93(7): 1551-1562. [6] 何文渊, 何海清, 王玉华, 等. 川东北地区平安1井侏罗系凉高山组页岩油重大突破及意义[J]. 中国石油勘探, 2022, 27(1): 40-49.HE Wenyuan, HE Haiqing, WANG Yuhua, et al. Major breakthrough and significance of shale oil of the Jurassic Lianggaoshan Formation in well Ping'an 1 in northeastern Sichuan Basin[J]. China Petroleum Exploration, 2022, 27(1): 40-49. [7] 胡东风, 魏志红, 刘若冰, 等. 四川盆地拔山寺向斜泰页1井页岩油气重大突破及意义[J]. 中国石油勘探, 2021, 26(2): 21-32. doi: 10.3969/j.issn.1672-7703.2021.02.003HU Dongfeng, WEI Zhihong, LIU Ruobing, et al. Major breakthrough of shale oil and gas in well Taiye 1 in Bashansi Syncline in the Sichuan Basin and its significance[J]. China Petroleum Exploration, 2021, 26(2): 21-32. doi: 10.3969/j.issn.1672-7703.2021.02.003 [8] 舒志国, 周林, 李雄, 等. 四川盆地东部复兴地区侏罗系自流井组东岳庙段陆相页岩凝析气藏地质特征及勘探开发前景[J]. 石油与天然气地质, 2021, 42(1): 212-223.SHU Zhiguo, ZHOU Lin, LI Xiong, et al. Geological characteristics of gas condensate reservoirs and their exploration and deve-lopment prospect in the Jurassic continental shale of the Dongyuemiao member of Ziliujing Formation, Fuxing area, eastern Sichuan Basin[J]. Oil & Gas Geology, 2021, 42(1): 212-223. [9] 何绪全, 黄东, 赵艾琳, 等. 川中地区大安寨段页岩油气储层测井评价指标体系[J]. 岩性油气藏, 2021, 33(3): 129-137.HE Xuquan, HUANG Dong, ZHAO Ailin, et al. Well-logging evaluation index system of shale oil and gas reservoir of Da'anzhai Member in central Sichuan Basin[J]. Lithologic Reservoirs, 2021, 33(3): 129-137. [10] 康家豪, 王兴志, 谢圣阳, 等. 川中地区侏罗系大安寨段页岩岩相类型及储层特征[J]. 岩性油气藏, 2022, 34(4): 53-65.KANG Jiahao, WANG Xingzhi, XIE Shengyang, et al. Lithofacies types and reservoir characteristics of shales of Jurassic Da'anzhai Member in central Sichuan Basin[J]. Lithologic Reservoirs, 2022, 34(4): 53-65. [11] 祝海华, 陈琳, 曹正林, 等. 川中地区侏罗系自流井组大安寨段黑色页岩孔隙微观特征及主控因素[J]. 石油与天然气地质, 2022, 43(5): 1115-1126.ZHU Haihua, CHEN Lin, CAO Zhenglin, et al. Microscopic pore characteristics and controlling factors of black shale in the Da'anzhai Member of Jurassic Ziliujing Formation, central Sichuan Basin[J]. Oil & Gas Geology, 2022, 43(5): 1115-1126. [12] 罗健, 罗小平, 陈安清, 等. 川南—黔北地区下寒武统烃源岩发育分布特征及控制因素[J]. 成都理工大学学报(自然科学版), 2020, 47(5): 590-603.LUO Jian, LUO Xiaoping, CHEN Anqing, et al. Development and distribution characteristics and controlling factors of hydrocarbon source rocks in southern Sichuan-northern Guizhou, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2020, 47(5): 590-603. [13] 孙志民, 胡明毅, 邓庆杰, 等. 四川盆地平昌地区侏罗系大安寨段沉积特征及演化模式[J]. 大庆石油地质与开发, 2022, 41(6): 32-41.SUN Zhimin, HU Mingyi, DENG Qingjie, et al. Sedimentary characteristics and evolution pattern of Jurassic Da'anzhai Member in Pingchang area, Sichuan Basin[J]. Petroleum Geology & Oilfield Development in Daqing, 2022, 41(6): 32-41. [14] LOUCKS R G, REED R M, RUPPEL S C, et al. Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores[J]. AAPG Bulletin, 2012, 96(6): 1071-1098. doi: 10.1306/08171111061 [15] 焦堃, 姚素平, 吴浩, 等. 页岩气储层孔隙系统表征方法研究进展[J]. 高校地质学报, 2014, 20(1): 151-161.JIAO Kun, YAO Suping, WU Hao, et al. Advances in characte-rization of pore system of gas shales[J]. Geological Journal of China Universities, 2014, 20(1): 151-161. [16] 崔哲治, 孙卫. 基于高压压汞与核磁共振的致密砂岩孔隙结构研究: 以苏里格气田山西组与下石盒子组为例[J]. 非常规油气, 2020, 7(2): 49-55.CUI Zhezhi, SUN Wei. Study on pore structure of tight sandstone based on high pressure mercury and nuclear magnetic resonance: take Shanxi Formation and Shihezi Formation in Sulige gas field as examples[J]. Unconventional Oil & Gas, 2020, 7(2): 49-55. [17] 张晓祎. 页岩油气储层孔隙结构表征新方法研究[D]. 廊坊: 中国科学院大学(中国科学院渗流流体力学研究所), 2021.ZHANG Xiaoyi. The research of new methods for pore structure characterization of shale oil and gas reservoirs[D]. Langfang: University of Chinese Academy of Sciences (Institute of Porous Flow & Fluid Mechanics), 2021. [18] 芮昀, 王长江, 张凤生, 等. 昭通国家级页岩气示范区页岩气储层微观孔喉表征[J]. 天然气工业, 2021, 41(S1): 78-85.RUI Yun, WANG Changjiang, ZHANG Fengsheng, et al. Characterization of micro-pore throats in the shale gas reservoirs of Zhaotong National Shale Gas Demonstration Area[J]. Natural Gas Industry, 2021, 41(S1): 78-85. [19] 卢振东, 刘成林, 臧起彪, 等. 高压压汞联合分形理论分析致密砂岩孔隙结构: 以鄂尔多斯盆地合水地区为例[J]. 地质科技通报, 2023, 42(1): 264-273.LU Zhendong, LIU Chenglin, ZANG Qibiao, et al. Analysis of the pore structure of tight sandstone by high-pressure mercury injection combined with fractal theory: a case study of the Heshui area in the Ordos Basin[J]. Bulletin of Geological Science and Technology, 2023, 42(1): 264-273. [20] 靳继阳, 薛海涛, 田善思, 等. 界面张力与润湿角校正对高压压汞法计算泥页岩孔径分布的影响: 以松辽盆地青山口组为例[J]. 现代地质, 2018, 32(1): 191-197.JIN Jiyang, XUE Haitao, TIAN Shansi, et al. Influence of correction of interfacial tension and wetting angle to the pore size distribution of shale by means of high pressure mercury porosity: a case study of Qingshankou Formation in Songliao Basin[J]. Geoscience, 2018, 32(1): 191-197. [21] 李楚雄, 申宝剑, 卢龙飞, 等. 松辽盆地沙河子组页岩孔隙结构表征: 基于低场核磁共振技术[J]. 油气藏评价与开发, 2022, 12(3): 468-476.LI Chuxiong, SHEN Baojian, LU Longfei, et al. Pore structure characterization of Shahezi Formation shale in Songliao Basin: based on low-field nuclear magnetic resonance technology[J]. Petroleum Reservoir Evaluation and Development, 2022, 12(3): 468-476. [22] 靳军, 刘伟洲, 王子强, 等. 基于核磁共振T2谱的页岩岩心孔隙分布量化表征方法[J]. 科学技术与工程, 2022, 22(16): 6448-6455.JIN Jun, LIU Weizhou, WANG Ziqiang, et al. Quantitative characte-rization of shale pore size distribution based on nuclear magnetic resonance T2 spectrum[J]. Science Technology and Engineering, 2022, 22(16): 6448-6455. [23] 张鹏飞. 基于核磁共振技术的页岩油储集、赋存与可流动性研究[D]. 青岛: 中国石油大学(华东), 2019.ZHANG Pengfei. Research on shale oil reservoir, occurrence and movability using nuclear magnetic resonance (NMR)[D]. Qingdao: China University of Petroleum (East China), 2019. [24] 冯国奇, 李吉君, 刘洁文, 等. 泌阳凹陷页岩油富集及可动性探讨[J]. 石油与天然气地质, 2019, 40(6): 1236-1246.FENG Guoqi, LI Jijun, LIU Jiewen, et al. Discussion on the enrichment and mobility of continental shale oil in Biyang Depression[J]. Oil & Gas Geology, 2019, 40(6): 1236-1246. [25] 王民, 石蕾, 王文广, 等. 中美页岩油、致密油发育的地球化学特征对比[J]. 岩性油气藏, 2014, 26(3): 67-73.WANG Min, SHI Lei, WANG Wenguang, et al. Comparative study on geochemical characteristics of shale oil between China and U.S. A[J]. Lithologic Reservoirs, 2014, 26(3): 67-73. [26] PEPPER A S. Estimating the petroleum expulsion behaviour of source rocks: a novel quantitative approach[J]. Geological Society, London, Special Publications, 1991, 59(1): 9-31. doi: 10.1144/GSL.SP.1991.059.01.02 [27] 王茂林, 程鹏, 田辉, 等. 页岩油储层评价指标体系[J]. 地球化学, 2017, 46(2): 178-190. doi: 10.3969/j.issn.0379-1726.2017.02.007WANG Maolin, CHENG Peng, TIAN Hui, et al. Evaluation index system of shale oil reservoirs[J]. Geochimica, 2017, 46(2): 178-190. doi: 10.3969/j.issn.0379-1726.2017.02.007