Research on sedimentary environment and provenance for hydrocarbon source rocks of Upper Carboniferous Batamayineishan Formation in northeastern Junggar Basin: evidences from the geochemistry of mudstones
-
摘要: 烃源岩分布规律和生烃潜力是制约准噶尔盆地东北地区油气勘探的关键因素之一,而沉积背景和环境变化是控制烃源岩成因、分布以及有机质类型的主要因素,沉积岩中的主微量元素、稀土元素等在沉积过程中往往受古气候、古水体化学条件、古环境以及古物源的影响。因此,通过对沉积岩中元素分布规律的全面分析,有助于确定沉积环境和演变过程。对准噶尔盆地东北缘富蕴地区上石炭统巴山组暗色泥岩样品的主微量元素、稀土元素进行地球化学特征分析,结合样品的岩石学特征,揭示古沉积环境和物源区构造背景,为烃源岩形成和发育条件提供地质约束。泥岩的化学风化作用指标、元素含量和元素比值的综合分析表明,巴山组沉积期的古气候条件温暖湿润、水体属氧化条件下的半咸水—淡水,且水体较浅、沉积速率相对稳定。主微量元素特征指示母岩类型主要为沉积岩和长英质火山岩,物源来自卡拉麦里岛弧酸性火成岩区的风化产物,反映了后碰撞阶段由挤压向伸展的构造转变。沉积环境和构造背景控制陆源高等植物输入增多,烃源岩有机质丰度中等,具有一定的生烃潜力。Abstract: The distribution rules and hydrocarbon potential of source rocks are the major factors which determine oil and gas exploration in the northeastern Junggar Basin. Sedimentary background and environmental changes are the main factors controlling the genesis, distribution, and organic matter types of hydrocarbon source rocks. The main and trace elements and rare earth elements in sedimentary rocks are often influenced by palaeoclimate, paleo water chemical conditions, palaeoenvironment, and palaeosource during sedimentation process. Therefore, a comprehensive analysis of the distribution patterns of elements in sedimentary rocks can help to determine sedimentary environment and evolution process. The geochemical characteristics of major and trace elements and rare earth elements for mudstones of the Upper Carboniferous Batamayineishan Formation from outcrops of the north- eastern Junggar Basin were studied to reveal the sedimentary environment and the tectonic setting of the provenance, which can provide geological constraints for the origin and development conditions of hydrocarbon source rocks. According to a comprehensive analysis on chemical weathering indicators, element contents, and ratios between various major and trace elements, the mudstones of Batamayineishan Formation were deposited in a warm and humid paleoclimate background, and the deposition process was relatively stable in a shallow water with brackish-fresh features under oxidizing environment. Major and trace elements of mudstones indicate that the parent rocks are sedimentary rocks and felsic volcanic rocks and their provenance is derived from the weathering products of acidic igneous rocks of the Karamaili Island Arc, reflecting the tectonic transition from compression to extension during the post collision stage. The depositional environment and tectonic setting controlled the increased input of terrestrial higher plants, resulting in the medium abundance of organic matter with good hydrocarbon generating potential.
-
图 1 准噶尔盆地东北缘地质概况和采样位置
据参考文献[9]修改。
Figure 1. Geological sketch map of northeastern Junggar Basin with sampling locations
图 4 准噶尔盆地东北缘上石炭统巴山组泥岩A-CN-K三角图
据参考文献[21]修改;PAAS为后太古宙澳大利亚页岩。
Figure 4. Triangular A-CN-K diagram for mudstones of Upper Carboniferous Batamayineshan Formation in northeastern Junggar Basin
图 6 准噶尔盆地东北缘上石炭统巴山组泥岩沉积构造环境判别[36]
Figure 6. Discriminant diagrams for tectonic settings of mudstones of Upper Carboniferous Batamayineshan Formation in northeastern Junggar Basin
表 1 准噶尔盆地东北缘上石炭统巴山组泥岩样品主微量元素和地球化学指标数据
Table 1. Major and trace elements and calculated geochemical indicators of mudstones in Upper Carboniferous Batamayineshan Formation, northeastern Junggar Basin
主微量元素与地化指标 采样地区和样品号 五彩城 尖山沟 W1 W2 W3 W4 W5 W6 W7 W8 W9 W10 W11 W12 J1 J2 SiO2/% 60.2 64.5 61.7 61.3 62.0 61.4 57.6 59.1 59.1 57.1 62.8 55.3 52.5 49.6 Al2O3/% 14.9 15.0 15.4 17.4 15.4 15.0 15.6 17.4 17.6 11.7 17.1 18.6 17.8 17.6 CaO/% 3.1 1.3 3.4 1.1 1.2 2.1 2.4 0.6 1.0 1.0 1.2 1.1 1.6 2.1 Fe2O3/% 7.5 6.1 5.1 5.5 6.3 6.7 7.9 7.1 6.3 15.2 3.8 6.1 5.8 5.2 K2O/% 1.4 2.3 1.9 2.8 2.6 1.9 1.8 2.2 2.1 0.7 2.2 2.4 1.4 1.3 MgO/% 1.2 1.5 1.2 1.4 1.5 0.8 0.8 0.9 0.8 1.2 0.6 0.7 0.9 1.0 Na2O/% 3.8 2.1 3.4 2.5 2.4 3.2 3.0 2.6 1.8 2.0 2.3 2.0 2.3 2.3 TiO2/% 0.8 0.7 0.8 0.8 0.7 0.8 0.8 0.8 0.8 0.5 0.8 0.9 0.9 0.9 Li/(μg/g) 65.2 64.2 39.4 39.3 41.0 29.3 44.3 27.6 28.9 215.0 38.6 47.8 32.8 38.5 Sc/(μg/g) 12.1 14.0 12.4 15.0 14.5 15.7 15.7 18.3 16.7 11.0 12.9 17.7 14.0 14.7 V/(μg/g) 88.3 118.0 76.5 82.0 118.0 117.0 127.0 128.0 114.0 122.0 77.1 105.0 94.6 95.6 Cr/(μg/g) 41.2 24.6 39.4 21.9 20.7 25.5 32.9 26.2 25.1 27.0 21.0 20.9 16.6 18.7 Co/(μg/g) 10.0 8.3 9.2 8.1 10.3 9.8 18.2 10.3 10.9 12.3 5.3 12.0 3.1 6.9 Ni/(μg/g) 12.7 12.7 16.3 11.1 15.2 14.3 17.3 14.1 15.9 16.6 6.1 12.7 7.7 10.3 Cu/(μg/g) 24.5 30.0 18.8 26.2 34.1 31.0 33.6 37.7 37.2 26.4 25.2 37.8 32.9 34.2 Zn/(μg/g) 74.1 66.2 62.3 81.6 77.3 78.3 82.9 94.3 89.1 92.1 63.6 98.0 63.8 79.0 Ga/(μg/g) 19.6 21.3 19.6 23.6 22.2 21.4 24.4 24.5 24.2 17.1 21.7 25.7 23.4 23.4 Rb/(μg/g) 61.8 102.0 68.9 96.3 86.3 74.7 70.6 78.5 71.8 25.7 70.2 89.0 52.7 46.6 Sr/(μg/g) 249 137 198 149 218 256 230 153 194 110 169 201 243 282 Zr/(μg/g) 236 255 242 309 256 253 266 290 282 181 246 284 268 287 Mo/(μg/g) 1.7 2.8 3.1 3.2 4.2 4.0 5.9 1.4 1.8 7.3 2.8 1.1 2.5 1.5 Ba/(μg/g) 179 270 263 410 639 356 403 376 306 137 341 309 205 181 Th/(μg/g) 4.6 7.1 5.5 7.3 7.5 6.5 7.3 8.4 8.3 5.3 6.9 8.1 7.4 7.9 U/(μg/g) 2.0 2.5 1.8 2.2 2.8 2.6 2.4 2.7 2.7 2.2 2.2 2.5 6.1 2.9 SiO2/Al2O3 4.0 4.3 4.0 3.5 4.0 4.1 3.7 3.4 3.4 4.9 3.7 3.0 2.9 2.8 CaO+Na2O 6.8 3.3 6.9 3.6 3.6 5.3 5.4 3.2 2.8 3.0 3.5 3.1 3.9 4.4 Sr/Ba 1.4 0.5 0.8 0.4 0.3 0.7 0.6 0.4 0.6 0.8 0.5 0.7 1.2 1.6 Sr/Cu 10.2 4.6 10.6 5.7 6.4 8.3 6.9 4.1 5.2 4.2 6.7 5.3 7.4 8.2 V/Cr 2.1 4.8 1.9 3.7 5.7 4.6 3.9 4.9 4.6 4.5 3.7 5.0 5.7 5.1 U/Th 0.4 0.4 0.3 0.3 0.4 0.4 0.3 0.3 0.3 0.4 0.3 0.3 0.8 0.4 Ni/Co 1.3 1.5 1.8 1.4 1.5 1.5 1.0 1.4 1.5 1.4 1.2 1.1 2.5 1.5 Cu/Zn 0.3 0.5 0.3 0.3 0.4 0.4 0.4 0.4 0.4 0.3 0.4 0.4 0.5 0.4 Rb/Zr 0.3 0.4 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.1 0.3 0.3 0.2 0.2 Co/Th 2.2 1.2 1.7 1.1 1.4 1.5 2.5 1.2 1.3 2.3 0.8 1.5 0.4 0.9 CIA 65.8 74.1 64.9 74.3 72.1 69.7 69.8 78.4 79.8 80.7 76.2 78.6 77.7 76.5 CIW 70.3 83.5 70.6 84.4 82.4 76.6 75.9 86.9 87.9 84.7 84.5 87.6 82.9 81.1 PIA 68.1 81.1 67.8 81.9 79.5 74.0 73.6 85.3 86.6 83.9 82.7 86.0 81.6 79.9 F1 -3.9 -2.3 -1.3 -0.8 -1.4 -3.0 -4.3 -3.5 -3.7 -17.0 -1.3 -2.9 -4.1 -3.9 F2 -5.1 -2.7 -3.1 -2.2 -2.6 -4.9 -5.6 -4.5 -4.0 -14.0 -2.8 -3.7 -3.8 -3.4 UEF 0.59 0.75 0.54 0.58 0.81 0.79 0.7. 0.69 0.69 0.84 0.59 0.61 0.92 0.62 MoEF 0.73 1.23 1.31 1.2. 1.76 1.76 2.48 0.51 0.65 4.07 1.08 0.4 0.2 0.2 主微量元素与地化指标 采样地区和样品号 白碱沟 帐篷沟 扎河坝 拜尔库都克 BJ1 BJ2 BJ3 ZP1 ZP2 ZH1 ZH2 ZH3 ZH4 B1 B2 B3 B4 SiO2/% 66.0 52.9 52.9 56.2 52.7 55.8 53.5 55.7 56.0 75.7 58.1 60.5 62.1 Al2O3/% 14.6 24.1 25.8 15.8 19.0 15.4 15.3 15.7 13.8 7.8 18.4 18.5 16.8 CaO/% 1.4 0.6 0.2 0.7 0.5 1.9 2.2 1.4 2.3 1.2 0.9 0.4 0.8 Fe2O3/% 5.9 2.4 3.0 4.0 2.7 3.2 2.1 2.6 1.4 4.8 2.4 2.8 4.8 K2O/% 2.4 2.5 3.2 0.7 0.6 1.3 1.3 1.2 1.2 0.5 3.2 3.2 3.3 MgO/% 0.9 0.9 0.9 1.0 1.5 0.9 1.0 1.2 0.9 1.9 1.2 1.2 1.7 Na2O/% 2.6 2.6 2.4 3.0 2.6 0.7 0.8 0.9 0.8 4.2 1.7 2.1 1.2 TiO2/% 0.6 1.0 0.6 0.7 0.9 1.0 1.1 1.3 1.0 0.7 1.1 0.9 0.8 Li/(μg/g) 26.1 33.1 42.2 18.3 15.2 20.9 19.2 24.6 18.8 31.5 20.0 12.2 23.6 Sc/(μg/g) 12.0 20.0 11.7 12.1 15.4 13.4 13.2 11.7 12.9 14.6 8.9 10.5 10.6 V/(μg/g) 69.5 93.4 38.0 60.0 83.7 188.0 188.0 180.0 184.0 103.0 114.0 94.4 99.5 Cr/(μg/g) 31.2 14.4 11.1 24.9 11.8 65.6 72.4 64.3 60.9 86.0 109 64.0 38.6 Co/(μg/g) 8.5 2.7 16.1 5.0 10.2 5.7 27.3 14.7 10.9 7.1 7.4 7.7 8.8 Ni/(μg/g) 10.3 6.5 4.5 6.0 11.0 44.0 63.7 44.3 46.0 10.8 33.9 18.4 19.4 Cu/(μg/g) 15.5 50.9 12.9 26.2 33.5 50.5 58.1 51.0 53.7 46.3 47.9 40.3 32.9 Zn/(μg/g) 70.5 76.1 64.3 110.0 91.7 52.8 114.0 97.2 79.9 59.9 61.4 46.3 63.9 Ga/(μg/g) 19.2 31.0 37.9 25.2 26.0 19.4 18.7 19.8 17.2 12.8 23.2 22.7 20.1 Rb/(μg/g) 61.7 64.0 94.0 22.7 18.3 37.4 38.0 34.5 35.2 7.5 93.8 87.4 86.4 Sr/(μg/g) 195 133 65 87 56 407 363 282 327 286 103 106 155 Zr/(μg/g) 224 348 349 472 326 304 278 312 280 196 291 297 182 Mo/(μg/g) 0.5 0.7 4.8 1.6 3.5 Ba/(μg/g) 727 428 535 73 78 229 218 361 277 486 511 435 599 Th/(μg/g) 6.9 10.1 15.0 9.0 8.3 7.8 7.2 7.1 7.0 4.6 8.8 10.6 6.9 U/(μg/g) 3.0 3.3 2.5 5.0 3.4 3.3 3.1 2.5 2.8 1.4 11.4 7.6 3.8 La/(μg/g) 46.5 45.8 43.7 48.2 16.9 31.8 29.2 22.7 Ce/(μg/g) 93.1 92.9 88.7 94.2 39.1 55.0 59.0 44.2 Pr/(μg/g) 11.8 11.4 11.2 11.7 4.4 7.3 7.5 5.7 Nd/(μg/g) 45.9 44.8 43.3 45.9 17.9 29.1 29.2 22.0 Sm/(μg/g) 9.7 9.2 8.9 9.5 3.9 6.1 6.6 4.7 Eu/(μg/g) 1.9 2.1 1.9 2.0 0.8 1.1 1.0 0.9 Gd/(μg/g) 8.4 8.0 7.3 8.3 3.1 5.7 5.8 4.2 Tb/(μg/g) 1.5 1.4 1.2 1.4 0.5 1.1 1.1 0.8 Dy/(μg/g) 8.5 7.8 6.9 8.2 3.0 6.6 6.6 4.8 Ho/(μg/g) 1.8 1.6 1.4 1.7 0.6 1.4 1.4 1.0 Er/(μg/g) 4.9 4.7 4.1 4.8 1.7 3.8 3.8 3.0 Tm/(μg/g) 0.7 0.7 0.6 0.7 0.3 0.5 0.5 0.4 Yb/(μg/g) 4.6 4.4 3.8 4.5 1.8 3.3 3.5 3.0 Lu/(μg/g) 0.7 0.7 0.6 0.7 0.3 0.5 0.5 0.4 SiO2/Al2O3 4.5 2.2 2.0 3.6 2.8 3.6 3.5 3.5 4.1 9.7 3.2 3.3 3.7 CaO+Na2O 4.1 3.2 2.7 3.7 3.1 2.6 3.0 2.4 3.1 5.4 2.5 2.6 2.0 Sr/Ba 0.3 0.3 0.1 1.2 0.7 1.8 1.7 0.8 1.2 0.6 0.2 0.2 0.3 Sr/Cu 12.6 2.6 5.0 3.3 1.7 8.1 6.3 5.5 6.1 6.2 2.2 2.6 4.7 V/Cr 2.2 6.5 3.4 2.4 7.1 2.9 2.6 2.8 3.0 1.2 1.0 1.5 2.6 U/Th 0.4 0.3 0.2 0.6 0.4 0.4 0.4 0.3 0.4 0.3 1.3 0.7 0.6 Ni/Co 1.2 2.4 0.3 1.2 1.1 7.7 2.3 3.0 4.2 1.5 4.6 2.4 2.2 Cu/Zn 0.2 0.7 0.2 0.2 0.4 1.0 0.5 0.5 0.7 0.8 0.8 0.9 0.5 Rb/Zr 0.3 0.2 0.3 0.0 0.1 0.1 0.1 0.1 0.1 0.0 0.3 0.3 0.5 Co/Th 1.2 0.3 1.1 0.6 1.2 0.7 3.8 2.1 1.5 1.5 0.8 0.7 1.3 CIA 70.8 81.8 82.4 79.6 84.8 99.4 105.0 89.0 107.0 58.3 77.4 77.5 77.1 CIW 80.0 89.5 91.8 82.4 87.2 108.0 115.0 95.5 118.0 60.7 89.5 89.6 90.8 PIA 77.0 88.4 90.7 81.7 86.8 109.0 116.0 95.1 120.0 59.0 87.6 87.7 88.8 REE/10-6 242 238 226 244 95 155 157 119 LREE/HREE 6.8 7.1 7.7 7.0 7.4 5.7 5.7 5.7 (La/Yb)N 6.9 7.0 7.8 7.3 6.5 6.6 5.6 5.2 F1 -1.8 -1.0 -1.4 -3.9 -3.3 -3.0 -1.9 -2.0 -1.1 -0.7 1.6 1.2 -0.1 F2 -4.0 -1.6 -2.4 -3.5 -1.5 -1.2 -0.2 0.2 0.4 -1.9 0.4 -0.5 -0.4 UEF 0.44 1.55 0.75 1.44 0.80 MoEF 1.20 0.92 0.57 0.65 1.22 -
[1] 唐勇, 宋永, 何文军, 等. 准噶尔叠合盆地复式油气成藏规律[J]. 石油与天然气地质, 2022, 43(1): 132-148.TANG Yong, SONG Yong, HE Wenjun, et al. Characteristics of composite hydrocarbon accumulation in a superimposed basin, Junggar Basin[J]. Oil & Gas Geology, 2022, 43(1): 132-148. [2] 王越, 熊伟, 于洪州, 等. 准噶尔盆地东部芦草沟组层序地层格架与沉积充填模式[J]. 油气地质与采收率, 2022, 29(4): 12-24.WANG Yue, XIONG Wei, YU Hongzhou, et al. Sequence stratigraphic framework and sedimentary filling model of Lucaogou Formation in eastern Junggar Basin[J]. Petroleum Geology and Recovery Efficiency, 2022, 29(4): 12-24. [3] 罗亮, 胡晨林, 唐雅妮, 等. 准噶尔盆地东部北三台凸起烧房沟组沉积模式及其对储层发育的控制作用[J]. 特种油气藏, 2023, 30(3): 9-18.LUO Liang, HU Chenlin, TANG Ya'ni, et al. Sedimentary pattern of the Shaofanggou Formation in the north Santai high area of the eastern Junggar Basin and its control on reservoir development[J]. Special Oil & Gas Reservoirs, 2023, 30(3): 9-18. [4] 唐勇, 雷德文, 曹剑, 等. 准噶尔盆地二叠系全油气系统与源内天然气勘探新领域[J]. 新疆石油地质, 2022, 43(6): 654-662.TANG Yong, LEI Dewen, CAO Jian, et al. Total petroleum system and inner-source natural gas exploration in Permian strata of Junggar basin[J]. Xinjiang Petroleum Geology, 2022, 43(6): 654-662. [5] 赵永强, 宋振响, 王斌, 等. 准噶尔盆地油气资源潜力与中国石化常规—非常规油气一体化勘探策略[J]. 石油实验地质, 2023, 45(5): 872-881. doi: 10.11781/sysydz202305872ZHAO Yongqiang, SONG Zhenxiang, WANG Bin, et al. Resource potential in Junggar Basin and SINOPEC's integrated exploration strategy for conventional and unconventional petroleum[J]. Petroleum Geology & Experiment, 2023, 45(5): 872-881. doi: 10.11781/sysydz202305872 [6] 张关龙, 王继远, 王斌, 等. 准噶尔盆地腹部深层—超深层碎屑岩储层发育特征与孔隙演化定量表征[J]. 石油实验地质, 2023, 45(4): 620-631. doi: 10.11781/sysydz202304620ZHANG Guanlong, WANG Jiyuan, WANG Bin, et al. Development characteristics and quantitative characterization of pore evolution of deep and ultra-deep clastic reservoirs in the hinterland of the Junggar Basin[J]. Petroleum Geology & Experiment, 2023, 45(4): 620-631. doi: 10.11781/sysydz202304620 [7] 王圣柱, 王千军, 张关龙, 等. 准噶尔盆地石炭系烃源岩发育模式及地球化学特征[J]. 油气地质与采收率, 2020, 27(4): 13-25.WANG Shengzhu, WANG Qianjun, ZHANG Guanlong, et al. Deve-lopment mode and geochemical characteristics of Carboniferous source rocks in Junggar Basin[J]. Petroleum Geology and Recovery Efficiency, 2020, 27(4): 13-25. [8] 周雨双, 贾存善, 张奎华, 等. 应用TSM盆地模拟技术恢复准噶尔盆地东北缘石炭系烃源岩热演化史[J]. 石油实验地质, 2021, 43(2): 297-306. doi: 10.11781/sysydz202102297ZHOU Yushuang, JIA Cunshan, ZHANG Kuihua, et al. Thermal evolution history reconstruction of Carboniferous source rocks on the northeastern margin of Junggar Basin using TSM basin simulation technology[J]. Petroleum Geology & Experiment, 2021, 43(2): 297-306. doi: 10.11781/sysydz202102297 [9] 葛海龙. 准东乌伦古地区巴塔玛依内山组火山岩构造背景与烃源岩发育模式[D]. 长春: 吉林大学, 2020: 1-72.GE Hailong. Volcanic rocks tectonic setting and source rock development model in Batamayineshan Formation, Wulungun area, eastern Junggar Basin[D]. Changchun: Jilin University, 2020: 1-72. [10] 熊峥嵘, 曲彦胜, 朱凤云, 等. 准噶尔盆地北缘石炭系烃源岩元素特征及其环境意义[J]. 科学技术与工程, 2016, 16(15): 164-168. doi: 10.3969/j.issn.1671-1815.2016.15.028XIONG Zhengrong, QU Yansheng, ZHU Fengyun, et al. Trace element characteristic and environment meaning of hydrocarbon source rocks in the northern margin of Junggar Basin[J]. Science Technology and Engineering, 2016, 16(15): 164-168. doi: 10.3969/j.issn.1671-1815.2016.15.028 [11] 刘晓康, 边伟华, 孙相灿, 等. 火山活动影响的局限水体生烃潜力分析: 以准噶尔盆地东部石炭系巴塔玛依内山组为例[J]. 世界地质, 2018, 37(2): 518-526. doi: 10.3969/j.issn.1004-5589.2018.02.018LIU Xiaokang, BIAN Weihua, SUN Xiangcan, et al. Hydrocarbon generating potential in restricted waters influenced by volcanic activities: a case study of Carboniferous Batamayineishan Formation in eastern Junggar Basin[J]. Global Geology, 2018, 37(2): 518-526. doi: 10.3969/j.issn.1004-5589.2018.02.018 [12] LI Di, HE Dengfa, SANTOSH M, et al. Petrogenesis of Late Paleozoic volcanics from the Zhaheba Depression, East Junggar: insights into collisional event in an accretionary orogen of central Asia[J]. Lithos, 2014, 184-187: 167-193. doi: 10.1016/j.lithos.2013.10.003 [13] HE Dengfa, LI Di, FAN Chun, et al. Geochronology, geochemistry and tectonostratigraphy of Carboniferous strata of the deepest well Moshen-1 in the Junggar Basin, northwest China: insights into the continental growth of central Asia[J]. Gondwana Research, 2013, 24(2): 560-577. doi: 10.1016/j.gr.2012.10.015 [14] 张治波, 朱志军, 王文锋, 等. 滇西兰坪盆地中—新生代蒸发岩元素地球化学特征及其形成环境[J]. 吉林大学学报(地球科学版), 2019, 49(2): 356-379.ZHANG Zhibo, ZHU Zhijun, WANG Wenfeng, et al. Geochemical characteristics and formation environment of Mesozoic and Cenozoic evaporative rocks in Lanping Basin, western Yunnan[J]. Journal of Jilin University (Earth Science Edition), 2019, 49(2): 356-379. [15] 田景春, 张翔. 沉积地球化学[M]. 北京: 地质出版社, 2016.TIAN Jingchun, ZHANG Xiang. Sedimentary geochemistry[M]. Beijing: Geological Publishing House, 2016. [16] 白建科, 陈隽璐, 唐卓, 等. 新疆准噶尔古生代洋盆闭合时限: 来自卡拉麦里地区石炭纪碎屑锆石U-Pb年代学的约束[J]. 地质通报, 2018, 37(1): 26-38.BAI Jianke, CHEN Junlu, TANG Zhuo, et al. The closure time of Junggar Paleozoic oceanic basin: evidence from Carboniferous detrital zircon U-Pb geochronology in Kalamaili area[J]. Geological Bulletin of China, 2018, 37(1): 26-38. [17] 李海, 李永军, 徐学义, 等. 东准噶尔卡拉麦里地区碱性玄武岩年代学、地球化学特征及其构造意义[J]. 地质学报, 2021, 95(11): 3282-3300. doi: 10.3969/j.issn.0001-5717.2021.11.009LI Hai, LI Yongjun, XU Xueyi, et al. Petrogenesis and tectonic implications of alkali basalts in Kalamaili area, east Junggar, Xinjiang (NW China): constraints from petrology, geochronology and geochemistry[J]. Acta Geologica Sinica, 2021, 95(11): 3282-3300. doi: 10.3969/j.issn.0001-5717.2021.11.009 [18] 徐小涛, 邵龙义. 利用泥质岩化学蚀变指数分析物源区风化程度时的限制因素[J]. 古地理学报, 2018, 20(3): 515-522.XU Xiaotao, SHAO Longyi. Limiting factors in utilization of chemical indicator of alteration of mudstones to quantify the degree of weathering in provenance[J]. Journal of Palaeogeo-graphy, 2018, 20(3): 515-522. [19] BAI Yueyue, LIU Zhaojun, SUN Pingchang, et al. Rare earth and major element geochemistry of Eocene fine-grained sediments in oil shale- and coal-bearing layers of the Meihe Basin, Northeast China[J]. Journal of Asian Earth Sciences, 2015, 97: 89-101. doi: 10.1016/j.jseaes.2014.10.008 [20] 陈平, 林卫兵, 龚大建, 等. 贵州岑巩区块下寒武统变马冲组黑色页岩沉积地球化学特征及其沉积环境意义[J]. 地质科学, 2020, 55(4): 1025-1043.CHEN Ping, LIN Weibing, GONG Dajian, et al. Sedimentary geoche-mical characteristics and its sedimentary environment significance of the black shale of the Lower Cambrian Bianmachong Formation in the Cen'gong block, Guizhou Province[J]. Chinese Journal of Geology, 2020, 55(4): 1025-1043. [21] 王峰, 刘玄春, 邓秀芹, 等. 鄂尔多斯盆地纸坊组微量元素地球化学特征及沉积环境指示意义[J]. 沉积学报, 2017, 35(6): 1265-1273.WANG Feng, LIU Xuanchun, DENG Xiuqin, et al. Geochemical characteristics and environmental implications of trace elements of Zhifang Formation in Ordos Basin[J]. Acta Sedimentologica Sinica, 2017, 35(6): 1265-1273. [22] 李双应, 杨栋栋, 王松, 等. 南天山中段上石炭统碎屑岩岩石学、地球化学、重矿物和锆石年代学特征及其对物源区、构造演化的约束[J]. 地质学报, 2014, 88(2): 167-184.LI Shuangying, YANG Dongdong, WANG Song, et al. Characte-ristics of petrology, geochemistry, heavy minerals and isotope chronology of Upper Carboniferous detrital rocks in the middle segment of south Tianshan and constraints to the provenance and tectonic evolution[J]. Acta Geologica Sinica, 2014, 88(2): 167-184. [23] 吴育平, 刘成林, 龚宏伟, 等. 湘西下寒武统牛蹄塘组地球化学特征及其对沉积—构造环境的响应[J]. 地质与勘探, 2021, 57(5): 1065-1076.WU Yuping, LIU Chenglin, GONG Hongwei, et al. Geochemical characteristics and sedimentary tectonic setting of the Lower Cambrian Niutitang Formation in western Hunan Province[J]. Geology and Exploration, 2021, 57(5): 1065-1076. [24] XU Guangping, HANNAH J L, BINGEN B, et al. Digestion methods for trace element measurements in shales: paleoredox proxies examined[J]. Chemical Geology, 2012, 324-325: 132-147. [25] TRIBOVILLARD N, ALGEO T J, LYONS T, et al. Trace metals as paleoredox and paleoproductivity proxies: an update[J]. Chemical Geology, 2006, 232(1/2): 12-32. [26] 李青, 陈建洲, 王国仓, 等. 青藏高原北部东昆仑地区三叠系元素地球化学组成对古环境的指示意义[J]. 天然气地球科学, 2021, 32(11): 1714-1723.LI Qing, CHEN Jianzhou, WANG Guocang, et al. The element compositions of the Triassic shales into the east Kunlun area (northern Tibetan Plateau) and their paleoenvironmental implications[J]. Natural Gas Geoscience, 2021, 32(11): 1714-1723. [27] SCHEFFLER K, BUEHMANN D, SCHWARK L. Analysis of Late Palaeozoic glacial to postglacial sedimentary successions in South Africa by geochemical proxies—Response to climate evolution and sedimentary environment[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 240(1/2): 184-203. [28] TRIBOVILLARD N, ALGEO T J, BAUDIN F, et al. Analysis of marine environmental conditions based on molybdenum-uranium covariation: applications to Mesozoic paleoceanography[J]. Chemical Geology, 2012, 324-325: 46-58. [29] MACKENZIE A S, PATIENCE R L, MAXWELL J R, et al. Molecular parameters of maturation in the Toarcian shales, Paris Basin, France-Ⅰ. Changes in the configurations of acyclic isoprenoid alkanes, ste-ranes and triterpanes[J]. Geochimica et Cosmochimica Acta, 1980, 44(11): 1709-1721. [30] ROSER B P, KORSCH R J. Provenance signatures of sandstone-mudstone suites determined using discriminant function analysis of major-element data[J]. Chemical Geology, 1988, 67(1/2): 119-139. [31] 贾永斌, 于文修, 温汉捷, 等. 滇中盆地南缘富锂黏土岩地球化学特征及沉积环境初探[J]. 沉积学报, 2023, 41(1): 170-182.JIA Yongbin, YU Wenxiu, WEN Hanjie. Geochemical characte-ristics and sedimentary environment of Li-rich clay rocks at the southern margin of the central Yunnan Basin[J]. Acta Sedimentologica Sinica, 2023, 41(1): 170-182. [32] 曾秋楠, 张交东, 于炳松, 等. 太康隆起上古生界稀土元素地球化学特征及其地质意义[J]. 海洋地质与第四纪地质, 2020, 40(3): 132-143.ZENG Qiunan, ZHANG Jiaodong, YU Bingsong, et al. Geoche-mical characteristics of Upper Paleozoic mudstone in southern North China Basin and their geological significances[J]. Marine Geology Quaternary Geology, 2020, 40(3): 132-143. [33] 吴智平, 周瑶琪. 一种计算沉积速率的新方法: 宇宙尘埃特征元素法[J]. 沉积学报, 2000, 18(3): 395-399.WU Zhiping, ZHOU Yaoqi. Using the characteristic elements from meteoritic must in strata to calculate sedimentation rate[J]. Acta Sedimentologica Sinica, 2000, 18(3): 395-399. [34] ZHANG Bowen, CHEN Chuan, GONG Xiaoping, et al. The Kamusite A2-type granites in the Karamaili tectonic belt, Xinjiang (NW China): tracing staged postcollisional delamination in the eastern Junggar[J]. Geological Magazine, 2021, 158(4): 723-748. [35] LI Di, HE Dengfa, SANTOSH M, et al. Tectonic framework of the northern Junggar Basin part Ⅰ: the eastern Luliang Uplift and its link with the East Junggar terrane[J]. Gondwana Research, 2015, 27(3): 1089-1109. [36] HORTON B K, YIN An, SPURLIN M S, et al. Paleocene-Eocene syncontractional sedimentation in narrow, lacustrine-dominated basins of east-central Tibet[J]. GSA Bulletin, 2002, 114(7): 771-786. [37] LYONS T W, WERNE J P, HOLLANDER D J, et al. Contrasting sulfur geochemistry and Fe/Al and Mo/Al ratios across the last oxic-to-anoxic transition in the Cariaco Basin, Venezuela[J]. Chemical Geology, 2003, 195(1/4): 131-157.