留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

鄂尔多斯盆地西缘奥陶系乌拉力克组海相页岩气储层甜点分类评价

张琳琳 王孔杰 赖枫鹏 郭伟 苗丽丽

张琳琳, 王孔杰, 赖枫鹏, 郭伟, 苗丽丽. 鄂尔多斯盆地西缘奥陶系乌拉力克组海相页岩气储层甜点分类评价[J]. 石油实验地质, 2024, 46(1): 191-201. doi: 10.11781/sysydz202401191
引用本文: 张琳琳, 王孔杰, 赖枫鹏, 郭伟, 苗丽丽. 鄂尔多斯盆地西缘奥陶系乌拉力克组海相页岩气储层甜点分类评价[J]. 石油实验地质, 2024, 46(1): 191-201. doi: 10.11781/sysydz202401191
ZHANG Linlin, WANG Kongjie, LAI Fengpeng, GUO Wei, MIAO Lili. Classification and evaluation of sweet spots of marine shale gas reservoir in Ordovician Wulalike Formation on the westen margin of Ordos Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2024, 46(1): 191-201. doi: 10.11781/sysydz202401191
Citation: ZHANG Linlin, WANG Kongjie, LAI Fengpeng, GUO Wei, MIAO Lili. Classification and evaluation of sweet spots of marine shale gas reservoir in Ordovician Wulalike Formation on the westen margin of Ordos Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2024, 46(1): 191-201. doi: 10.11781/sysydz202401191

鄂尔多斯盆地西缘奥陶系乌拉力克组海相页岩气储层甜点分类评价

doi: 10.11781/sysydz202401191
基金项目: 

国家自然科学基金项目“页岩油藏CO2复合压裂渗吸—渗流机理及排采制度优化研究” 52174037

详细信息
    作者简介:

    张琳琳(1999-), 女, 硕士生, 从事油气田开发理论与方法研究。E-mail: zhangllinn@163.com

    通讯作者:

    赖枫鹏(1981-), 男, 教授, 从事非常规油气、油气田开发理论与方法研究。E-mail: laifengpeng@163.com

  • 中图分类号: TE132.2

Classification and evaluation of sweet spots of marine shale gas reservoir in Ordovician Wulalike Formation on the westen margin of Ordos Basin

  • 摘要: 甜点评价对页岩气藏高效勘探开发具有重要意义。以鄂尔多斯盆地西缘奥陶系乌拉力克组页岩储层为研究对象,通过岩石薄片分析、X射线衍射、SEM扫描电镜、低温氮气吸附、等温吸附、总有机碳(TOC)含量、有机质镜质体反射率(Ro)测试和三轴岩石力学测试8个实验,得到目标区岩石类型为灰褐色泥页岩,孔径集中分布在2~4 nm和35~61 nm,主要发育粒间孔、黏土矿物层间孔和粒内孔;总有机碳含量平均为1.01%,Ro值平均为1.75%,脆性指数平均为47.8%。通过分析不同因素对页岩储层甜点区评选及评价的影响,认为硅质矿物含量、黏土矿物含量、孔比表面积、总有机碳含量和Ro值对储层的吸附性能起决定作用,孔径大小和孔隙类型数量控制储层的储集性能,脆性矿物含量和岩石力学参数影响储层的可压性。根据地质甜点评价的吸附性能和储集性能两个指标以及工程甜点的可压性指标,完成了不同特征对应的参数指标细分类,初步建立了鄂尔多斯盆地西缘奥陶系乌拉力克组海相页岩气储层3个等级的地质甜点和可压性甜点的分类评价方案,结果表明目标区各特征参数均达到Ⅱ级标准,可以作为页岩气开发甜点区。

     

  • 图  1  鄂尔多斯盆地构造区划及研究区位置[27]

    Figure  1.  Tectonic units of Ordos Basin and location of study area

    图  2  光学显微镜下的矿物分布

    a.R3样品,黄铁矿散状分布;b.R4样品,细小的石英颗粒、铁白云石混杂分布;c.R1样品,有机质条带定向排列;d.R2样品,零星分布的铁白云石颗粒和石英颗粒。

    Figure  2.  Mineral distribution under light microscope

    图  3  X射线衍射实验矿物含量

    Figure  3.  Mineral contents obtained by X-ray diffraction experiment

    图  4  X射线衍射实验黏土矿物含量

    Figure  4.  Clay mineral contents obtained by X-ray diffraction experiment

    图  5  样品扫描电镜实验结果

    a.R1样品,发育粒间孔;b.R2样品,发育黏土矿物层间孔;c.R1样品,黄铁矿内的晶间孔;d.R4样品,发育黏土矿物层间孔;e.R5样品,发育粒间孔;f.R6样品,发育黄铁矿及粒内孔。

    Figure  5.  SEM results of the samples

    图  6  微孔孔径分布

    Figure  6.  Pore size distribution of micropores

    图  7  样品等温吸附曲线

    Figure  7.  Isothermal adsorption curves of samples

    图  8  泥页岩有机质类型频率分布

    Figure  8.  Histogram of frequency distribution of mud shale organic matter types

    表  1  实验样品孔渗数据

    Table  1.   Pore and permeability data of experimental samples

    样品编号 深度/m 孔隙度/% 渗透率/10-3 μm2
    R1 2 861.90 2.11 0.062
    R2 2 861.90 2.47 0.085
    R3 2 864.43 1.64 0.077
    R4 2 864.43 1.73 0.910
    R5 2 864.90 1.97 0.590
    R6 2 864.90 2.08 0.053
    下载: 导出CSV

    表  2  低温氮气吸附测试孔径解释结果

    Table  2.   Pore size interpretation results of low temperature nitrogen adsorption test

    样品编号 BET BJH吸附 BJH脱附
    比表面积/ (cm2/g) 平均孔径/ nm 平均孔径/ nm 平均孔径/ nm
    R1 13.46 12.99 13.08 12.13
    R2 15.37 13.12 13.64 12.14
    R3 19.66 7.78 8.90 7.43
    R4 18.46 8.31 9.63 7.94
    R5 17.19 9.97 10.08 9.55
    R6 16.83 10.33 11.70 10.25
    下载: 导出CSV

    表  3  样品总有机碳含量测定和等温吸附实验数据

    Table  3.   TOC content determination and isothermal adsorption test data

    样品编号 总有机碳含量/% 等温吸附实验数据
    最大气体绝对吸附量/(m3/t) 兰氏体积/ (m3/t) 兰氏压力/ MPa 吸附相密度/ (g/mL)
    R1 0.85 0.74 0.98 15.38 0.29
    R2 0.91 0.93 1.04 13.44 0.25
    R3 1.14 1.19 1.26 14.57 0.27
    R4 1.09 1.18 1.12 11.21 0.27
    R5 1.03 1.13 1.07 12.33 0.26
    R6 1.01 1.07 1.11 14.08 0.28
    下载: 导出CSV

    表  4  样品三轴应力实验结果

    Table  4.   Triaxial stress test results of the samples

    参数 样品编号
    R1 R2 R3 R4 R5 R6
    杨氏模量/GPa 39.6 42.9 43.8 41.5 40.8 40.2
    泊松比 0.18 0.23 0.24 0.23 0.22 0.19
    脆性指数/% 56.36 47.99 46.43 47.30 48.95 54.66
    最大水平主应力/MPa 81.72 79.77 79.58 80.12 80.67 81.22
    最小水平主应力/MPa 75.60 73.59 73.21 74.30 74.88 75.21
    水平应力差/MPa 6.12 6.18 6.37 5.82 5.79 6.01
    最小水平主应力梯/(MPa/m) 0.026 4 0.025 7 0.025 6 0.025 9 0.026 1 0.026 3
    下载: 导出CSV

    表  5  鄂尔多斯盆地海相页岩气储层地质甜点分类评价

    Table  5.   Classification and evaluation of geological sweet spots of marine shale gas reservoir in Ordos Basin

    参数 储层分类
    Ⅰ级 Ⅱ级 Ⅲ级
    吸附性能 硅质矿物含量/% >45 35~45 <35
    黏土矿物含量/% >45 35~45 <35
    孔比表面积/(cm2/g) >14.1 5.2~14.1 <5.2
    总有机碳含量/% >0.7 0.5~0.7 <0.5
    Ro/% 2.6~3.5 0.7~2.6 <0.7或>3.5
    储集性能 孔径大小/nm >50 2~50 <2
    孔隙类型数量 发育的孔隙类型多于3种 至少发育一种孔径在介孔及介孔以上的孔隙 发育的孔隙孔径均以微孔为主
    下载: 导出CSV

    表  6  鄂尔多斯盆地海相页岩气储层可压性甜点分类评价

    Table  6.   Classification and evaluation of compressibility sweet spots of marine shale gas reservoir in Ordos Basin

    参数 储层分类
    Ⅰ级 Ⅱ级 Ⅲ级
    脆性指数/% >50 35~50 <35
    地应力差异系数 0~0.3 0.3~0.5 >0.5
    下载: 导出CSV
  • [1] 李娟, 陈雷, 计玉冰, 等. 浅层海相页岩含气性特征及其主控因素: 以昭通太阳区块下志留统龙马溪组为例[J]. 石油实验地质, 2023, 45(2): 296-306. doi: 10.11781/sysydz202302296

    LI Juan, CHEN Lei, JI Yubing, et al. Gas-bearing characteristics and major controlling factors of shallow marine shale: a case study of the Lower Silurian Longmaxi Formation in Taiyang block of Zhaotong area[J]. Petroleum Geology & Experiment, 2023, 45(2): 296-306. doi: 10.11781/sysydz202302296
    [2] 杨振恒, 陶国亮, 鲍云杰, 等. 南方海相深层页岩气储集空间差异化发育及保持机理探讨[J]. 石油实验地质, 2022, 44(5): 845-853. doi: 10.11781/sysydz202205845

    YANG Zhenheng, TAO Guoliang, BAO Yunjie, et al. Differential development and maintenance mechanism of reservoir space for marine shale gas in South China's deep strata[J]. Petroleum Geology & Experiment, 2022, 44(5): 845-853. doi: 10.11781/sysydz202205845
    [3] 薛冈, 熊炜, 张培先. 常压页岩气藏成因分析与有效开发: 以四川盆地东南缘地区五峰组—龙马溪组页岩气藏为例[J]. 油气藏评价与开发, 2023, 13(5): 668-675.

    XUE Gang, XIONG Wei, ZHANG Peixian. Genesis analysis and effective development of normal pressure shale gas reservoir: a case of Wufeng-Longmaxi shale gas reservoir in southeast margin of Sichuan Basin[J]. Reservoir Evaluation and Development, 2023, 13(5): 668-675.
    [4] 张驰, 周彤, 肖佳林, 等. 涪陵页岩气田加密井压裂技术的实践与认识[J]. 断块油气田, 2022, 29(6): 775-779.

    ZHANG Chi, ZHOU Tong, XIAO Jialin, et al. Practice and know-ledge of fracturing technology for infill wells in Fuling shale gas field[J]. Fault-Block Oil and Gas Field, 2022, 29(6): 775-779.
    [5] 韩珊, 车明光, 苏旺, 等. 四川盆地威远区块页岩气单井产量预测方法及应用[J]. 特种油气藏, 2022, 29(6): 141-149. doi: 10.3969/j.issn.1006-6535.2022.06.018

    HAN Shan, CHE Mingguang, SU Wang, et al. Prediction method and application of single shale gas well production in Weiyuan block Sichuan Basin[J]. Special Oil & Gas Reserviors, 2022, 29(6): 141-149. doi: 10.3969/j.issn.1006-6535.2022.06.018
    [6] 刘伟新, 卢龙飞, 叶德燎, 等. 川东南地区奥陶系五峰组—志留系龙马溪组页岩气异常压力封存箱剖析与形成机制[J]. 石油实验地质, 2022, 44(5): 804-814. doi: 10.11781/sysydz202205804

    LIU Weixin, LU Longfei, YE Deliao, et al. Significance and formation mechanism of abnormally pressured compartments of shale gas in the Ordovician Wufeng-Silurian Longmaxi formations, southeastern Sichuan Basin[J]. Petroleum Geology & Experiment, 2022, 44(5): 804-814. doi: 10.11781/sysydz202205804
    [7] 聂舟, 马诗杰, 伍秋姿, 等. 长宁地区海相页岩天然裂缝发育特征及其对含气性的影响[J]. 断块油气田, 2022, 29(5): 591-597.

    NIE Zhou, MA Shijie, WU Qiuzi, et al. Development characteristics of natural fractures in marine shale in Changning area and their influence on gas-bearing properties[J]. Fault-Block Oil and Gas Field, 2022, 29(5): 591-597.
    [8] 李鹏飞. 四川盆地页岩气立体开发缝控压裂技术应用[J]. 特种油气藏, 2023, 30(2): 168-174. doi: 10.3969/j.issn.1006-6535.2023.02.024

    LI Pengfei. Application of fracture-controlled fracturing technology in tridimensional development of shale gas in Sichuan Basin[J]. Special Oil & Gas Reservoirs, 2023, 30(2): 168-174. doi: 10.3969/j.issn.1006-6535.2023.02.024
    [9] 廖东良, 路保平, 陈延军. 页岩气地质甜点评价方法: 以四川盆地焦石坝页岩气田为例[J]. 石油学报, 2019, 40(2): 144-151.

    LIAO Dongliang, LU Baoping, CHEN Yanjun. An evaluation method of geological sweet spots of shale gas reservoir: a case study of the Jiaoshiba Gas Field, Sichuan Basin[J]. Acta Petrolei Sinica, 2019, 40(2): 144-151.
    [10] 曾义金. 深层页岩气开发工程技术进展[J]. 石油科学通报, 2019, 4(3): 233-241.

    ZENG Yijin. Progress in engineering technologies for the deve-lopment of deep shale gas[J]. Petroleum Science Bulletin, 2019, 4(3): 233-241.
    [11] 林魂, 孙新毅, 宋西翔, 等. 基于改进人工神经网络的页岩气井产量预测模型研究[J]. 油气藏评价与开发, 2023, 13(4): 467-473.

    LIN Hun, SUN Xinyi, SONG Xixiang, et al. A model for shale gas well production prediction based on improved artificial neural network[J]. Reservoir Evaluation and Development, 2023, 13(4): 467-473.
    [12] 房大志, 刘洪, 庞进, 等. 考虑吸附气影响的页岩气井三项式产能计算方法[J]. 特种油气藏, 2023, 30(3): 137-142. doi: 10.3969/j.issn.1006-6535.2023.03.017

    FANG Dazhi, LIU Hong, PANG Jin, et al. A trinomial deliverability calculation method for shale gas wells considering the effect of adsorbed gas[J]. Special Oil & Gas Reservoirs, 2023, 30(3): 137-142. doi: 10.3969/j.issn.1006-6535.2023.03.017
    [13] 李东晖, 田玲钰, 聂海宽, 等. 基于模糊层次分析法的页岩气井产能影响因素分析及综合评价模型: 以四川盆地焦石坝页岩气田为例[J]. 油气藏评价与开发, 2022, 12(3): 417-428.

    LI Donghui, TIAN Lingyu, NIE Haikuan, et al. Factor analysis and comprehensive evaluation model of shale gas well productivity based on fuzzy analytic hierarchy process: taking Jiaoshiba shale gas field in Sichuan Basin as an example[J]. Reservoir Evaluation and Development, 2022, 12(3): 417-428.
    [14] TINNIN B, MCCHESNEY MD, BELLO H. Multi-source data integration: Eagle Ford shale sweet spot mapping[C]//Unconventional Resources Technology Conference. San Antonio, Texas, USA: SEG, 2015: 624-631.
    [15] 黄进, 吴雷泽, 游园, 等. 涪陵页岩气水平井工程甜点评价与应用[J]. 石油钻探技术, 2016, 44(3): 16-20.

    HUANG Jin, WU Leize, YOU Yuan, et al. The evaluation and application of engineering sweet spots in a horizontal well in the Fuling shale gas reservoir[J]. Petroleum Drilling Techniques, 2016, 44(3): 16-20.
    [16] 王志伟, 赵永刚, 阴钰毅, 等. 页岩气"甜点"地震预测研究: 以鄂尔多斯盆地西缘中上奥陶统为例[J]. 石油地质与工程, 2020, 34(1): 37-41. doi: 10.3969/j.issn.1673-8217.2020.01.008

    WANG Zhiwei, ZHAO Yonggang, YIN Yuyi, et al. Seismic prediction of "sweet spots" for shale gas[J]. Petroleum Geology and Engineering, 2020, 34(1): 37-41. doi: 10.3969/j.issn.1673-8217.2020.01.008
    [17] 张少龙, 闫建平, 石学文, 等. 深层页岩气甜点分类的地质—工程评价指标体系及应用: 以四川盆地LZ地区五峰组—龙马溪组为例[J]. 中南大学学报(自然科学版), 2022, 53(9): 3666-3680.

    ZHANG Shaolong, YAN Jianping, SHI Xuewen, et al. Geological and engineering evaluation index system for deep shale gas sweet spots classification and its application: a case of Wufeng-Longmaxi formations in LZ area, Sichuan Basin[J]. Journal of Central South University(Science and Technology), 2022, 53(9): 3666-3680.
    [18] 程建, 周小进, 刘超英, 等. 中西部大盆地重点勘探领域战略选区研究[J]. 石油实验地质, 2023, 45(2): 229-237. doi: 10.11781/sysydz202302229

    CHENG Jian, ZHOU Xiaojin, LIU Chaoying, et al. Strategic area selection and key exploration fields in central and western large basins[J]. Petroleum Geology & Experiment, 2023, 45(2): 229-237. doi: 10.11781/sysydz202302229
    [19] NAIDES CH. Petrophysical analysis method to identify "sweet spots" in tight gas reservoirs: case study from Punta Rosada Formation in Neuquen Basin, Argentina[C]//SPE Latin American and Caribbean Petroleum Engineering Conference. Lima, Peru: Society of Petroleum Engineers, 2010: 1-16.
    [20] 周德华, 焦方正. 页岩气"甜点"评价与预测: 以四川盆地建南地区侏罗系为例[J]. 石油实验地质, 2012, 34(2): 109-114. doi: 10.3969/j.issn.1001-6112.2012.02.001

    ZHOU Dehua, JIAO Fangzheng. Evaluation and prediction of shale gas "sweet spots": a case study in Jurassic of Jiannan area, Sichuan Basin[J]. Petroleum Geology & Experiment, 2012, 34(2): 109-114. doi: 10.3969/j.issn.1001-6112.2012.02.001
    [21] 陈勇. 页岩气地质甜点敏感参数优选及应用[J]. 石化技术, 2020, 27(1): 65-66.

    CHEN Yong. Optimization and application of sensitive parametersfor shale gas geological desserts[J]. Petrochemical Industry Technology, 2020, 27(1): 65-66.
    [22] 王红岩, 刘钰洋, 张晓伟, 等. 基于层次分析法的页岩气储层地质工程一体化甜点评价: 以昭通页岩气示范区太阳页岩气田海坝地区X井区为例[J]. 地球科学, 2023, 48(1): 92-109.

    WANG Hongyan, LIU Yuyang, ZHANG Xiaowei, et al. Geology-engineering intergration shale gas sweet spot evaluation based on analytic hierarchy process: application to Zhaotong shale gas demonstration district, Taiyang Shale Gas Field, Haiba area, X well region[J]. Earth Sciences, 2023, 48(1): 92-109.
    [23] 何希鹏. 四川盆地东部页岩气甜点评价体系与富集高产影响因素[J]. 天然气工业, 2021, 41(1): 59-71.

    HE Xipeng. Sweet spot evaluation system and enrichment and high yield influential factors of shale gas in Nanchuan area of eastern Sichuan Basin[J]. Natural Gas Industry, 2021, 41(1): 59-71.
    [24] 秦明阳, 郭建华, 黄俨然, 等. 四川盆地外复杂地质条件区海相页岩气"甜点区"优选: 以湘西北地区古生界为例[J]. 中南大学学报(自然科学版), 2019, 50(3): 596-606.

    QIN Mingyang, GUO Jianhua, HUANG Yanran, et al. "Sweet spots zone" optimization of marine shale gas in complex geolo-gical conditions area out of Sichuan Basin: a case of Paleozoic in northwestern Hunan, China[J]. Journal of Central South University(Science and Technology), 2019, 50(3): 596-606.
    [25] 梁兴, 王高成, 徐政语, 等. 中国南方海相复杂山地页岩气储层甜点综合评价技术: 以昭通国家级页岩气示范区为例[J]. 天然气工业, 2016, 36(1): 33-42.

    LIANG Xing, WANG Gaocheng, XU Zhengyu, et al. Comprehensive evaluation technology for shale gas sweet spots in the complex marine mountains, South China: a case study from Zhaotong national shale gas demonstration zone[J]. Natural Gas Industry, 2016, 36(1): 33-42.
    [26] 刘双莲. 页岩气"双甜点"参数测井评价方法[J]. 石油与天然气地质, 2022, 43(4): 1005-1012.

    LIU Shuanglian. Logging evaluation of "double sweet spot" in shale gas reservoirs[J]. Oil and Gas Geology, 2022, 43(4): 1005-1012.
    [27] 付锁堂, 付金华, 席胜利, 等. 鄂尔多斯盆地奥陶系海相页岩气地质特征及勘探前景[J]. 中国石油勘探, 2021, 26(2): 33-44.

    FU Suotang, FU Jinhua, XI Shengli, et al. Geological characteristics of Ordovician marine shale gas in the Ordos Basin and its prospects[J]. China Petroleum Exploration, 2021, 26(2): 33-44.
    [28] 张艳妮, 李荣西, 席胜利, 等. 鄂尔多斯盆地西缘奥陶系乌拉力克组页岩沉积环境及有机质富集机制[J]. 中南大学学报(自然科学版), 2022, 53(9): 3401-3417.

    ZHANG Yanni, LI Rongxi, XI Shengli, et al. Sedimentary environments and organic matter enrichment mechanism of Ordovician Wulalike Formation shale, western Ordos Basin[J]. Journal of Central South University(Science and Technology), 2022, 53(9): 3401-3417.
    [29] 黄军平, 黄正良, 刘立航, 等. 鄂尔多斯盆地乌拉力克组页岩储层孔径表征及其主控因素[J]. 中南大学学报(自然科学版), 2022, 53(9): 3418-3433.

    HUANG Junping, HUANG Zhengliang, LIU Lihang, et al. Pore size characterization and their mainly controlling factors in Wulalike Formation shale, Ordas Basin[J]. Journal of Central South University (Science and Technology), 2022, 53(9): 3418-3433.
    [30] 国家能源局. 岩石薄片鉴定: SY/T 5368—2016[S]. 北京: 石油工业出版社, 2016.

    National Energy Administration. Rock section identification: SY/T 5368-2016[S]. Beijing: Petroleum Industry Press, 2016.
    [31] 国家能源局. 沉积岩中黏土矿物和常见非黏土矿物X射线衍射分析方法: SY/T 5163—2018[S]. 北京: 石油工业出版社, 2018.

    National Energy Administration. X-ray diffraction analysis of clay minerals and common non-clay minerals in sedimentary rocks: SY/T 5163-2018[S]. Beijing: Petroleum Industry Press, 2018.
    [32] 国家能源局. 岩石样品扫描电子显微镜分析方法: SY/T 5162—2021[S]. 北京: 石油工业出版社, 2021.

    National Energy Administration. Scanning electron microscopy method for rock sample analysis: SY/T 5162-2021[S]. Beijing: Petroleum Industry Press, 2021.
    [33] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 气体吸附BET法测定固态物质比表面积: GB/T 19587—2017[S]. 北京: 中国标准出版社, 2017.

    General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. Determination of the specific surface area of solids by gas adsorption using the BET method: GB/T 19587-2017[S]. Beijing: Standards Press of China, 2017.
    [34] 国家市场监督管理总局, 国家标准化管理委员会. 沉积岩中总有机碳测定: GB/T 19145—2022[S]. 北京: 中国标准出版社, 2022.

    State Administration for Market Regulation, Standardization Administration of the People's Republic of China. Determination for total organic carbon in sedimentary rock: GB/T 19145-2022[S]. Beijing: Standards Press of China, 2022.
    [35] 国家市场监督管理总局, 国家标准化管理委员会. 页岩甲烷等温吸附测定方法第2部分: 重量法: GB/T 35210.2—2020[S]. 北京: 中国标准出版社, 2020.

    State Administration for Market Regulation, Standardization Administration of the People's Republic of China. Determination methods of methane isothermal adsorption of shale—part 2: gravimetric method: GB/T 35210.2-2020[S]. Beijing: Standards Press of China, 2020.
    [36] 国家能源局. 沉积岩中镜质体反射率测定方法: SY/T 5124—2012[S]. 北京: 石油工业出版社, 2012.

    National Energy Administration. Method for determination of vitrinite reflectance in sedimentary rocks: SY/T 5124-2012[S]. Beijing: Petroleum Industry Press, 2012.
    [37] 中华人民共和国国土资源部. 岩石物理力学性质试验规程第20部分: 岩石三轴压缩强度试验: DZ/T 0276.20—2015[S]. 北京: 中国标准出版社, 2015.

    Ministry of Land and Resources of the People's Republic of China. Regulation for testing the physical and mechanical properties of rock—part 20: test for determining the strength of rock in triaxial compression: DZ/T 0276.20-2015[S]. Beijing: Standards Press of China, 2015.
    [38] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 海相页岩气勘探目标优选方法: GB/T 35110—2017[S]. 北京: 中国标准出版社, 2017.

    General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. Target optimization methods for marine shale gas exploration: GB/T 35110-2017[S]. Beijing: Standards Press of China, 2017.
    [39] 吉利明, 邱军利, 宋之光, 等. 黏土岩孔隙内表面积对甲烷吸附能力的影响[J]. 地球化学, 2014, 43(3): 238-244.

    JI Liming, QIU Junli, SONG Zhiguang, et al. Impact of internal surface area of pores in clay rocks on their adsorption capacity of methane[J]. Geochimica, 2014, 43(3): 238-244.
    [40] 翟常博, 邓模, 曹清古, 等. 川东地区上二叠统龙潭组泥页岩基本特征及页岩气勘探潜力[J]. 石油实验地质, 2021, 43(6): 921-932. doi: 10.11781/sysydz202106921

    ZHAI Changbo, DENG Mo, CAO Qinggu, et al. Basic characte-ristics and exploration potential of shale gas in Longtan Formation of Upper Permianin eastern Sichuan Basin[J]. Petroleum Geology & Experiment, 2021, 43(6): 921-932. doi: 10.11781/sysydz202106921
    [41] 中华人民共和国国土资源部. 页岩气资源/储量计算与评价技术规范: DZ/T 0254-2014[S]. 北京: 中国标准出版社, 2014.

    Ministry of Land and Resources of the People's Republic of China. Technical specification for calculation and evaluation of shale gas resources/reserves: DZ/T 0254-2014[S]. Beijing: Standards Press of China, 2014.
    [42] 燕继红, 李启桂, 朱祥. 四川盆地及周缘下寒武统页岩气成藏主控因素与勘探方向[J]. 石油实验地质, 2016, 38(4): 445-452. doi: 10.11781/sysydz201604445

    YAN Jihong, LI Qigui, ZHU Xiang. Main factors controlling shale gas accumulation and exploration targets in the Lower Cambrian, Sichuan Basin and its periphery[J]. Petroleum Geology & Experiment, 2016, 38(4): 445-452. doi: 10.11781/sysydz201604445
    [43] 葛勋, 郭彤楼, 黎茂稳, 等. 深层页岩储层"工程甜点"评价与优选: 以川南永川—丁山地区为例[J]. 石油实验地质, 2023, 45(2): 210-221. doi: 10.11781/sysydz202302210

    GE Xun, GUO Tonglou, LI Maowen, et al. Evaluation and optimization of "engineering sweet spot" in deep shale reservoir: case study on Yongchuan and Dingshan areas in southern Sichuan[J]. Petroleum Geology & Experiment, 2023, 45(2): 210-221. doi: 10.11781/sysydz202302210
    [44] 张成林, 杨学锋, 赵圣贤, 等. 川南自贡区块页岩储层最佳靶体优选[J]. 油气藏评价与开发, 2022, 12(3): 496-505.

    ZHANG Chenglin, YANG Xuefeng, ZHAO Shengxian, et al. Target position optimization for shale reservoirs in Zigong Block of southern Sichuan Basin[J]. Reservoir Evaluation and Development, 2022, 12(3): 496-505.
    [45] 沈骋, 范宇, 曾波, 等. 渝西区块页岩气储层改造优化对策与适应性分析[J]. 油气地质与采收率, 2022, 29(2): 131-139.

    SHEN Cheng, FAN Yu, ZENG Bo, et al. Optimization strategies and adaptability analysis of shale gas reservoir stimulation in western Chongqing Block[J]. Petroleum Geology and Recovery Efficiency, 2022, 29(2): 131-139.
    [46] 席胜利, 莫午零, 刘新社, 等. 鄂尔多斯盆地西缘奥陶系乌拉力克组页岩气勘探潜力: 以忠平1井为例[J]. 天然气地球科学, 2021, 32(8): 1235-1246.

    XI Shengli, MO Wuling, LIU Xinshe, et al. Shale gas exploration potential of Ordovician Wulalike Formation in the western margin of Ordos Basin: case study of well Zhongping 1[J]. Natural Gas Geoscience, 2021, 32(8): 1235-1246.
    [47] 王鹏, 纪友亮, 潘仁芳, 等. 页岩脆性的综合评价方法: 以四川盆地W区下志留统龙马溪组为例[J]. 天然气工业, 2013, 33(12): 48-53.

    WANG Peng, JI Youliang, PAN Renfang, et al. A comprehensive evaluation methodology of shale brittleness: a case study from the Lower Silurian Longmaxi Fm in block W, Sichuan Basin[J]. Natural Gas Industry, 2013, 33(12): 48-53.
  • 加载中
图(8) / 表(6)
计量
  • 文章访问数:  506
  • HTML全文浏览量:  257
  • PDF下载量:  50
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-01-15
  • 修回日期:  2023-11-20
  • 刊出日期:  2024-01-28

目录

    /

    返回文章
    返回