Development characteristics of Ordovician ancient subterranean river system in thrust anticline area of Tahe Oilfield, Tarim Basin
-
摘要: 塔里木盆地塔河油田古暗河系统研究尚处于初始阶段,主要从暗河的深浅分布、结构样式等特征开展暗河洞穴的划分,较少从构造、断裂、古地貌、地下水位等地质方面综合分析复杂暗河系统的空间发育规律,致使暗河的主次从属关系、空间叠置样式、原始连通关系难以厘清,从而制约了塔河油田开发后期的综合治理研究。为了明确塔河油田主体区逆冲背斜区奥陶系古暗河系统发育特征,利用构造断裂解析、古地貌恢复、地震属性刻画、纵断剖面解读等方法进行了S67井区古暗河的类型识别、系统划分和地质成因研究,尤其首次识别并剖析了潜流回流暗河。结果表明,S67井区处于塔河主体区岩溶台原南缘的低地势区,发育幅差较小的峰丛洼地、溶丘洼地,地表水系下切深度较浅;逆冲背斜为低角度逆冲推覆构造样式,逆冲背斜之上的网格状断裂为多层状暗河系统提供有利溶蚀通道。研究区奥陶系发育相对独立的、树枝状结构的地下水位暗河系统和潜流带暗河系统,地下水位型暗河可分为主干型、支流型和废弃型,潜流回流暗河可分为上升型、对称型。控制逆冲背斜区古暗河发育的主要因素有古地貌、地下水位、逆冲背斜构造和次级断裂网络等。Abstract: The study of the ancient subterranean river system in the Tahe Oilfield in the Tarim Basin is still in its initial stage. Subterranean river caves are mainly classified based on the characteristics of the depth distribution and structural patterns of the subterranean rivers. However, there is a lack of comprehensive analysis regarding the spatial development patterns of complex subterranean river systems from geological perspectives such as structure, fault, paleogeomorphology, and water table. This hinders the understanding of primary and secondary relationships of subterranean rivers, spatial superposition patterns, and original connectivity relationships, thereby impeding comprehensive management research in the later stages of Tahe Oilfield development. To address this gap, an investigation was carried out in the S67 well block to clarify the developmental characteristics of the Ordovician ancient subterranean river system in the thrust anticline area of the main Tahe Oilfield. The study utilized methods like structural fault analysis, paleogeomorphology restoration, seismic attribute characterization, and vertical section interpretation to identify river types, classify systems, and examine geological origins. Noteworthy findings include the identification and analysis of a phreatic loop river for the first time. Results show that the S67 well block is located in a low-lying region at the southern edge of the karst platform within the main Tahe Oilfield area. This region features peak cluster depressions and karst hill depressions with minimal amplitude differences and shallow incision depths of surface water systems. The low-angle thrust structural style of the thrust anticline, combined with a network of faults, provides favorable dissolution channels for the multi-layered subterranean river system. In the study area, the Ordovician period is characterized by the emergence of distinct water-table subterranean river systems and phreatic loop river systems, all of which display a dendritic structure. The water-table subterranean rivers are divided into main, branch, and abandoned types, while the phreatic loop rivers are classified as ascending or symmetrical. The formation of ancient subterranean rivers in the thrust anticline area is primarily influenced by factors such as paleogeomorphology, water table levels, thrust anticline structure, and secondary fault networks.
-
Key words:
- strike-slip fault /
- thrust fault /
- paleogeomorphology /
- subterranean river /
- phreatic loop /
- water table /
- Ordovician /
- Tahe Oilfield
-
图 1 潜流回路洞道横截面示意及沉积物充填模式
据参考文献[3]修改。
Figure 1. Schematic cross-section of a phreatic loop cave and sediment filling mode
图 4 塔里木盆地塔河油田S67井区逆冲断裂横切地震剖面
剖面位置见图 3c。
Figure 4. Transverse seismic profile of thrust fault in S67 well block of Tahe Oilfield, Tarim Basin
图 6 塔里木盆地塔河油田S67井区地下水位暗河地震响应特征
a.主干地下水位暗河标定地震剖面;b.主干地下水位暗河标定波阻抗剖面;c.支流地下水位暗河标定地震剖面;d.支流地下水位暗河标定波阻抗剖面;e.废弃地下水位暗河标定地震剖面;f.废弃地下水位暗河标定波阻抗剖面。剖面位置见图 5a。
Figure 6. Seismic response characteristics of water-table subterranean river of S67 well block of Tahe Oilfield, Tarim Basin
图 7 塔里木盆地塔河油田S67井区潜流回路暗河地震响应特征
a.上升型潜流回流暗河(北支)标定地震剖面;b.上升型潜流回流暗河(北支)标定波阻抗剖面;c.上升型潜流回流暗河(南支)标定地震剖面;d.上升型潜流回流暗河(南支)标定波阻抗剖面;e.对称型潜流回流暗河标定地震剖面;f.对称型潜流回流暗河标定波阻抗剖面。剖面位置见图 5b。
Figure 7. Seismic response characteristics of phreatic loop subterranean river in S67 well block of Tahe Oilfield, Tarim Basin
-
[1] 张任. 岩溶洞穴分类新思考[J]. 中国岩溶, 1994(3): 229-236. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR403.007.htmZHANG Ren. New consideration on classification of karst caves[J]. Carsologica Sinica, 1994(3): 229-236. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR403.007.htm [2] MYLROIE J E. Hydrologic classification of caves and karst[M]//LAFLEUR R G. Groundwater as a geomorphic agent. London: Routledge, 1984: 157-172. [3] FARRANT A R, SMART P L. Role of sediment in speleogenesis; sedimentation and paragenesis[J]. Geomorphology, 2011, 134(1/2): 79-93. [4] 朱学稳. 桂林岩溶地貌与洞穴研究[R]. 桂林: 地科院岩溶所, 1988.ZHU Xuewen. Study on karst landform and caves in Guilin[R]. Guilin: Geological Publishing House, 1988. [5] 于聪灵, 蔡忠贤, 杨海军, 等. 基于BP神经网络预测轮古油田奥陶系碳酸盐岩油藏洞穴充填程度[J]. 新疆石油地质, 2018, 39(5): 614-621. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD201805019.htmYU Congling, CAI Zhongxian, YANG Haijun, et al. Prediction of cave filling degree in Ordovician carbonate reservoirs based on BP neural network in Lungu Oilfield, Tarim Basin[J]. Xinjiang Petroleum Geology, 2018, 39(5): 614-621. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD201805019.htm [6] KAUFMANN G, ROMANOV D. Cave development in the Swabian Alb, south-west Germany: a numerical perspective[J]. Journal of Hydrology, 2008, 349(3/4): 302-317. [7] 鲁新便, 杨敏, 汪彦, 等. 塔里木盆地北部"层控"与"断控"型油藏特征: 以塔河油田奥陶系油藏为例[J]. 石油实验地质, 2018, 40(4): 461-469. doi: 10.11781/sysydz201804461LU Xinbian, YANG Min, WANG Yan, et al. Geological characteristics of 'strata-bound' and 'fault-controlled' reservoirs in the northern Tarim Basin: taking the Ordovician reservoirs in the Tahe Oil Field as an example[J]. Petroleum Geology & Experiment, 2018, 40(4): 461-469. doi: 10.11781/sysydz201804461 [8] 鲁新便, 何成江, 邓光校, 等. 塔河油田奥陶系油藏喀斯特古河道发育特征描述[J]. 石油实验地质, 2014, 36(03): 268-274. doi: 10.11781/sysydz201403268LU Xinbian, HE Chengjiang, DENG Guangxiao, et al. Development features of karst ancient river system in Ordovician reservoirs, Tahe Oil Field[J]. Petroleum Geology & Experiment, 2014, 36(3): 268-274. doi: 10.11781/sysydz201403268 [9] 张长建, 吕艳萍, 张振哲. 塔里木盆地塔河油田西部斜坡区中下奥陶统古岩溶洞穴发育特征[J]. 石油实验地质, 2022, 44(6): 1008-1017. doi: 10.11781/sysydz2022061008ZHANG Changjian, LÜ Yanping, ZHANG Zhenzhe. Features of Middle-Lower Ordovician paleo-karst caves in western slope area, Tahe Oil Field, Tarim Basin[J]. Petroleum Geology & Experiment, 2022, 44(6): 1008-1017. doi: 10.11781/sysydz2022061008 [10] 巫波, 荣元帅, 刘遥, 等. 塔河油田暗河油气藏勘探潜力分析[J]. 断块油气田, 2015, 22(6): 702-704. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT201506005.htmWU Bo, RONG Yuanshuai, LIU Yao, et al. Exploration potential of oil and gas reservoirs of ancient underground river in Tahe Oilfield[J]. Fault-Block Oil & Gas Field, 2015, 22(6): 702-704. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT201506005.htm [11] 吕心瑞, 孙建芳, 邬兴威, 等. 缝洞型碳酸盐岩油藏储层结构表征方法: 以塔里木盆地塔河S67单元奥陶系油藏为例[J]. 石油与天然气地质, 2021, 42(3): 728-737. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202103018.htmLÜ Xinrui, SUN Jianfang, WU Xingwei, et al. Internal architecture characterization of fractured-vuggy carbonate reservoirs: a case study on the Ordovician reservoirs, Tahe Unit S67, Tarim Basin[J]. Oil & Gas Geology, 2021, 42(3): 728-737. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202103018.htm [12] 荣元帅, 胡文革, 蒲万芬, 等. 塔河油田碳酸盐岩油藏缝洞分隔性研究[J]. 石油实验地质, 2015, 37(5): 599-605. doi: 10.11781/sysydz201505599RONG Yuanshuai, HU Wenge, PU Wangfen, et al. Separation of fractures and cavities in carbonate reservoirs in the Tahe Oil Field[J]. Petroleum Geology & Experiment, 2015, 37(5): 599-605. doi: 10.11781/sysydz201505599 [13] 耿甜, 吕艳萍, 巫波, 等. 缝洞型油藏储量评价方法及开发对策[J]. 特种油气藏, 2021, 28(6): 129-136. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ202106017.htmGENG Tian, LYU Yanping, WU Bo, et al. Reservoir evaluation method and development countermeasures for fracture-vuggy reservoir[J]. Special Oil & Gas Reservoirs, 2021, 28(6): 129-136. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ202106017.htm [14] 漆立新, 云露. 塔河油田奥陶系碳酸盐岩岩溶发育特征与主控因素[J]. 石油与天然气地质, 2010, 31(1): 1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201001005.htmQI Lixin, YUN Lu. Development characteristics and main controlling factors of the Ordovician carbonate karst in Tahe Oilfield[J]. Oil & Gas Geology, 2010, 31(1): 1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201001005.htm [15] 李源, 鲁新便, 蔡忠贤, 等. 塔河油田海西早期古水文地貌特征及其对洞穴发育的控制[J]. 石油学报, 2016, 37(8): 1011-1020. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201608007.htmLI Yuan, LU Xinbian, CAI Zhongxian, et al. Hydrogeomorphologic characteristics and its controlling caves in Hercynian, Tahe Oilfield[J]. Acta Petrolei Sinica, 2016, 37(8): 1011-1020. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201608007.htm [16] 邓兴梁, 张庆玉, 梁彬, 等. 塔中Ⅱ区奥陶系鹰山组岩溶古地貌恢复方法研究[J]. 中国岩溶, 2015, 34(2): 154-158. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR201502009.htmDENG Xingliang, ZHANG Qingyu, LIANG Bin, et al. Reconstruction of karst palaeogeomorphology for the Ordovician Ying-shan Formation in the central Tarim Basin[J]. Carsologica Sinica, 2015, 34(2): 154-158. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR201502009.htm [17] 吕海涛, 张哨楠, 马庆佑. 塔里木盆地中北部断裂体系划分及形成机制探讨[J]. 石油实验地质, 2017, 39(4): 444-452. doi: 10.11781/sysydz201704444LÜ Haitao, ZHANG Shaonan, MA Qingyou. Classification and formation mechanism of fault systems in the central and northern Tarim Basin[J]. Petroleum Geology & Experiment, 2017, 39(4): 444-452. doi: 10.11781/sysydz201704444 [18] 汪洋, 张晓楠, 刘永立. 塔里木盆地塔河油田走滑断裂活动对油气成藏的控制作用: 以托甫39断裂带为例[J]. 石油实验地质, 2022, 44(3): 394-401. doi: 10.11781/sysydz202203394WANG Yang, ZHANG Xiaonan, LIU Yongli. Controls of strike-slip fault activities on hydrocarbon accumulation in Tahe Oilfield, Tarim Basin: a case study of TP 39 fault zone[J]. Petroleum Geology & Experiment, 2022, 44(3): 394-401. doi: 10.11781/sysydz202203394 [19] 邓铭哲, 蔡芃睿, 陆建林, 等. 走滑断裂演化程度的表征参数研究[J]. 石油实验地质, 2023, 45(5): 1007-1015. doi: 10.11781/sysydz2023051007DENG Mingzhe, CAI Pengrui, LU Jianglin, et al. Characterization parameters of the evolution degree of strike-slip faults[J]. Petroleum Geology & Experiment, 2023, 45(5): 1007-1015. doi: 10.11781/sysydz2023051007 [20] 农社卿, 马洪敏, 朱小露, 等. 碳酸盐岩泥质充填溶洞段测井资料有效性评价方法[J]. 石油天然气学报(江汉石油学院学报), 2014, 36(11): 106-110. https://www.cnki.com.cn/Article/CJFDTOTAL-JHSX201411021.htmNONG Sheqing, MA Hongmin, ZHU Xiaolu, et al. Method of logging data effectiveness evaluation in carbonate argillaceous filled caves[J]. Journal of Oil and Gas Technology (Journal of Jianghan Petroleum Institute), 2014, 36(11): 106-110. https://www.cnki.com.cn/Article/CJFDTOTAL-JHSX201411021.htm [21] PALMER A N. Distinction between epigenic and hypogenic maze caves[J]. Geomorphology, 2011, 134(1/2): 9-22. [22] FORD D C. Perspectives in karst hydrogeology and cavern genesis[M]//PALMER A N, PALMER M V, SASOWSKY I D. Karst modeling. Leesburg: Karst Waters Institute Special Publication, 1999: 9-29.