Geochemical characteristics of light hydrocarbons in Upper Paleozoic tight gas from Daniudi Gas Field, Ordos Basin
-
摘要: 大牛地气田是鄂尔多斯盆地典型致密砂岩大气田之一。为了更深入了解该区天然气的成因和来源,揭示天然气运移相态,对大牛地气田上古生界致密气开展了轻烃地球化学特征分析。研究表明,该区上古生界致密气C5-7轻烃组成具有异构烷烃优势分布,C6-7轻烃组成中芳烃含量整体偏低(<10%),甚至未检出芳烃,C7轻烃组成具有甲基环己烷优势分布特征,甲基环己烷相对含量均超过50%。上二叠统下石盒子组天然气K1值、K2值均与二叠系山西组和石炭系太原组天然气一致,而δ13C1值则与山西组天然气一致,与太原组天然气有明显不同。与山西组天然气相比,下石盒子组天然气整体具有偏低的苯/正己烷、苯/环己烷和甲苯/正庚烷比值,以及明显偏高的正庚烷/甲基环己烷比值。轻烃地球化学特征及烷烃气碳氢同位素组成综合表明,大牛地气田上古生界天然气为典型煤成气,其中山西组和太原组天然气均为原地自生自储,而下石盒子组天然气为下伏山西组烃源岩生成的天然气经历了游离相垂向运移聚集形成,太原组烃源岩不具有显著贡献。受天然气运移和水溶等作用影响,庚烷值、异庚烷值、苯/正己烷比值等轻烃指标直接用于判识大牛地气田致密气成熟度会存在偏差。Abstract: The Daniudi Gas Field is one of the typical tight sandstone gas fields in the Ordos Basin. In order to better understand the genetic types and source of natural gas and reveal the migration phase of natural gas, the geochemical analysis of light hydrocarbons in the Upper Paleozoic tight gas from the Daniudi Gas Field has been conducted in this study. The results indicate that, the C5-7 light hydrocarbons in the Upper Paleozoic tight gas are dominated by iso-alkanes, and the C6-7 light hydrocarbons display low contents of aromatics (< 10%), which are even undetectable. The C7 light hydrocarbons are dominated by methylcyclohexane (MCH) with the relative MCH contents exceeding 50%. The K1 and K2 values of natural gas from the Lower Shihezi Formation (P1x) are consistent with those from the Shanxi (P1s) and Taiyuan (C3t) formations, respectively. The δ13C1 values of the P1x gas are consistent with those of the P1s gas and significantly different from those of the C3t gas. Compared with the P1s gas, the P1x gas mainly displays lower benzene/n-hexane, benzene/cyclohexane and toluene/n-heptane ratios, as well as significantly higher n-heptane/methylcyclohexane ratios. Geochemical characteristics of light hydrocarbons and carbon and hydrogen isotopic compositions of alkanes indicate that, the Upper Paleozoic natural gas from the Daniudi Gas Field is typical coal-derived gas. The P1s and C3t gases were in-situ self-generated and self-accumulated, whereas the P1x gas was mainly derived from the underlying P1s source rocks and accumulated via vertical migration in free phase, with insignificant contributions of the C3t source rocks. Due to the effect of migration and water solution of natural gas, the deviation exists in the identification of thermal maturity for tight gas from the Daniudi Gas Field using the light hydrocarbon indexes such as heptane and isoheptane values and benzene/n-hexane ratios.
-
图 1 鄂尔多斯盆地大牛地气田位置(a)及地层综合柱状图(b)
据参考文献[24]修改。
Figure 1. Location of Daniudi Gas Field in Ordos Basin (a) and stratigraphic column (b)
图 3 大牛地气田上古生界天然气C5-7正构烷烃、异构烷烃和环烷烃组成
底图据戴金星等[27]。
Figure 3. Ternary diagram of n-C5-7, iso-C5-7 and cyc-C5-7 in natural gas from Upper Paleozoic, Daniudi Gas Field
图 4 大牛地气田上古生界天然气正庚烷、甲基环己烷和二甲基环戊烷相对组成
底图据戴金星等[27]。
Figure 4. Ternary diagram of n-heptane, methylcyclohexane and various dimethylcyclopentane in natural gas from Upper Paleozoic, Daniudi Gas Field
图 5 大牛地气田上古生界天然气δD1与δ13C1值相关图
底图据参考文献[28]。
Figure 5. Correlation between δD1 and δ13C1 values of natural gas from Upper Paleozoic, Daniudi Gas Field
图 6 大牛地气田上古生界天然气庚烷值和异庚烷值相关图
底图据THOMPSON[18]。
Figure 6. Correlation between heptane and isoheptane values of natural gas from Upper Paleozoic, Daniudi Gas Field
表 1 大牛地气田上古生界天然气轻烃相对组成和烷烃气碳氢同位素值
Table 1. Relative composition of light hydrocarbons and carbon and hydrogen isotopic values of alkanes in natural gas from Upper Paleozoic, Daniudi Gas Field
井号 深度/m 层位 C5-7相对组成/% C6-7相对组成/% C7相对组成/% 甲基环己烷指数/% δ13CV-PDB /‰ δD1 V-SMOW / ‰ 正构烷烃 异构烷烃 环烷烃 链烷烃 环烷烃 芳烃 二甲基环戊烷 正庚烷 甲基环己烷 CH4 C2H6 D1 P1x 23.8 49.8 26.4 52.0 47.2 0.8 24.4 12.9 62.7 61.3 -37.4 -25.7 -201 D2 2 548 P1x 24.2 50.9 24.8 62.0 36.8 1.3 21.0 22.8 56.2 55.2 -35.8 -26.1 -181 D3 2 633 P1x 22.4 51.1 26.5 52.4 46.0 1.6 25.8 11.5 62.8 61.4 -37.7 -25.2 -197 D4 2 675 P1x 28.6 54.1 17.3 77.0 22.5 0.5 19.3 38.3 42.4 41.9 -35.8 -26.2 -181 D5 2 709 P1x 34.8 44.5 20.7 70.5 28.9 0.6 18.9 39.1 42.0 41.4 -35.5 -26.5 -185 D6 2 716 P1x 23.8 48.3 27.9 58.8 40.6 0.6 36.7 18.3 45.0 44.4 -37.1 -25.9 -197 D7 2 749 P1x 29.9 43.9 26.2 62.9 36.3 0.7 17.2 32.0 50.8 50.0 -34.3 -25.9 -181 D8 2 789 P1x 23.6 54.8 21.6 59.8 39.8 0.4 29.2 14.5 56.3 55.2 -34.7 -25.4 -189 D9 2 660 P1x 31.0 44.1 24.9 65.7 34.3 - 16.0 32.4 51.6 50.9 -35.7 -26.0 -184 D10 2 631 P1x 22.6 53.3 24.1 54.9 44.7 0.4 28.2 10.4 61.4 60.2 -37.2 -24.9 -198 D11 2 667 P1x 22.8 48.5 28.7 58.7 40.3 1.0 16.4 24.0 59.5 58.6 -34.5 -25.8 -181 D12 2 669 P1x 34.5 43.7 21.8 70.1 29.7 0.2 13.7 38.3 48.0 47.3 -35.4 -25.7 -182 D13 2 673 P1x 19.6 52.1 28.2 55.9 44.0 0.1 20.9 11.4 67.7 66.6 -34.6 -25.2 -183 D14 2 698 P1x 34.4 47.5 18.1 75.6 24.4 - 25.6 37.7 36.7 36.4 -35.5 -26.2 -188 D15 2 703 P1x 20.9 52.4 26.7 57.7 42.3 - 20.8 15.0 64.3 63.3 -34.9 -25.6 -180 D16 2 700 P1x 28.3 51.2 20.5 72.1 27.9 - 14.9 38.0 47.0 46.6 -35.5 -25.7 -182 D17 2 635 P1x 25.5 54.8 19.7 63.8 36.2 - 29.4 15.0 55.6 54.6 -36.6 -26.0 -197 D18 2 716 P1x 21.1 51.3 27.5 57.4 42.6 - 20.8 14.8 64.4 63.5 -35.0 -25.6 -181 D19 2 675 P1x 24.6 52.1 23.3 65.1 34.9 - 16.8 25.7 57.5 56.8 -35.0 -26.2 -180 D20 2 685 P1x 25.8 48.7 25.5 63.9 36.1 - 17.2 28.4 54.4 53.9 -35.2 -25.8 -181 D21 2 680 P1x 22.8 51.5 25.7 61.0 39.0 - 17.6 21.9 60.5 59.8 -35.1 -26.0 -179 D22 2 630 P1s 24.5 53.7 21.8 60.3 38.8 0.8 26.2 17.1 56.7 55.6 -36.0 -25.1 -197 D23 2 830 P1s 24.1 52.5 23.4 58.5 39.7 1.8 26.5 17.2 56.4 55.3 -36.0 -25.3 -195 D24 2 783 P1s 21.6 47.0 31.4 44.4 47.5 8.1 20.2 11.2 68.6 67.2 -35.0 -24.0 -196 D25 2 831 P1s 22.9 52.0 25.1 57.3 41.4 1.3 28.5 14.7 56.9 55.9 -35.9 -24.6 -193 D26 2 819 P1s 25.1 51.6 23.3 58.1 41.2 0.7 20.5 17.4 62.1 60.7 -33.3 -24.8 -179 D27 2 812 P1s 23.3 49.1 27.6 53.4 44.0 2.6 22.1 14.7 63.1 61.9 -34.1 -24.8 -186 D28 2 846 P1s 21.5 46.2 32.3 55.8 41.6 2.6 31.5 17.1 51.4 50.6 -35.8 -24.5 -193 D29 2 744 P1s 19.7 49.6 30.7 49.0 49.3 1.7 20.4 9.2 70.4 69.1 -33.8 -23.9 -192 D30 2 879 P1s 22.1 53.5 24.4 56.2 43.8 - 22.0 11.0 67.0 65.9 -34.5 -25.1 -186 D31 2 881 P1s 32.5 50.8 16.7 62.4 35.9 1.7 35.3 14.0 50.7 50.1 -37.0 -25.0 -209 D32 2 826 P1s 22.5 51.8 25.8 55.5 44.5 - 21.1 12.0 66.8 65.6 -34.4 -25.5 -187 D33 P1s 28.4 45.3 26.3 49.3 50.3 0.5 20.1 15.0 64.8 63.6 -36.9 -25.0 -201 D34 2 820 P1s 24.6 54.5 20.9 56.4 42.9 0.7 24.8 12.9 62.4 61.3 -36.2 -24.2 -201 D35 2 795 C3t 25.8 49.9 24.3 57.0 39.9 3.1 20.3 17.2 62.5 61.4 -37.5 -25.5 -201 D36 2 439 C3t 27.7 51.7 20.6 61.7 36.6 1.7 22.8 19.6 57.6 56.6 -37.5 -26.1 -204 D37 2 417 C3t 23.6 48.2 28.2 53.4 41.9 4.6 17.6 16.5 65.9 64.4 -37.9 -25.2 -197 D38 2 557 C3t 22.5 48.9 28.6 55.0 42.0 3.0 21.8 17.3 60.9 59.8 -37.7 -25.0 -195 D39 2 570 C3t 21.7 44.6 33.8 47.4 45.7 6.9 19.5 16.2 64.3 62.9 -37.8 -24.8 -197 D40 2 795 C3t 24.9 51.6 23.5 58.2 41.1 0.7 21.7 12.6 65.7 64.6 -38.0 -25.3 -205 D41 2 453 C3t 26.2 54.3 19.5 62.7 36.7 0.7 22.6 11.6 65.8 64.7 -37.8 -25.1 -204 D42 2 455 C3t 25.5 49.8 24.7 56.4 43.6 - 21.6 12.2 66.3 65.2 -37.7 -24.9 -205 D43 2 466 C3t 24.4 51.5 24.1 55.4 43.5 1.1 19.5 10.4 70.2 68.9 -37.8 -25.2 -204 D44 2 462 C3t 20.8 52.6 26.6 57.6 41.7 0.7 19.3 15.2 65.5 64.4 D45 C3t 27.4 54.5 18.1 65.2 34.4 0.5 29.0 13.7 57.3 56.5 -37.2 -25.4 -198 表 2 大牛地气田上古生界天然气轻烃地球化学特征参数
Table 2. Typical geochemical parameters of light hydrocarbons in natural gas from Upper Paleozoic, Daniudi Gas Field
井号 层位 庚烷值/% 异庚烷值 2, 4-二甲基戊烷/2, 3-二甲基戊烷 气源岩最大埋深温度/℃ 苯/正己烷 苯/环己烷 正庚烷/甲基环己烷 甲苯/正庚烷 K1 P2/C7/% N2/C7/% P3/C7/% K2 D1 P1x 8.18 1.18 0.777 136.2 0.076 0.099 0.205 0.005 1.09 13.76 8.83 7.61 0.34 D2 P1x 12.50 2.44 0.771 136.1 0.101 0.140 0.406 0.012 1.09 21.26 6.66 10.91 0.39 D3 P1x 7.18 1.19 0.844 137.5 0.115 0.138 0.183 0.136 1.04 13.83 8.82 8.54 0.38 D4 P1x 18.53 4.48 0.966 139.5 0.028 0.093 0.905 - 1.09 28.30 5.27 15.11 0.45 D5 P1x 22.67 2.73 1.068 141.0 0.025 0.080 0.932 0.012 1.09 23.02 6.11 9.09 0.31 D6 P1x 9.28 1.58 0.849 137.5 0.048 0.071 0.406 - 1.15 20.89 10.06 10.58 0.34 D7 P1x 19.23 2.55 0.815 136.9 0.050 0.098 0.630 0.002 1.09 20.39 6.20 9.04 0.34 D8 P1x 8.73 1.33 0.976 139.6 0.029 0.052 0.258 0.007 1.06 16.54 9.33 9.06 0.35 D9 P1x 19.07 2.86 0.777 136.2 - - 0.629 - 1.07 20.84 5.38 9.53 0.36 D10 P1x 6.31 1.14 0.799 136.6 0.039 0.050 0.169 - 1.06 13.70 9.19 8.95 0.39 D11 P1x 13.49 2.90 0.666 133.9 0.096 0.101 0.403 - 1.10 20.05 5.84 10.74 0.41 D12 P1x 24.31 2.74 0.629 133.0 0.007 0.024 0.799 0.003 1.06 18.49 4.91 10.35 0.44 D13 P1x 6.24 2.19 0.732 135.3 - - 0.168 0.031 1.05 18.27 6.96 10.81 0.43 D14 P1x 17.59 3.23 1.074 141.1 - - 1.026 - 1.08 26.82 6.38 13.29 0.40 D15 P1x 8.10 2.10 0.660 133.8 - - 0.233 - 1.06 17.55 6.72 11.36 0.47 D16 P1x 19.67 4.81 0.741 135.5 - - 0.809 - 1.06 26.25 4.52 13.81 0.45 D17 P1x 8.79 1.37 0.923 138.8 - - 0.271 - 1.02 16.12 8.81 10.06 0.40 D18 P1x 8.13 2.20 0.767 136.0 - - 0.230 - 1.09 18.47 6.82 11.06 0.44 D19 P1x 13.99 3.45 0.766 136.0 - - 0.447 - 1.06 22.33 5.68 11.79 0.42 D20 P1x 16.13 2.84 0.674 134.1 - - 0.522 - 1.10 21.10 5.56 11.23 0.42 D21 P1x 12.05 2.79 0.686 134.3 - - 0.361 - 1.06 19.24 5.73 12.22 0.49 D22 P1s 10.24 1.49 0.896 138.4 0.050 0.090 0.301 0.053 1.08 17.12 8.41 9.21 0.36 D23 P1s 10.10 1.45 0.839 137.4 0.150 0.227 0.304 0.011 1.07 16.32 8.46 9.49 0.38 D24 P1s 6.69 1.46 0.588 132.0 0.711 0.507 0.163 0.651 1.13 13.31 7.14 7.70 0.38 D25 P1s 8.49 1.31 0.928 138.9 0.114 0.162 0.258 0.004 1.00 14.80 8.64 12.79 0.55 D26 P1s 10.61 1.84 0.837 137.3 0.054 0.092 0.280 0.006 1.09 16.03 6.24 8.09 0.36 D27 P1s 8.73 1.64 0.785 136.4 0.238 0.263 0.233 0.008 1.09 16.21 7.75 8.91 0.37 D28 P1s 9.23 1.54 0.898 138.4 0.164 0.220 0.333 0.139 1.10 18.88 9.24 10.14 0.36 D29 P1s 5.52 1.50 0.748 135.6 0.210 0.148 0.131 - 1.02 13.60 7.28 10.09 0.48 D30 P1s 6.35 1.79 0.673 134.1 - - 0.165 - 1.05 16.01 7.35 10.11 0.43 D31 P1s 6.24 1.41 0.876 138.0 0.096 0.172 0.276 - 1.10 14.29 8.33 9.09 0.40 D32 P1s 6.96 1.75 0.677 134.2 - - 0.180 - 1.10 15.85 7.23 9.85 0.43 D33 P1s 9.75 1.22 0.537 130.7 0.036 0.044 0.232 - 1.14 12.87 7.87 5.16 0.25 D34 P1s 7.79 1.32 0.840 137.4 0.058 0.080 0.206 - 1.08 14.43 8.62 7.90 0.34 D35 C3t 9.79 2.01 0.745 135.6 0.252 0.330 0.275 - 1.10 17.87 7.09 9.55 0.38 D36 C3t 10.62 1.99 0.805 136.7 0.123 0.187 0.341 0.004 1.08 18.69 7.00 10.67 0.42 D37 C3t 9.74 2.22 0.700 134.6 0.432 0.481 0.250 0.015 1.07 17.71 6.52 9.19 0.38 D38 C3t 10.12 2.28 1.308 144.0 0.305 0.324 0.285 0.008 1.07 22.50 7.50 7.50 0.25 D39 C3t 9.31 1.99 0.644 133.4 0.762 0.587 0.252 0.007 1.10 17.79 6.90 8.89 0.36 D40 C3t 6.98 1.95 0.788 136.4 0.055 0.067 0.192 0.016 1.05 17.59 7.07 9.62 0.39 D41 C3t 6.32 1.90 0.781 136.3 0.047 0.069 0.176 0.027 1.09 16.75 7.26 10.22 0.43 D42 C3t 6.87 1.79 0.799 136.6 - - 0.184 0.007 1.04 16.68 7.41 8.79 0.36 D43 C3t 6.01 1.93 0.774 136.2 0.094 0.106 0.148 0.014 1.07 16.25 6.76 8.79 0.38 D44 C3t 8.74 2.35 0.625 133.0 0.076 0.079 0.232 - 1.11 18.69 7.06 11.10 0.43 D45 C3t 7.12 1.60 0.742 135.5 0.035 0.059 0.239 - 1.10 16.10 7.66 12.42 0.52 注:气源岩最大埋深温度[T=140+15ln(2, 4-二甲基戊烷/2, 3-二甲基戊烷)][17];K1=(2-甲基己烷+2, 3-二甲基戊烷)/(3-甲基己烷+2, 4-二甲基戊烷)[25];P2、N2、P3分别为2-甲基己烷+3-甲基己烷、1, 1-二甲基环戊烷+1, 顺, 3-二甲基环戊烷+1, 反, 3-二甲基环戊烷、各类二甲基戊烷+3-乙基戊烷[26];K2=P3/(P2+N2),即:(各类二甲基戊烷+3-乙基戊烷)/(2-甲基己烷+3-甲基己烷+1, 1-二甲基环戊烷+1, 顺, 3-二甲基环戊烷+1, 反, 3-二甲基环戊烷)[26]。 -
[1] DAI Jinxing, LI Jian, LUO Xia, et al. Stable carbon isotope compositions and source rock geochemistry of the giant gas accumulations in the Ordos Basin, China[J]. Organic Geochemistry, 2005, 36(12): 1617-1635. doi: 10.1016/j.orggeochem.2005.08.017 [2] HU Guoyi, LI Jian, SHAN Xiuqin, et al. The origin of natural gas and the hydrocarbon charging history of the Yulin Gas Field in the Ordos Basin, China[J]. International Journal of Coal Geology, 2010, 81(4): 381-391. doi: 10.1016/j.coal.2009.07.016 [3] LIU Quanyou, JIN Zhijun, MENG Qingqiang, et al. Genetic types of natural gas and filling patterns in Daniudi Gas Field, Ordos Basin, China[J]. Journal of Asian Earth Sciences, 2015, 107: 1-11. doi: 10.1016/j.jseaes.2015.04.001 [4] WU Xiaoqi, LIU Quanyou, ZHU Jianhui, et al. Geochemical characteristics of tight gas and gas-source correlation in the Daniudi Gas Field, the Ordos Basin, China[J]. Marine and Petroleum Geology, 2017, 79: 412-425. doi: 10.1016/j.marpetgeo.2016.10.022 [5] 倪春华, 朱建辉, 刘光祥, 等. 鄂尔多斯盆地杭锦旗地区上古生界煤系烃源岩生烃潜力再评价[J]. 石油实验地质, 2021, 43(5): 826-834. doi: 10.11781/sysydz202105826NI Chunhua, ZHU Jianhui, LIU Guangxiang, et al. Re-evaluation of hydrocarbon generation potential of the Upper Paleozoic coal-measure source rocks in the Hangjinqi area of Ordos Basin[J]. Petroleum Geology & Experiment, 2021, 43(5): 826-834. doi: 10.11781/sysydz202105826 [6] 何发岐, 王付斌, 王杰, 等. 鄂尔多斯盆地东胜气田氦气分布规律及特大型富氦气田的发现[J]. 石油实验地质, 2022, 44(1): 1-10. doi: 10.11781/sysydz202201001HE Faqi, WANG Fubin, WANG Jie, et al. Helium distribution of Dongsheng Gas Field in Ordos Basin and discovery of a super large helium-rich gas field[J]. Petroleum Geology & Experiment, 2022, 44(1): 1-10. doi: 10.11781/sysydz202201001 [7] 赵永强, 倪春华, 吴小奇, 等. 鄂尔多斯盆地杭锦旗地区二叠系地层水地球化学特征和来源[J]. 石油实验地质, 2022, 44(2): 279-287. doi: 10.11781/sysydz202202279ZHAO Yongqiang, NI Chunhua, WU Xiaoqi, et al. Geochemical characteristics and source of Permian formation water in Hangjinqi area, Ordos Basin[J]. Petroleum Geology & Experiment, 2022, 44(2): 279-287. doi: 10.11781/sysydz202202279 [8] 郝蜀民, 陈召佑, 李良. 鄂尔多斯大牛地气田致密砂岩气成藏理论与勘探实践[M]. 北京: 石油工业出版社, 2011.HAO Shumin, CHEN Zhaoyou, LI Liang. The accumulation theory and practice of tight sandstone gas in Daniudi Gas Field, Ordos Basin[M]. Beijing: Petroleum Industry Press, 2011. [9] 雷涛, 王桥, 任广磊, 等. 鄂尔多斯盆地山西组致密砂岩成分特征及其对储层的制约: 以大牛地气田A区为例[J]. 天然气地球科学, 2023, 34(3): 418-430. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202303004.htmLEI Tao, WANG Qiao, REN Guanglei, et al. Component characteristics of Shanxi Formation tight sandstone and their implications for the reservoirs in Ordos Basin: taking the A block of Daniudi Gas Field as an example[J]. Natural Gas Geoscience, 2023, 34(3): 418-430. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202303004.htm [10] 孙晓, 王杰, 陶成, 等. 鄂尔多斯盆地大牛地下古生界天然气地球化学特征及其来源综合判识[J]. 石油实验地质, 2021, 43(2): 307-314. doi: 10.11781/sysydz202102307SUN Xiao, WANG Jie, TAO Cheng, et al. Evaluation of geochemical characteristics and source of natural gas in Lower Paleozoic, Daniudi area, Ordos Basin[J]. Petroleum Geology & Experiment, 2021, 43(2): 307-314. doi: 10.11781/sysydz202102307 [11] 彭先锋, 邓虎成, 何建华, 等. 鄂尔多斯盆地大牛地气田中奥陶统马家沟组裂缝特征及成因[J]. 石油实验地质, 2022, 44(1): 41-50. doi: 10.11781/sysydz202201041PENG Xianfeng, DENG Hucheng, HE Jianhua, et al. Characte-ristics and genesis of fractures in Middle Ordovician Majiagou Formation, Daniudi Gas Field, Ordos Basin[J]. Petroleum Geology & Experiment, 2022, 44(1): 41-50. doi: 10.11781/sysydz202201041 [12] 胥旺, 邓虎成, 雷涛, 等. 鄂尔多斯盆地东北部大牛地气田马家沟组不同性质断裂对表生岩溶的控制作用[J]. 天然气地球科学, 2023, 34(3): 431-444. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202303005.htmXU Wang, DENG Hucheng, LEI Tao, et al. Control of different faults on supergene karst in the Majiagou Formation of Daniudi Gas Field, northeastern Ordos Basin[J]. Natural Gas Geoscience, 2023, 34(3): 431-444. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202303005.htm [13] YANG Zhi, HE Sheng, GUO Xiaowen, et al. Formation of low permeability reservoirs and gas accumulation process in the Daniudi Gas Field, northeast Ordos Basin, China[J]. Marine and Petroleum Geology, 2016, 70: 222-236. doi: 10.1016/j.marpetgeo.2015.10.021 [14] 郝蜀民, 惠宽洋, 李良. 鄂尔多斯盆地大牛地大型低渗气田成藏特征及其勘探开发技术[J]. 石油与天然气地质, 2006, 27(6): 762-768. doi: 10.3321/j.issn:0253-9985.2006.06.006HAO Shumin, HUI Kuanyang, LI Liang. Reservoiring features of Daniudi low-permeability gas field in Ordos Basin and its exploration and development technologies[J]. Oil & Gas Geology, 2006, 27(6): 762-768. doi: 10.3321/j.issn:0253-9985.2006.06.006 [15] 程克明, 熊英, 马立元, 等. 华北地台早二叠世太原组和山西组煤沉积模式与生烃关系研究[J]. 石油勘探与开发, 2005, 32(4): 142-146. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK200504027.htmCHENG Keming, XIONG Ying, MA Liyuan, et al. Relationship between coal depositional modes and hydrocarbon generation of the Early Permian Taiyuan and Shanxi formation in Huabei Platform[J]. Petroleum Exploration and Development, 2005, 32(4): 142-146. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK200504027.htm [16] 袁东山, 李国强, 莫贵初, 等. 鄂尔多斯盆地大牛地气田上古生界烃源岩评价[J]. 长江大学学报(自然科学版)理工, 2012, 9(11): 84-87.YUAN Dongshan, LI Guoqiang, MO Guichu, et al. Evaluation of the Upper Paleozoic source rocks in the Daniudi Gas Field, Ordos Basin[J]. Journal of Yangtze University (Natural Science Edition) Science & Engineering, 2012, 9(11): 84-87. [17] MANGO F D. The light hydrocarbons in petroleum: a critical review[J]. Organic Geochemistry, 1997, 26(7/8): 417-440. [18] THOMPSON K F M. Classification and thermal history of petroleum based on light hydrocarbons[J]. Geochimica et Cosmochimica Acta, 1983, 47(2): 303-316. [19] 段毅, 赵阳, 姚泾利, 等. 轻烃地球化学研究进展及发展趋势[J]. 天然气地球科学, 2014, 25(12): 1875-1888. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201412002.htmDUAN Yi, ZHAO Yang, YAO Jingli, et al. Research advance and tendency of light hydrocarbon geochemistry[J]. Natural Gas Geoscience, 2014, 25(12): 1875-1888. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201412002.htm [20] 胡国艺, 李剑, 谢增业, 等. 天然气轻烃地球化学[M]. 北京: 石油工业出版社, 2018: 1-293.HU Guoyi, LI Jian, XIE Zengye, et al. Geochemistry of light hydrocarbons in natural gas[M]. Beijing Petroleum Industry Press, 2018: 1-293. [21] 胡国艺, 李谨, 李志生, 等. 煤成气轻烃组分和碳同位素分布特征与天然气勘探[J]. 石油学报, 2010, 31(1): 42-48. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201001009.htmHU Guoyi, LI Jin, LI Zhisheng, et al. Composition and carbon isotopic distribution characteristics of light hydrocarbon in coal-derived gas and natural gas exploration[J]. Acta Petrolei Sinica, 2010, 31(1): 42-48. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201001009.htm [22] 胡国艺, 汪为胜, 廖凤蓉. 煤成气轻烃地球化学特征及其影响因素: 以四川盆地须家河组为例[J]. 岩石学报, 2012, 28(3): 905-916. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201203020.htmHU Guoyi, WANG Weisheng, LIAO Fengrong. Geochemical characteristics and its influencing factors of light hydrocarbon in coal-derived gas: a case study of Sichuan Basin[J]. Acta Petrologica Sinica, 2012, 28(3): 905-916. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201203020.htm [23] WU Xiaoqi, ZHU Jianhui, NI Chunhua, et al. Genetic types and sources of Lower Paleozoic natural gas in the Daniudi Gas Field, Ordos Basin, China[J]. Energy Exploration & Exploitation, 2017, 35(2): 218-236. [24] LIU Quanyou, WU Xiaoqi, JIA Huichong, et al. Geochemical characteristics of helium in natural gas from the Daniudi Gas Field, Ordos Basin, Central China[J]. Frontiers in Earth Science, 2022, 10: 823308. [25] MANGO F D. An invariance in the isoheptanes of petroleum[J]. Science, 1987, 273(4814): 514-517. [26] MANGO F D. The origin of light hydrocarbons in petroleum: a kinetic test of the steady-state catalytic hypothesis[J]. Geochi-mica et Cosmochimica Acta, 1990, 54(5): 1315-1323. [27] 戴金星, 裴锡古, 戚厚发. 中国天然气地质学: 卷一[M]. 北京: 石油工业出版社, 1992.DAI Jinxing, PEI Xigu, QI Houfa. Natural gas geology in China: vol. 1[M]. Beijing: Petroleum Industry Press, 1992. [28] WANG Xiaofeng, LIU Wenhui, SHI Baoguang, et al. Hydrogen isotope characteristics of thermogenic methane in Chinese sedimentary basins[J]. Organic Geochemistry, 2015, 83-84: 178-189. [29] THOMPSON K F M. Light hydrocarbons in subsurface sediments[J]. Geochimica et Cosmochimica Acta, 1979, 43(5): 657-672. [30] BEMENT W O, Levey R A, Mango F D. The temperature of oil generation as defined with C7 chemistry maturity parameter (2, 4-DMP/2, 3-DMP ratio)[M]//GRIMALT J O, DORRONSORO C. Organic geochemistry: developments and applications to energy, climate, environment and human history. Donostia-San Sebastián, Spain: European Association of Organic Geochemists, 1995: 505-507. [31] CHEN Xiaohui, ZHANG Min, HUANG Guanghui, et al. Geochemical characteristics of light hydrocarbons in cracking gases from chloroform bitumen A, crude oil and its fractions[J]. Science in China (Series D: Earth Sciences), 2009, 52(S1): 26-33. [32] 叶素娟, 朱宏权, 李嵘, 等. 天然气运移有机-无机地球化学示踪指标: 以四川盆地川西坳陷侏罗系气藏为例[J]. 石油勘探与开发, 2017, 44(4): 549-560. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201704010.htmYE Sujuan, ZHU Hongquan, LI Rong, et al. Tracing natural gas migration by integrating organic and inorganic geochemical data: a case study of the Jurassic gas fields in western Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2017, 44(4): 549-560. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201704010.htm [33] 唐宇, 吕正祥, 叶素娟, 等. 成都凹陷上侏罗统蓬莱镇组天然气运移特征与富集主控因素[J]. 石油与天然气地质, 2013, 34(3): 281-287. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201303004.htmTANG Yu, LÜ Zhengxiang, YE Sujuan, et al. Characteristics and controlling factors of natural gas migration and accumulation in the Upper Jurassic Penglaizhen Formation of Chengdu Sag[J]. Oil & Gas Geology, 2013, 34(3): 281-287. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201303004.htm [34] LEYTHAEUSER D, SCHAEFER R G, CORNFORD C, et al. Generation and migration of light hydrocarbons (C2-C7) in sedimentary basins[J]. Organic Geochemistry, 1979, 1(4): 191-204. [35] HU Guoyi, LI Jian, LI Jin, et al. Preliminary study on the origin identification of natural gas by the parameters of light hydrocarbon[J]. Science in China (Series D: Earth Sciences), 2008, 51(S1): 131-139. [36] 胡惕麟, 戈葆雄, 张义纲, 等. 源岩吸附烃和天然气轻烃指纹参数的开发和应用[J]. 石油实验地质, 1990, 12(4): 375-394. doi: 10.11781/sysydz199004375HU Tiling, GE Baoxiong, ZHANG Yigang, et al. The development and application of fingerprint parameters for hydrocarbons absorbed by source rocks and light hydrocarbons in natural gas[J]. Petroleum Geology & Experiment, 1990, 12(4): 375-394. doi: 10.11781/sysydz199004375 [37] 王培荣, 徐冠军, 张大江, 等. 常用轻烃参数正、异庚烷值应用中的问题[J]. 石油勘探与开发, 2010, 37(1): 121-128. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201001021.htmWANG Peirong, XU Guanjuan, ZHANG Dajiang, et al. Problems with application of heptane and isoheptane values as light hydrocarbon parameters[J]. Petroleum Exploration and Development, 2010, 37(1): 121-128. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201001021.htm [38] HUANG Shipeng, LI Jianzhong, WANG Tongshan, et al. Application of light hydrocarbons in natural gas geochemistry of gas fields in China[J]. Annual Review of Earth and Planetary Sciences, 2022, 50: 13-53. [39] PETERS K E, WALTERS C C, MOLDOWAN J M. The biomarker guide[M]. 2nd ed. Cambridge: Cambridge University Press, 2005. [40] 王顺玉, 明巧, 贺祖义, 等. 四川盆地天然气C4-C7烃类指纹变化特征研究[J]. 天然气工业, 2006, 26(11): 11-13. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG200611004.htmWANG Shunyu, MING Qiao, HE Zuyi, et al. Study on fingerprint character of C4-C7 hydrocarbons in natural gas of the Sichuan Basin[J]. Natural Gas Industry, 2006, 26(11): 11-13. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG200611004.htm [41] ZHANG Chunming, LI Sitian, ZHAO Hongjing, et al. Applications of Mango's light hydrocarbon parameters to petroleum from Tarim Basin, NW China[J]. Applied Geochemistry, 2005, 20(3): 545-551. [42] 陈建平, 王绪龙, 陈践发, 等. 甲烷碳同位素判识天然气及其源岩成熟度新公式[J]. 中国科学(地球科学), 2021, 51(4): 560-581. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK202104005.htmCHEN Jianping, WANG Xulong, CHEN Jianfa, et al. New equation to decipher the relationship between carbon isotopic composition of methane and maturity of gas source rocks[J]. Science China (Earth Sciences), 2021, 64(3): 470-493. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK202104005.htm [43] 孙秀丽, 万永刚, 刘照伟, 等. 挥发作用对C5-C8轻烃指标的影响: 模拟实验证据[J]. 石油学报, 2013, 34(6): 1060-1069. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201306004.htmSUN Xiuli, WAN Yonggang, LIU Zhaowei, et al. Effects of natural evaporation on C5-C8 light hydrocarbon indicators: evidence from experimental results in the laboratory[J]. Acta Petrolei Sinica, 2013, 34(6): 1060-1069. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201306004.htm [44] 覃伟, 李仲东, 郑振恒, 等. 鄂尔多斯盆地大牛地气田地层水特征及成因分析[J]. 岩性油气藏, 2011, 23(5): 115-120. https://www.cnki.com.cn/Article/CJFDTOTAL-YANX201105026.htmQIN Wei, LI Zhongdong, ZHENG Zhenheng, et al. Characteristics and genesis of formation water in Daniudi Gas Field, Ordos Basin[J]. Lithologic Reservoirs, 2011, 23(5): 115-120. https://www.cnki.com.cn/Article/CJFDTOTAL-YANX201105026.htm