Enhancing oil recovery of ultimate water-cut reservoirs with a novel methane-producing bacterial strain
-
摘要: 我国东部老油田已整体进入特高含水开发阶段,呈含水上升快、采油速度低、水驱效益低等开发特征,现有提高采收率技术已无法实现原油的经济采出,亟需建立接替技术。为此,以胜利油田某聚驱后油藏为试验区,开展了油藏菌群结构分析、新型产甲烷菌系的激活产气、油藏适应性及驱油性能研究,探索新型产甲烷菌系在这类油藏的应用潜力。研究结果显示,试验区油藏具有丰富的石油烃降解菌,有利于生物气化技术的实施。模拟试验区油藏条件下,新型产甲烷菌系与油藏内源微生物有较好的相容性,90 d每克原油的产气量达到3.12 mmol,是单独激活油藏微生物产气量的4.5倍,且产生的气体中甲烷气占比达到78%。菌群结构分析显示,新型产甲烷菌系占比达到35.9%,是产气速率大幅提升的关键。适应性研究结果显示,在油藏温度低于65 ℃、原油黏度小于1 356 mPa·s条件下,新型产甲烷菌系均展示了良好的产气性能。利用实验室设计的物理模型,评价了该菌系产气提高驱油性能,结果显示,注入该菌系后产气作用有效动用了模型顶部的剩余油,极限含水条件下驱油效率提高5.4个百分点;在此基础上提出了生物气化技术提高极限含水油藏采收率的机理。Abstract: Most of the old oil fields in eastern China are now in the ultra-high water-cut development stage characte-rized by a rapid increase in water-cut, low oil recovery rate and inefficient water flooding. The existing technologies for enhancing oil recovery are no longer economically viable for crude oil extraction, necessitating the development of alternative techniques.This study focuses on a post-polymer-flooding oil reservoir in the Shengli Oil Field as an experimental area. The analysis of the reservoir microbial community structure and the study on the activation, reservoir adaptability and oil displacement performance of the novel methane-producing bacterial strain were conducted to explore its application potential in such reservoirs. The results showed a rich population of petroleum hydrocarbon degrading bacteria in the experimental area, which is conducive to the implementation of biogasification technology. Under simulated reservoir conditions, the novel methane-producing bacterial strain had good compatibility with the indigenous microorganism in the reservoir, achieving a gas production rate of 3.12 mmol/g oil after 90 days. This rate was 4.5 times higher than that from activating reservoir microorganisms alone, with methane accounting for 78% of the generated gas. Microbial community structure analysis revealed that the newly discoverd methane-producing bacterial strain comprised 35.9% of the community, playing a vital role in the significant increase in gas production rate. An adaptability study demonstrated that this bacterial strain exhibited exceptional gas production performance at reservoir temperatures below 65 ℃ and crude oil viscosities less than 1 356 mPa·s. Utilizing a laboratory-designed physical model, the impact of the bacterial strain on enhancing oil displacement performance was assessed. These results showed effective mobilization of residual oil at the model's top after bacterial strain injection, leading to a 5.4 percentage point increase in oil displacement efficiency under ultimate water-cut conditions. These findings support the proposal of using biogasification technology to enhance oil recovery in ultimate water-cut reservoirs.
-
表 1 试验区块配注水和产出液的组成性质
Table 1. Composition and properties of injected water and produced liquid in experimental area
mg/L 实验用水 Ca2+ Mg2+ HCO3- Cl- SO42- K++Na+ 总矿化度 pH 配注水 294 23 532 4 057 46 4 047 9 362 7.0 产出液 358 85 494 4 103 128 3 969 9 706 7.2 表 2 激活实验配方设计
Table 2. Formulation design of activation experiment
编号 配方构成 1# 地层水+无机培养基 2# 地层水+无机培养基+原油 3# 地层水+无机培养基+新型产甲烷菌系 4# 地层水+无机培养基+原油+新型产甲烷菌系 表 3 物理模型的基本参数
Table 3. Basic parameters of physical model
编号 PV/mL 填砂/g 含油量/g 平均含油饱和度/% 渗透率/10-3μm2 1号 89 912 259.2 34.4 1 205 2号 91 921 255.6 34.6 1 231 3号 84 908 254.0 33.9 1 197 -
[1] 王增林, 李鹏, 魏芳, 等. 胜利油田特高含水期化学防砂技术进展[J]. 油田化学, 2021, 38(3): 560-563. https://www.cnki.com.cn/Article/CJFDTOTAL-YJHX202103032.htmWANG Zenglin, LI Peng, WEI Fang, et al. Progress of chemical sand control technology used in Shengli oilfield at ultra-high water-cut period[J]. Oilfield Chemistry, 2021, 38(3): 560-563. https://www.cnki.com.cn/Article/CJFDTOTAL-YJHX202103032.htm [2] 杨清立. 大庆喇萨杏油田特高含水期油藏开发调整对策[J]. 长江大学学报(自然科学版), 2019, 16(8): 31-35. https://www.cnki.com.cn/Article/CJFDTOTAL-CJDL201908007.htmYANG Qingli. Countermeasures for reservoir development adjustment in extra-high water-cut period of Daqing Lasaxing oilfield[J]. Journal of Yangtze University (Natural Science Edition), 2019, 16(8): 31-35. https://www.cnki.com.cn/Article/CJFDTOTAL-CJDL201908007.htm [3] 姜岩, 李雪松, 付宪弟. 特高含水老油田断层表征及剩余油高效挖潜[J]. 大庆石油地质与开发, 2019, 38(5): 246-253. https://www.cnki.com.cn/Article/CJFDTOTAL-DQSK201905032.htmJIANG Yan, LI Xuesong, FU Xiandi. Fault characterizing and high-efficiency potential tapping of the remained oil for extra-high-watercut mature oilfields[J]. Petroleum Geology & Oilfield Development in Daqing, 2019, 38(5): 246-253. https://www.cnki.com.cn/Article/CJFDTOTAL-DQSK201905032.htm [4] 谭河清, 傅强, 李林祥, 等. 基于流线数值模拟研究高含水后期油田的剩余油分布[J]. 成都理工大学学报(自然科学版), 2017, 44(1): 30-35. doi: 10.3969/j.issn.1671-9727.2017.01.04TAN Heqing, FU Qiang, LI Linxiang, et al. Application of streamline numerical simulation method to study of remaining oil distribution in high water-cut stage oilfield[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2017, 44(1): 30-35. doi: 10.3969/j.issn.1671-9727.2017.01.04 [5] XING Dong, LI Yongfeng, WEI Li, et al. Current situation and prospect of microbial residual oil gasification[J]. Applied Mechanics and Materials, 2013, 295-298: 21-25. doi: 10.4028/www.scientific.net/AMM.295-298.21 [6] 汪卫东, 王静, 耿雪丽, 等. 储层残余油生物气化技术现状与展望[J]. 石油地质与工程, 2012, 26(1): 78-81. https://www.cnki.com.cn/Article/CJFDTOTAL-SYHN201201028.htmWANG Weidong, WANG Jing, GENG Xueli, et al. State of the art and prospect of the biogasification of the resudial oil[J]. Petroleum Geology and Engineering, 2012, 26(1): 78-81. https://www.cnki.com.cn/Article/CJFDTOTAL-SYHN201201028.htm [7] JONES D M, HEAD I M, GRAY N D, et al. Crude-oil biodegradation via methanogenesis in subsurface petroleum reservoirs[J]. Nature, 2008, 451(7175): 176-180. doi: 10.1038/nature06484 [8] SHERRY A, GRANT R J, AITKEN C M, et al. Volatile hydrocarbons inhibit methanogenic crude oil degradation[J]. Frontiers in Microbiology, 2014, 5: 131. [9] 王立影, MAURICE M S, 李辉, 等. 石油烃的厌氧生物降解对油藏残余油气化开采的启示[J]. 微生物学通报, 2010, 37(1): 96-102. https://www.cnki.com.cn/Article/CJFDTOTAL-WSWT201001023.htmWANG Liying, MAURICE M S, LI Hui, et al. Anaerobic biodegradation of petroleum hydrocarbons and enlightenment of the prospects for gasification of residual oil[J]. Microbiology China, 2010, 37(1): 96-102. https://www.cnki.com.cn/Article/CJFDTOTAL-WSWT201001023.htm [10] ZHOU Zhuo, ZHANG Cuijing, LIU Pengfei, et al. Non-syntrophic methanogenic hydrocarbon degradation by an archaeal species[J]. Nature, 2022, 601(7892): 257-262. doi: 10.1038/s41586-021-04235-2 [11] 胡婧, 束青林, 孙刚正, 等. 油藏内源微生物演替规律及其对驱油效果的影响[J]. 中国石油大学学报(自然科学版), 2019, 43(1): 108-114. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDX201901013.htmHU Jing, SHU Qinglin, SUN Gangzheng, et al. Succession of indigenous microbe in reservoirs and its effect on displacement efficiency[J]. Journal of China University of Petroleum (Edition of Natural Science), 2019, 43(1): 108-114. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDX201901013.htm [12] 宋永亭, 胡婧, 吴晓玲, 等. 室温条件下油藏采出液微生物群落结构稳定性[J]. 应用与环境生物学报, 2017, 23(3): 495-501. https://www.cnki.com.cn/Article/CJFDTOTAL-YYHS201703016.htmSONG Yongting, HU Jing, WU Xiaoling, et al. Stability of microbial community structure in reservoir water samples at room temperature[J]. Chinese Journal of Applied Environmental Biology, 2017, 23(3): 495-501. https://www.cnki.com.cn/Article/CJFDTOTAL-YYHS201703016.htm [13] 刘明艳, 马嘉晗, 李瑜, 等. 16s rRNA基因高变区V4和V3-V4及测序深度对油藏细菌菌群分析的影响[J]. 微生物学通报, 2020, 47(2): 440-449. https://www.cnki.com.cn/Article/CJFDTOTAL-WSWT202002011.htmLIU Mingyan, MA Jiahan, LI Yu, et al. Influence of 16S rRNA gene V4 and V3-V4 sequencing and sequencing depth on unraveling bacterial communities inhabiting oil reservoirs[J]. Microbio-logy China, 2020, 47(2): 440-449. https://www.cnki.com.cn/Article/CJFDTOTAL-WSWT202002011.htm [14] 李彩风, 李阳, 曹嫣镔, 等. 油藏环境产脂肽类表面活性剂微生物的分布[J]. 石油学报, 2015, 36(9): 1122-1126. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201509010.htmLI Caifeng, LI Yang, CAO Yanbin, et al. Distribution of the lipopeptide biosurfactant-producing microbes in oil reservoir environment[J]. Acta Petrolei Sinica, 2015, 36(9): 1122-1126. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201509010.htm [15] 苏俊杰, 高光军, 宋永亭, 等. 胜利油田单12区块内源微生物分子生态研究[J]. 石油钻采工艺, 2006, 28(1): 37-40. https://www.cnki.com.cn/Article/CJFDTOTAL-SYZC200601010.htmSU Junjie, GAO Guangjun, SONG Yongting, et al. Research on indigenous microbe molecule ecology of Dan-12 block in Shengli oilfield[J]. Oil Drilling & Production Technology, 2006, 28(1): 37-40. https://www.cnki.com.cn/Article/CJFDTOTAL-SYZC200601010.htm [16] 李方玲, 张雅坤, 梁立宝, 等. 石油污染环境中固氮和寡氮营养细菌的分离鉴定及其特性[J]. 微生物学报, 2022, 62(2): 661-671. https://www.cnki.com.cn/Article/CJFDTOTAL-WSXB202202021.htmLI Fangling, ZHANG Yakun, LIANG Libao, et al. Identification and characterization of nitrogen-fixing bacteria and oligotrophic-nitrogen bacteria from the polluted petroleum[J]. Acta Microbiologica Sinica, 2022, 62(2): 661-671. https://www.cnki.com.cn/Article/CJFDTOTAL-WSXB202202021.htm [17] 孔祥平, 包木太, 马代鑫, 等. 油田水中细菌群落分析[J]. 油田化学, 2003, 20(4): 372-376. https://www.cnki.com.cn/Article/CJFDTOTAL-YJHX200304025.htmKONG Xiangping, BAO Mutai, MA Daixin, et al. Analysis of bacterial communities in oilfield produced waters[J]. Oilfield Chemistry, 2003, 20(4): 372-376. https://www.cnki.com.cn/Article/CJFDTOTAL-YJHX200304025.htm [18] FUENTES-JAIME J, VARGAS-SUÁREZ M, CRUZ-GÓMEZ M J, et al. Concerted action of extracellular and cytoplasmic esterase and urethane-cleaving activities during impranil biodegradation by Alicycliphilus denitrificans BQ1[J]. Biodegradation, 2022, 33(4): 389-406. doi: 10.1007/s10532-022-09989-8 [19] 张坤成, 陶惟一, 李霜. 芽孢杆菌Bacillus cereus BC-1的烃降解特性研究[J]. 南京工业大学学报(自然科学版), 2022, 44(4): 458-463. https://www.cnki.com.cn/Article/CJFDTOTAL-NHXB202204014.htmZHANG Kuncheng, TAO Weiyi, LI Shuang. Hydrocarbon degradation characteristics of Bacillus cereus BC-1[J]. Journal Nanjing Technology Unversity (Natural Science Edition), 2022, 44(4): 458-463. https://www.cnki.com.cn/Article/CJFDTOTAL-NHXB202204014.htm [20] 覃千山. 基于宏基因组的未培养互营烃降解菌'Candidatus Smithella cisternae'的生物信息学研究[D]. 北京: 中国农业科学院, 2015.QIN Qianshan. The bioinformatic analysis of unclutured syntrophic alkane-degrading bacteria 'Candidatus Smithella cisternae' based on metagenomic[D]. Beijing: Chinese Academy of Agricultural Sciences, 2015. [21] 丁晨, 承磊, 何乔, 等. 互营烃降解菌系M82的脂肪酸降解特性[J]. 微生物学报, 2014, 54(11): 1369-1377. https://www.cnki.com.cn/Article/CJFDTOTAL-WSXB201411017.htmDING Chen, CHENG Lei, HE Qiao, et al. Degradation of fatty acid by syntrophic hydrocarbon-degrading consortium M82[J]. Acta Microbiologica Sinica, 2014, 54(11): 1369-1377. https://www.cnki.com.cn/Article/CJFDTOTAL-WSXB201411017.htm [22] GRAY N D, SHERRY A, LARTER S R, et al. Biogenic methane production in formation waters from a large gas field in the North Sea[J]. Extremophiles, 2009, 13(3): 511-519. doi: 10.1007/s00792-009-0237-3 [23] 冯庆贤, 陈智宇. 耐高温采油微生物的研究与应用[J]. 石油勘探与开发, 2000, 27(3): 50-52. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK200003015.htmFENG Qingxian, CHEN Zhiyu. Study and application of endurant high temperature bacteria[J]. Petroleum Exploration and Deve-lopment, 2000, 27(3): 50-52. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK200003015.htm [24] 胡见义, 牛嘉玉. 中国重油沥青资源的形成与分布[J]. 石油与天然气地质, 1994, 15(2): 105-112. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT402.000.htmHU Jianyi, NIU Jiayu. Formation and distribution of heavy oil bitumen resources in China[J]. Oil & Gas Geology, 1994, 15(2): 105-112. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT402.000.htm [25] LAETER S, HUANG Haiping, ADAMS J, et al. A practical biode-gradation scale for use in reservoir geochemical studies of biodegraded oils[J]. Organic Geochemistry, 2012, 45: 66-76. doi: 10.1016/j.orggeochem.2012.01.007 [26] 李秉繁, 刘刚, 陈雷. CH4在原油体系中溶解规律及影响机理[J]. 化工进展, 2021, 40(8): 4205-4222. https://www.cnki.com.cn/Article/CJFDTOTAL-HGJZ202108012.htmLI Bingfan, LIU Gang, CHEN Lei. Dissolution of CH4 in the crude oil system: behaviors and mechanisms[J]. Chemical Industry and Engineering Progress, 2021, 40(8): 4205-4222. https://www.cnki.com.cn/Article/CJFDTOTAL-HGJZ202108012.htm