留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

新型产甲烷菌系提高极限含水油藏采收率技术

丁明山 林军章 冯云 孙楠 王冠 巴燕 汪卫东

丁明山, 林军章, 冯云, 孙楠, 王冠, 巴燕, 汪卫东. 新型产甲烷菌系提高极限含水油藏采收率技术[J]. 石油实验地质, 2024, 46(2): 412-419. doi: 10.11781/sysydz202402412
引用本文: 丁明山, 林军章, 冯云, 孙楠, 王冠, 巴燕, 汪卫东. 新型产甲烷菌系提高极限含水油藏采收率技术[J]. 石油实验地质, 2024, 46(2): 412-419. doi: 10.11781/sysydz202402412
DING Mingshan, LIN Junzhang, FENG Yun, SUN Nan, WANG Guan, BA Yan, WANG Weidong. Enhancing oil recovery of ultimate water-cut reservoirs with a novel methane-producing bacterial strain[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2024, 46(2): 412-419. doi: 10.11781/sysydz202402412
Citation: DING Mingshan, LIN Junzhang, FENG Yun, SUN Nan, WANG Guan, BA Yan, WANG Weidong. Enhancing oil recovery of ultimate water-cut reservoirs with a novel methane-producing bacterial strain[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2024, 46(2): 412-419. doi: 10.11781/sysydz202402412

新型产甲烷菌系提高极限含水油藏采收率技术

doi: 10.11781/sysydz202402412
基金项目: 

国家重点研发计划“油田采油生物制剂研发及应用” 2022YFC2105200

详细信息
    作者简介:

    丁明山(1985—),男,博士,副研究员,从事微生物采油技术研究。E-mail: dingmingshan.slyt@sinopec.com

    通讯作者:

    汪卫东(1967—),男,博士,教授级高级工程师,从事微生物采油技术研究。E-mail: wangweidong168.slyt@sinopec.com

  • 中图分类号: TE357

Enhancing oil recovery of ultimate water-cut reservoirs with a novel methane-producing bacterial strain

  • 摘要: 我国东部老油田已整体进入特高含水开发阶段,呈含水上升快、采油速度低、水驱效益低等开发特征,现有提高采收率技术已无法实现原油的经济采出,亟需建立接替技术。为此,以胜利油田某聚驱后油藏为试验区,开展了油藏菌群结构分析、新型产甲烷菌系的激活产气、油藏适应性及驱油性能研究,探索新型产甲烷菌系在这类油藏的应用潜力。研究结果显示,试验区油藏具有丰富的石油烃降解菌,有利于生物气化技术的实施。模拟试验区油藏条件下,新型产甲烷菌系与油藏内源微生物有较好的相容性,90 d每克原油的产气量达到3.12 mmol,是单独激活油藏微生物产气量的4.5倍,且产生的气体中甲烷气占比达到78%。菌群结构分析显示,新型产甲烷菌系占比达到35.9%,是产气速率大幅提升的关键。适应性研究结果显示,在油藏温度低于65 ℃、原油黏度小于1 356 mPa·s条件下,新型产甲烷菌系均展示了良好的产气性能。利用实验室设计的物理模型,评价了该菌系产气提高驱油性能,结果显示,注入该菌系后产气作用有效动用了模型顶部的剩余油,极限含水条件下驱油效率提高5.4个百分点;在此基础上提出了生物气化技术提高极限含水油藏采收率的机理。

     

  • 图  1  物理模拟实验模型

    Figure  1.  Model for physical simulation experiment

    图  2  试验区水井和油井油藏微生物属水平丰度

    Figure  2.  Genus-level relative abundance of reservoir microbial communities from water wells and oil wells in experimental area

    图  3  不同激活条件下原油产甲烷气能力监测(实验温度为55 ℃)

    Figure  3.  Methane production rate under different activation conditions (at experimental temperature of 55 ℃)

    图  4  不同激活条件下气体组成分析(90 d)

    Figure  4.  Gas composition under different activation conditions (90 days)

    图  5  不同激活条件下微生物属水平丰度

    Figure  5.  Genus-level relative abundance of microbial communities under different activation conditions

    图  6  不同实验温度条件下原油产气效率对比

    Figure  6.  CH4 generation rate under different temperatures

    图  7  新型产甲烷菌系利用不同黏度原油降解产甲烷气效率

    Figure  7.  CH4 generation rate by using novel methane-producing bacterial strain under different crude oil viscosities

    图  8  不同激活条件下压力变化(a)和物理模拟驱油效率(b)

    Figure  8.  Effect of activation conditions on pressure change (a) and displacement efficiency under physical simulation (b)

    图  9  生物气化提高驱油效率原理

    Figure  9.  Schematic diagram of biogasification on improving oil displacement efficiency

    表  1  试验区块配注水和产出液的组成性质

    Table  1.   Composition and properties of injected water and produced liquid in experimental area mg/L

    实验用水 Ca2+ Mg2+ HCO3- Cl- SO42- K++Na+ 总矿化度 pH
    配注水 294 23 532 4 057 46 4 047 9 362 7.0
    产出液 358 85 494 4 103 128 3 969 9 706 7.2
    下载: 导出CSV

    表  2  激活实验配方设计

    Table  2.   Formulation design of activation experiment

    编号 配方构成
    1# 地层水+无机培养基
    2# 地层水+无机培养基+原油
    3# 地层水+无机培养基+新型产甲烷菌系
    4# 地层水+无机培养基+原油+新型产甲烷菌系
    下载: 导出CSV

    表  3  物理模型的基本参数

    Table  3.   Basic parameters of physical model

    编号 PV/mL 填砂/g 含油量/g 平均含油饱和度/% 渗透率/10-3μm2
    1号 89 912 259.2 34.4 1 205
    2号 91 921 255.6 34.6 1 231
    3号 84 908 254.0 33.9 1 197
    下载: 导出CSV
  • [1] 王增林, 李鹏, 魏芳, 等. 胜利油田特高含水期化学防砂技术进展[J]. 油田化学, 2021, 38(3): 560-563. https://www.cnki.com.cn/Article/CJFDTOTAL-YJHX202103032.htm

    WANG Zenglin, LI Peng, WEI Fang, et al. Progress of chemical sand control technology used in Shengli oilfield at ultra-high water-cut period[J]. Oilfield Chemistry, 2021, 38(3): 560-563. https://www.cnki.com.cn/Article/CJFDTOTAL-YJHX202103032.htm
    [2] 杨清立. 大庆喇萨杏油田特高含水期油藏开发调整对策[J]. 长江大学学报(自然科学版), 2019, 16(8): 31-35. https://www.cnki.com.cn/Article/CJFDTOTAL-CJDL201908007.htm

    YANG Qingli. Countermeasures for reservoir development adjustment in extra-high water-cut period of Daqing Lasaxing oilfield[J]. Journal of Yangtze University (Natural Science Edition), 2019, 16(8): 31-35. https://www.cnki.com.cn/Article/CJFDTOTAL-CJDL201908007.htm
    [3] 姜岩, 李雪松, 付宪弟. 特高含水老油田断层表征及剩余油高效挖潜[J]. 大庆石油地质与开发, 2019, 38(5): 246-253. https://www.cnki.com.cn/Article/CJFDTOTAL-DQSK201905032.htm

    JIANG Yan, LI Xuesong, FU Xiandi. Fault characterizing and high-efficiency potential tapping of the remained oil for extra-high-watercut mature oilfields[J]. Petroleum Geology & Oilfield Development in Daqing, 2019, 38(5): 246-253. https://www.cnki.com.cn/Article/CJFDTOTAL-DQSK201905032.htm
    [4] 谭河清, 傅强, 李林祥, 等. 基于流线数值模拟研究高含水后期油田的剩余油分布[J]. 成都理工大学学报(自然科学版), 2017, 44(1): 30-35. doi: 10.3969/j.issn.1671-9727.2017.01.04

    TAN Heqing, FU Qiang, LI Linxiang, et al. Application of streamline numerical simulation method to study of remaining oil distribution in high water-cut stage oilfield[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2017, 44(1): 30-35. doi: 10.3969/j.issn.1671-9727.2017.01.04
    [5] XING Dong, LI Yongfeng, WEI Li, et al. Current situation and prospect of microbial residual oil gasification[J]. Applied Mechanics and Materials, 2013, 295-298: 21-25. doi: 10.4028/www.scientific.net/AMM.295-298.21
    [6] 汪卫东, 王静, 耿雪丽, 等. 储层残余油生物气化技术现状与展望[J]. 石油地质与工程, 2012, 26(1): 78-81. https://www.cnki.com.cn/Article/CJFDTOTAL-SYHN201201028.htm

    WANG Weidong, WANG Jing, GENG Xueli, et al. State of the art and prospect of the biogasification of the resudial oil[J]. Petroleum Geology and Engineering, 2012, 26(1): 78-81. https://www.cnki.com.cn/Article/CJFDTOTAL-SYHN201201028.htm
    [7] JONES D M, HEAD I M, GRAY N D, et al. Crude-oil biodegradation via methanogenesis in subsurface petroleum reservoirs[J]. Nature, 2008, 451(7175): 176-180. doi: 10.1038/nature06484
    [8] SHERRY A, GRANT R J, AITKEN C M, et al. Volatile hydrocarbons inhibit methanogenic crude oil degradation[J]. Frontiers in Microbiology, 2014, 5: 131.
    [9] 王立影, MAURICE M S, 李辉, 等. 石油烃的厌氧生物降解对油藏残余油气化开采的启示[J]. 微生物学通报, 2010, 37(1): 96-102. https://www.cnki.com.cn/Article/CJFDTOTAL-WSWT201001023.htm

    WANG Liying, MAURICE M S, LI Hui, et al. Anaerobic biodegradation of petroleum hydrocarbons and enlightenment of the prospects for gasification of residual oil[J]. Microbiology China, 2010, 37(1): 96-102. https://www.cnki.com.cn/Article/CJFDTOTAL-WSWT201001023.htm
    [10] ZHOU Zhuo, ZHANG Cuijing, LIU Pengfei, et al. Non-syntrophic methanogenic hydrocarbon degradation by an archaeal species[J]. Nature, 2022, 601(7892): 257-262. doi: 10.1038/s41586-021-04235-2
    [11] 胡婧, 束青林, 孙刚正, 等. 油藏内源微生物演替规律及其对驱油效果的影响[J]. 中国石油大学学报(自然科学版), 2019, 43(1): 108-114. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDX201901013.htm

    HU Jing, SHU Qinglin, SUN Gangzheng, et al. Succession of indigenous microbe in reservoirs and its effect on displacement efficiency[J]. Journal of China University of Petroleum (Edition of Natural Science), 2019, 43(1): 108-114. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDX201901013.htm
    [12] 宋永亭, 胡婧, 吴晓玲, 等. 室温条件下油藏采出液微生物群落结构稳定性[J]. 应用与环境生物学报, 2017, 23(3): 495-501. https://www.cnki.com.cn/Article/CJFDTOTAL-YYHS201703016.htm

    SONG Yongting, HU Jing, WU Xiaoling, et al. Stability of microbial community structure in reservoir water samples at room temperature[J]. Chinese Journal of Applied Environmental Biology, 2017, 23(3): 495-501. https://www.cnki.com.cn/Article/CJFDTOTAL-YYHS201703016.htm
    [13] 刘明艳, 马嘉晗, 李瑜, 等. 16s rRNA基因高变区V4和V3-V4及测序深度对油藏细菌菌群分析的影响[J]. 微生物学通报, 2020, 47(2): 440-449. https://www.cnki.com.cn/Article/CJFDTOTAL-WSWT202002011.htm

    LIU Mingyan, MA Jiahan, LI Yu, et al. Influence of 16S rRNA gene V4 and V3-V4 sequencing and sequencing depth on unraveling bacterial communities inhabiting oil reservoirs[J]. Microbio-logy China, 2020, 47(2): 440-449. https://www.cnki.com.cn/Article/CJFDTOTAL-WSWT202002011.htm
    [14] 李彩风, 李阳, 曹嫣镔, 等. 油藏环境产脂肽类表面活性剂微生物的分布[J]. 石油学报, 2015, 36(9): 1122-1126. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201509010.htm

    LI Caifeng, LI Yang, CAO Yanbin, et al. Distribution of the lipopeptide biosurfactant-producing microbes in oil reservoir environment[J]. Acta Petrolei Sinica, 2015, 36(9): 1122-1126. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201509010.htm
    [15] 苏俊杰, 高光军, 宋永亭, 等. 胜利油田单12区块内源微生物分子生态研究[J]. 石油钻采工艺, 2006, 28(1): 37-40. https://www.cnki.com.cn/Article/CJFDTOTAL-SYZC200601010.htm

    SU Junjie, GAO Guangjun, SONG Yongting, et al. Research on indigenous microbe molecule ecology of Dan-12 block in Shengli oilfield[J]. Oil Drilling & Production Technology, 2006, 28(1): 37-40. https://www.cnki.com.cn/Article/CJFDTOTAL-SYZC200601010.htm
    [16] 李方玲, 张雅坤, 梁立宝, 等. 石油污染环境中固氮和寡氮营养细菌的分离鉴定及其特性[J]. 微生物学报, 2022, 62(2): 661-671. https://www.cnki.com.cn/Article/CJFDTOTAL-WSXB202202021.htm

    LI Fangling, ZHANG Yakun, LIANG Libao, et al. Identification and characterization of nitrogen-fixing bacteria and oligotrophic-nitrogen bacteria from the polluted petroleum[J]. Acta Microbiologica Sinica, 2022, 62(2): 661-671. https://www.cnki.com.cn/Article/CJFDTOTAL-WSXB202202021.htm
    [17] 孔祥平, 包木太, 马代鑫, 等. 油田水中细菌群落分析[J]. 油田化学, 2003, 20(4): 372-376. https://www.cnki.com.cn/Article/CJFDTOTAL-YJHX200304025.htm

    KONG Xiangping, BAO Mutai, MA Daixin, et al. Analysis of bacterial communities in oilfield produced waters[J]. Oilfield Chemistry, 2003, 20(4): 372-376. https://www.cnki.com.cn/Article/CJFDTOTAL-YJHX200304025.htm
    [18] FUENTES-JAIME J, VARGAS-SUÁREZ M, CRUZ-GÓMEZ M J, et al. Concerted action of extracellular and cytoplasmic esterase and urethane-cleaving activities during impranil biodegradation by Alicycliphilus denitrificans BQ1[J]. Biodegradation, 2022, 33(4): 389-406. doi: 10.1007/s10532-022-09989-8
    [19] 张坤成, 陶惟一, 李霜. 芽孢杆菌Bacillus cereus BC-1的烃降解特性研究[J]. 南京工业大学学报(自然科学版), 2022, 44(4): 458-463. https://www.cnki.com.cn/Article/CJFDTOTAL-NHXB202204014.htm

    ZHANG Kuncheng, TAO Weiyi, LI Shuang. Hydrocarbon degradation characteristics of Bacillus cereus BC-1[J]. Journal Nanjing Technology Unversity (Natural Science Edition), 2022, 44(4): 458-463. https://www.cnki.com.cn/Article/CJFDTOTAL-NHXB202204014.htm
    [20] 覃千山. 基于宏基因组的未培养互营烃降解菌'Candidatus Smithella cisternae'的生物信息学研究[D]. 北京: 中国农业科学院, 2015.

    QIN Qianshan. The bioinformatic analysis of unclutured syntrophic alkane-degrading bacteria 'Candidatus Smithella cisternae' based on metagenomic[D]. Beijing: Chinese Academy of Agricultural Sciences, 2015.
    [21] 丁晨, 承磊, 何乔, 等. 互营烃降解菌系M82的脂肪酸降解特性[J]. 微生物学报, 2014, 54(11): 1369-1377. https://www.cnki.com.cn/Article/CJFDTOTAL-WSXB201411017.htm

    DING Chen, CHENG Lei, HE Qiao, et al. Degradation of fatty acid by syntrophic hydrocarbon-degrading consortium M82[J]. Acta Microbiologica Sinica, 2014, 54(11): 1369-1377. https://www.cnki.com.cn/Article/CJFDTOTAL-WSXB201411017.htm
    [22] GRAY N D, SHERRY A, LARTER S R, et al. Biogenic methane production in formation waters from a large gas field in the North Sea[J]. Extremophiles, 2009, 13(3): 511-519. doi: 10.1007/s00792-009-0237-3
    [23] 冯庆贤, 陈智宇. 耐高温采油微生物的研究与应用[J]. 石油勘探与开发, 2000, 27(3): 50-52. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK200003015.htm

    FENG Qingxian, CHEN Zhiyu. Study and application of endurant high temperature bacteria[J]. Petroleum Exploration and Deve-lopment, 2000, 27(3): 50-52. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK200003015.htm
    [24] 胡见义, 牛嘉玉. 中国重油沥青资源的形成与分布[J]. 石油与天然气地质, 1994, 15(2): 105-112. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT402.000.htm

    HU Jianyi, NIU Jiayu. Formation and distribution of heavy oil bitumen resources in China[J]. Oil & Gas Geology, 1994, 15(2): 105-112. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT402.000.htm
    [25] LAETER S, HUANG Haiping, ADAMS J, et al. A practical biode-gradation scale for use in reservoir geochemical studies of biodegraded oils[J]. Organic Geochemistry, 2012, 45: 66-76. doi: 10.1016/j.orggeochem.2012.01.007
    [26] 李秉繁, 刘刚, 陈雷. CH4在原油体系中溶解规律及影响机理[J]. 化工进展, 2021, 40(8): 4205-4222. https://www.cnki.com.cn/Article/CJFDTOTAL-HGJZ202108012.htm

    LI Bingfan, LIU Gang, CHEN Lei. Dissolution of CH4 in the crude oil system: behaviors and mechanisms[J]. Chemical Industry and Engineering Progress, 2021, 40(8): 4205-4222. https://www.cnki.com.cn/Article/CJFDTOTAL-HGJZ202108012.htm
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  202
  • HTML全文浏览量:  100
  • PDF下载量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-25
  • 修回日期:  2024-01-26
  • 刊出日期:  2024-03-28

目录

    /

    返回文章
    返回