留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

四川盆地复兴地区凉高山组陆相页岩有机质孔隙发育特征及主控因素

王鹏威 申宝剑 刘忠宝 李敏 李倩文 戎佳 王倩茹

王鹏威, 申宝剑, 刘忠宝, 李敏, 李倩文, 戎佳, 王倩茹. 四川盆地复兴地区凉高山组陆相页岩有机质孔隙发育特征及主控因素[J]. 石油实验地质, 2024, 46(3): 499-509. doi: 10.11781/sysydz202403499
引用本文: 王鹏威, 申宝剑, 刘忠宝, 李敏, 李倩文, 戎佳, 王倩茹. 四川盆地复兴地区凉高山组陆相页岩有机质孔隙发育特征及主控因素[J]. 石油实验地质, 2024, 46(3): 499-509. doi: 10.11781/sysydz202403499
WANG Pengwei, SHEN Baojian, LIU Zhongbao, LI Min, LI Qianwen, RONG Jia, WANG Qianru. Characteristics and main controlling factors of organic pore development in continental shales of the Lianggaoshan Formation in the Fuxing area, Sichuan Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2024, 46(3): 499-509. doi: 10.11781/sysydz202403499
Citation: WANG Pengwei, SHEN Baojian, LIU Zhongbao, LI Min, LI Qianwen, RONG Jia, WANG Qianru. Characteristics and main controlling factors of organic pore development in continental shales of the Lianggaoshan Formation in the Fuxing area, Sichuan Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2024, 46(3): 499-509. doi: 10.11781/sysydz202403499

四川盆地复兴地区凉高山组陆相页岩有机质孔隙发育特征及主控因素

doi: 10.11781/sysydz202403499
基金项目: 

国家自然科学基金面上项目 42272143

中国石化科技攻关项目 P22137

详细信息
    作者简介:

    王鹏威(1986—),男,博士、副研究员,从事非常规油气地质研究。E-mail: wangpw.syky@sinopec.com

  • 中图分类号: TE122.23

Characteristics and main controlling factors of organic pore development in continental shales of the Lianggaoshan Formation in the Fuxing area, Sichuan Basin

  • 摘要: 四川盆地复兴地区侏罗系凉高山组发育一套典型的中高成熟度陆相页岩凝析油藏。针对处于凝析油阶段的页岩储层中有机孔发育特征及发育规律的研究比较薄弱,采用全岩光片有机显微组分鉴定、氩离子抛光—扫描电镜观察和能谱测量等实验方法,分析了复兴地区凉高山组页岩有机质孔隙发育特征及主控因素。研究结果表明,在高成熟演化阶段(Ro=1.30%),凉高山组陆相页岩的原始有机质和固体沥青内部发育有机质孔隙,有机质孔以纳米级孔隙为主,形状不规则,以蜂窝状聚集,局部连通形成微米级孔隙或微裂缝。有机显微组分类型是凉高山组页岩有机质孔发育的基础,相对高的有机质丰度及热演化程度是凉高山组页岩有机质孔隙发育多少的关键因素,无机矿物格架及成岩—生烃演化过程是有机质孔保存的最终保障。

     

  • 图  1  四川盆地复兴地区构造位置(a)和Z1井凉高山组地层柱状(b)

    Figure  1.  Structural location of Fuxing area in Sichuan Basin (a) and stratigraphic histogram of Lianggaoshan Formation in well Z1 (b)

    图  2  四川盆地复兴地区Z1井凉高山组页岩原生有机质内有机质孔隙镜下特征

    a-b.2 535.62 m, 原生有机质顺层分布,局部弯曲,有机质内发育孔隙,图b为图a红框部分的放大照片;c-d.2 531.65 m,原生有机质呈三角形,内部发育孔隙,图d为图c红框部分的放大照片;e.2 530.13 m,局部有机孔连通形成大孔隙;f.2 557.18 m,有机质和黏土絮状混杂在一起,有机质内可见有机孔。

    Figure  2.  Microscopic characteristics of organic pores in primary organic matter of shale at Lianggaoshan Formation in well Z1, Fuxing area, Sichuan Basin

    图  3  四川盆地复兴地区Z1井凉高山组页岩固体沥青内有机质孔镜下特征

    a.2 533.92 m, 顺层连续和断续分布的固体沥青,有机质孔发育;b.2 515.42 m,顺层连续和断续分布的固体沥青,局部发生变形,有机质孔发育;c.2 540.08 m,顺层连续和断续分布的固体沥青,有机质孔发育;d-e.2 554.18 m,块状固体沥青,有机质孔发育;f.2 552.42 m, 黄铁矿颗粒间充填沥青,有机质孔发育。

    Figure  3.  Microscopic characteristics of organic pores in bitumen in shale of Lianggaoshan Formation in well Z1, Fuxing area, Sichuan Basin

    图  4  四川盆地复兴地区Z1井凉高山组页岩干酪根碳同位素纵向变化规律

    Figure  4.  Longitudinal variation rule of kerogen carbon isotope in shale of Lianggaoshan Formation in well Z1, Fuxing area, Sichuan Basin

    图  5  四川盆地复兴地区Z1井凉高山组页岩样品光学显微镜和扫描电镜下有机显微组分特征

    a-b.2 562.52 m,黄铁矿晶间固体沥青内发育有机质孔,其他位置镜质体内部分无有机质发育,图b为图a红框部分的SEM照片;c-d.2 513.08 m,镜质体结构紧密,局部富氢组分见有机质孔隙,图d为图c红框部分的SEM照片;e-f.2 558.77 m,有机质结构紧密,局部见有机质孔隙,图f为图e红框部分的SEM照片。

    Figure  5.  Characteristics of organic macerals under optical microscope and scanning electron microscope of shale samples from Lianggaoshan Formation, well Z1, Fuxing area, Sichuan Basin

    图  6  四川盆地复兴地区Z1井凉高山组不同有机显微组分的扫描电镜照片及能量色散光谱

    a-b. 2 563.52 m,21-24代表能谱点;c-d. 2 568.76 m,8和9分别代表能谱点。

    Figure  6.  SEM photos and energy dispersion spectra of different organic macerals of Lianggaoshan Formation in well Z1, Fuxing area, Sichuan Basin

    图  7  四川盆地复兴地区Z1井凉高山组不同有机显微组分的碳元素原子含量百分比

    Figure  7.  Percentage of carbon content from different organic macerals of Lianggaoshan Formation in well Z1, Fuxing area, Sichuan Basin

    图  8  四川盆地复兴地区Z1井凉高山组页岩样品TOC与孔隙度相关关系

    Figure  8.  Correlation between TOC content and porosity of shale samples from Lianggaoshan Formation, well Z1, Fuxing area, Sichuan Basin

    图  9  四川盆地侏罗系陆相页岩与志留系海相页岩矿物含量平均值对比

    Figure  9.  Comparison of average mineral content of Jurassic continental shale and Silurian marine shale in Sichuan Basin

    图  10  不同矿物格架下有机孔发育特征

    a.Z1井,凉高山组,2 560.52 m,石英含量为44.2%,黏土矿物含量为50.2%,长石含量为4.4%,×4 000;b.Z1井,凉高山组,2 532.83 m,石英含量为38.7%,黏土矿物含量为48.8%,长石含量为10.9%,×4 000;c. Z1井,凉高山组,2 535.62 m,石英含量为34.0%,黏土矿物含量为59.0%,长石含量为6.8%,×30 000;d.XL101井,东岳庙段,2 268.9 m,石英含量为20.1%,黏土矿物含量为67.4 %,方解石含量为7.2%,×30 000。Q为石英,CL为黏土矿物,Py为黄铁矿,C为方解石,F为长石。

    Figure  10.  Organic pore development characteristics under different mineral frameworks

    图  11  四川盆地复兴地区中侏罗统凉高山组页岩成岩—生烃演化模式据参考文献[33-34]修改。

    Figure  11.  Evolution model of shale diagenesis and hydrocarbon generation in Middle Jurassic Lianggaoshan Formation in Fuxing area, Sichuan Basin

    表  1  实测四川盆地复兴地区Z1井凉高山组黏土矿物组成

    Table  1.   Measured clay mineral composition of Lianggaoshan Formation in well Z1, Fuxing area, Sichuan Basin

    样品编号 黏土矿物总量/% 伊/蒙间层(I/S) /% 伊利石(I)/ % 绿泥石(C)/ %
    1 72.6 42 28 30
    2 14.1 45 25 30
    3 65.0 48 30 22
    4 63.6 41 28 31
    5 62.6 43 31 26
    6 65.1 39 27 34
    7 64.3 39 28 33
    8 65.7 42 34 24
    9 65.2 45 29 26
    下载: 导出CSV
  • [1] 胡东风, 魏志红, 刘若冰, 等. 四川盆地拔山寺向斜泰页1井页岩油气重大突破及意义[J]. 中国石油勘探, 2021, 26(2): 21-32. doi: 10.3969/j.issn.1672-7703.2021.02.003

    HU Dongfeng, WEI Zhihong, LIU Ruobing, et al. Major breakthrough of shale oil and gas in well Taiye 1 in Bashansi Syncline in the Sichuan Basin and its significance[J]. China Petroleum Exploration, 2021, 26(2): 21-32. doi: 10.3969/j.issn.1672-7703.2021.02.003
    [2] 郭彤楼. 四川盆地北部陆相大气田形成与高产主控因素[J]. 石油勘探与开发, 2013, 40(2): 139-149. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201302001.htm

    GUO Tonglou. Key controls on accumulation and high production of large non-marine gas fields in northern Sichuan Basin[J]. Petroleum Exploration and Development, 2013, 40(2): 139-149. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201302001.htm
    [3] CURTIS M E, CARDOTT B J, SONDERGELD C H, et al. Deve-lopment of organic porosity in the Woodford shale with increasing thermal maturity[J]. International Journal of Coal Geology, 2012, 103: 26-31. doi: 10.1016/j.coal.2012.08.004
    [4] MILLIKEN K L, RUDNICKI M, AWWILLER D N, et al. Organic matter-hosted pore system, Marcellus Formation (Devonian), Pennsylvania[J]. AAPG Bulletin, 2013, 97(2): 177-200. doi: 10.1306/07231212048
    [5] XIAO Xianming, WEI Qiang, GAI Haifeng, et al. Main controlling factors and enrichment area evaluation of shale gas of the Lower Paleozoic marine strata in South China[J]. Petroleum Science, 2015, 12(4): 573-586. doi: 10.1007/s12182-015-0057-2
    [6] 李恒超, 刘大永, 彭平安, 等. 构造作用对重庆及邻区龙马溪组页岩储集空间特征的影响[J]. 天然气地球科学, 2015, 26(9): 1705-1711. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201509012.htm

    LI Hengchao, LIU Dayong, PENG Ping'an, et al. Tectonic impact on reservoir character of Chongqing and its neighbor area[J]. Natural Gas Geoscience, 2015, 26(9): 1705-1711. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201509012.htm
    [7] 马中良, 郑伦举, 徐旭辉, 等. 富有机质页岩有机孔隙形成与演化的热模拟实验[J]. 石油学报, 2017, 38(1): 23-30. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201701003.htm

    MA Zhongliang, ZHENG Lunju, XU Xuhui, et al. Thermal simulation experiment on the formation and evolution of organic pores in organic-rich shale[J]. Acta Petrolei Sinica, 2017, 38(1): 23-30. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201701003.htm
    [8] KO L T, LOUCKS R G, ZHANG Tongwei, et al. Pore and pore network evolution of Upper Cretaceous Boquillas (Eagle Ford-equivalent) mudrocks: results from gold tube pyrolysis experiments[J]. AAPG Bulletin, 2016, 100(11): 1693-1722 doi: 10.1306/04151615092
    [9] DONG Tian, HARRIS N B, MCMILLAN J M, et al. A model for porosity evolution in shale reservoirs: an example from the Upper Devonian Duvernay Formation, Western Canada Sedimentary Basin[J]. AAPG Bulletin, 2019, 103(5): 1017-1044. doi: 10.1306/10261817272
    [10] JU Yiwen, SUN Ying, TAN Jingqiang, et al. The composition, pore structure characterization and deformation mechanism of coal-bearing shales from tectonically altered coalfields in eastern China[J]. Fuel, 2018, 234: 626-642. doi: 10.1016/j.fuel.2018.06.116
    [11] 聂海宽, 张光荣, 李沛, 等. 页岩有机孔研究现状和展望[J]. 石油学报, 2022, 43(12): 1770-1787. doi: 10.7623/syxb202212008

    NIE Haikuan, ZHANG Guangrong, LI Pei, et al. Research status and prospect on organic matter pores in shale[J]. Acta Petrolei Sinica, 2022, 43(12): 1770-1787. doi: 10.7623/syxb202212008
    [12] 刘忠宝, 胡宗全, 刘光祥, 等. 四川盆地东北部下侏罗统自流井组陆相页岩储层孔隙特征及形成控制因素[J]. 石油与天然气地质, 2021, 42(1): 136-145. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202101013.htm

    LIU Zhongbao, HU Zongquan, LIU Guangxiang, et al. Pore characteristics and controlling factors of continental shale reservoirs in the Lower Jurassic Ziliujing Formation, northeastern Sichuan Basin[J]. Oil & Gas Geology, 2021, 42(1): 136-145. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202101013.htm
    [13] 王鹏威, 张亚雄, 刘忠宝, 等. 四川盆地东部涪陵地区自流井组陆相页岩储层微裂缝发育特征及其对页岩气富集的意义[J]. 天然气地球科学, 2021, 32(11): 1724-1734. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202111013.htm

    WANG Pengwei, ZHANG Yaxiong, LIU Zhongbao, et al. Microfracture development at Ziliujing lacustrine shale reservoir and its significance for shale-gas enrichment at Fuling area in eastern Sichuan Basin[J]. Natural Gas Geoscience, 2021, 32(11): 1724-1734. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202111013.htm
    [14] 宋岩, 高凤琳, 唐相路, 等. 海相与陆相页岩储层孔隙结构差异的影响因素[J]. 石油学报, 2020, 41(12): 1501-1512 doi: 10.7623/syxb202012005

    SONG Yan, GAO Fenglin, TANG Xianglu, et al. Influencing factors of pore structure differences between marine and terrestrial shale reservoirs[J]. Acta Petrolei Sinica, 2020, 41(12): 1501-1512. doi: 10.7623/syxb202012005
    [15] 高凤琳, 宋岩, 梁志凯, 等. 陆相页岩有机质孔隙发育特征及成因: 以松辽盆地长岭断陷沙河子组页岩为例[J]. 石油学报, 2019, 40(9): 1030-1044. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201909002.htm

    GAO Fenglin, SONG Yan, LIANG Zhikai, et al. Development characteristics of organic pore in the continental shale and its genetic mechanism: a case study of Shahezi Formation shale in the Changling Fault Depression of Songliao Basin[J]. Acta Petrolei Sinica, 2019, 40(9): 1030-1044. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201909002.htm
    [16] 刘忠宝, 刘光祥, 胡宗全, 等. 陆相页岩层系岩相类型、组合特征及其油气勘探意义: 以四川盆地中下侏罗统为例[J]. 天然气工业, 2019, 39(12): 10-21. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201912003.htm

    LIU Zhongbao, LIU Guangxiang, HU Zongquan, et al. Lithofacies types and assemblage features of continental shale strata and their significance for shale gas exploration: a case study of the Middle and Lower Jurassic strata in the Sichuan Basin[J]. Natural Gas Industry, 2019, 39(12): 10-21. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201912003.htm
    [17] 刘忠宝, 胡宗全, 刘光祥, 等. 高成熟陆相页岩油气源—储特征及富集层段评价方法: 以川东复兴地区侏罗系东岳庙段为例[J]. 天然气工业, 2022, 42(10): 11-24. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202210002.htm

    LIU Zhongbao, HU Zongquan, LIU Guangxiang, et al. Source-reservoir features and favorable enrichment interval evaluation methods of high mature continental shale: a case study of the Jurassic Dongyuemiao Member in the Fuxing area, eastern Sichuan Basin[J]. Natural Gas Industry, 2022, 42(10): 11-24. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202210002.htm
    [18] 王鹏威, 刘光祥, 刘忠宝, 等. 川东南—黔西北地区上二叠统龙潭组海陆过渡相页岩气富集条件及主控因素[J]. 天然气地球科学, 2022, 33(3): 431-440. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202203009.htm

    WANG Pengwei, LIU Guangxiang, LIU Zhongbao, et al. Shale gas enrichment conditions and controlling factors of Upper Permian Longtan Formation transitional shale in southeast Sichuan to northwest Guizhou[J]. Natural Gas Geoscience, 2022, 33(3): 431-440. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202203009.htm
    [19] 康广星, 徐学敏, 汪双清, 等. 古生界干酪根热演化模拟实验[J]. 天然气地球科学, 2019, 30(4): 593-602. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201904017.htm

    KANG Guangxing, XU Xuemin, WANG Shuangqing, et al. Experimental study on thermal evolution of kerogen in Paleozoic[J]. Natural Gas Geoscience, 2019, 30(4): 593-602. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201904017.htm
    [20] 黄第藩, 李晋超. 干酪根类型划分的X图解[J]. 地球化学, 1982(1): 21-30. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX198201002.htm

    HUANG Difan, LI Jinchao. X-diagram of kerogen classification and the characters of kerogen of standard humic type[J]. Geochimica, 1982(1): 21-30. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX198201002.htm
    [21] VANDENBROUCKE M, LARGEAU C. Kerogen origin, evolution and structure[J]. Organic Geochemistry, 2007, 38(5): 719-833.
    [22] 刘文平, 张成林, 高贵冬, 等. 四川盆地龙马溪组页岩孔隙度控制因素及演化规律[J]. 石油学报, 2017, 38(2): 175-184. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201702005.htm

    LIU Wenping, ZHANG Chenglin, GAO Guidong, et al. Controlling factors and evolution laws of shale porosity in Longmaxi Formation, Sichuan Basin[J]. Acta Petrolei Sinica, 2017, 38(2): 175-184. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201702005.htm
    [23] GAO Zhiye, XUAN Qixiang, HU Qinhong, et al. Pore structure evolution characteristics of continental shale in China as indicated from thermal simulation experiments[J]. AAPG Bulletin, 2021, 105(11): 2159-2180.
    [24] 王行信, 王国力, 蔡进功, 等. 有机粘土复合体与油气生成[M]. 北京: 石油工业出版社, 2006.

    WANG Xingxin, WANG Guoli, CAI Jingong, et al. Organic-clay complex and hydrocarbon generation[M]. Beijing: Petroleum Industry Press, 2006.
    [25] 卢龙飞, 刘伟新, 俞凌杰, 等. 生物蛋白石早期成岩相变特征及对硅质页岩孔隙发育与孔径分布的影响[J]. 石油实验地质, 2020, 42(3): 363-370. doi: 10.11781/sysydz202003363

    LU Longfei, LIU Weixin, YU Lingjie, et al. Early diagenesis characteristics of biogenic opal and its influence on porosity and pore network evolution of siliceous shale[J]. Petroleum Geology & Experiment, 2020, 42(3): 363-370. doi: 10.11781/sysydz202003363
    [26] 刘忠宝, 胡宗全, 刘光祥, 等. 陆相页岩源—储耦合特征及发育模式: 以四川盆地侏罗系自流井组为例[J]. 海相油气地质, 2022, 27(3): 271-280. https://www.cnki.com.cn/Article/CJFDTOTAL-HXYQ202203005.htm

    LIU Zhongbao, HU Zongquan, LIU Guangxiang, et al. Source-reservoir coupling characteristics and development model of continental shale: taking the Jurassic Ziliujing Formation in Sichuan Basin as an example[J]. Marine Origin Petroleum Geology, 2022, 27(3): 271-280. https://www.cnki.com.cn/Article/CJFDTOTAL-HXYQ202203005.htm
    [27] WANG Pengwei, LIU Zhongbao, CHEN Xiao, et al. Impact of coexist-ing clay minerals and organic matter on pore growth in the Lower Jurassic Da'anzhai lacustrine shale reservoir in the northeast Sichuan Basin, West China[J]. Interpretation, 2021, 9(2): T373- T384.
    [28] 张永刚, 蔡进功, 许卫平, 等. 泥质烃源岩中有机质富集机制[M]. 北京: 石油工业出版社, 2007: 75-76.

    ZHANG Yonggang, CAI Jingong, XU Weiping, et al. Enrichment mechanism of organic matter in argillaceous source rocks[M]. Beijing: Petroleum Industry Press, 2007: 75-76.
    [29] THENG B K G. Formation and properties of clay-polymer com plexes[M]. Amsterdam: Elsevier Scientific Pub. Co., 1979: 1-154.
    [30] 熊毅. 土壤胶体(第二册): 土壤胶体研究法[M]. 北京: 科学出版社, 1985: 1-430.

    XIONG Yi. Soil colloids (volume Ⅱ): research methods of soil colloids[M]. Beijing: Science Press, 1985: 1-430.
    [31] YARIV S, CROSS H. Organo-clay complexes and interaction[M]. New York: Marcel Dekker, 2002: 39-174.
    [32] 蔡进功, 包于进, 杨守业, 等. 泥质沉积物和泥岩中有机质的赋存形式与富集机制[J]. 中国科学(D辑地球科学), 2007, 37(2): 234-243. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200702010.htm

    CAI Jingong, BAO Yujin, YANG Shouye, et al. Research on preservation and enrichment mechanisms of organic matter in muddy sediment and mudstone[J]. Science in China(Series D Earth Sciences), 2007, 50(5): 765-775. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200702010.htm
    [33] GILES M R, INDRELID S L, KUSZNIR N J, et al. Charge and overpressure modelling in the North Sea: multi-dimensional modelling and uncertainty analysis[J]. Geological Society, London, Petroleum Geology Conference Series, 1999, 5: 1313-1324.
    [34] 傅家谟, 刘德汉, 盛国英. 煤成烃地球化学[M]. 北京: 科学出版社, 1990: 52-76.

    FU Jiamo, LIU Dehan, SHENG Guoying. Geochemistry of coal derived hydrocarbons[M]. Beijing: Science Press, 1990: 52-76.
    [35] 赵杏媛, 何东博. 黏土矿物与页岩气[J]. 新疆石油地质, 2012, 33(6): 643-647. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD201206004.htm

    ZHAO Xingyuan, HE Dongbo. Clay minerals and shale gas[J]. Xinjiang Petroleum Geology, 2012, 33(6): 643-647. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD201206004.htm
    [36] 王鹏威, 陈筱, 刘忠宝, 等. 海相富有机质页岩储层压力预测方法: 以涪陵页岩气田上奥陶统五峰组—下志留统龙马溪组页岩为例[J]. 石油与天然气地质, 2022, 43(2): 467-476. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202202018.htm

    WANG Pengwei, CHEN Xiao, LIU Zhongbao, et al. Reservoir pressure prediction for marine organic-rich shale: a case study of the Upper Ordovician Wufeng-Lower Silurian Longmaxi shale in Fuling Shale Gas Field, NE Sichuan Basin[J]. Oil & Gas Geology, 2022, 43(2): 467-476. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202202018.htm
    [37] 聂海宽, 何治亮, 刘光祥, 等. 四川盆地五峰组—龙马溪组页岩气优质储层成因机制[J]. 天然气工业, 2020, 40(6): 31-41. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202006004.htm

    NIE Haikuan, HE Zhiliang, LIU Guangxiang, et al. Genetic mechanism of high-quality shale gas reservoirs in the Wufeng-Longmaxi Fms in the Sichuan Basin[J]. Natural Gas Industry, 2020, 40(6): 31-41. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202006004.htm
    [38] 李敏, 刘雅利, 冯动军, 等. 中国海相页岩气资源潜力及未来勘探方向[J]. 石油实验地质, 2023, 45(6): 1097-1108. doi: 10.11781/sysydz2023061097

    LI Min, LIU Yali, FENG Dongjun, et al. Potential and future exploration direction of marine shale gas resources in China[J]. Petro-leum Geology & Experiment, 2023, 45(6): 1097-1108. doi: 10.11781/sysydz2023061097
    [39] 王道军, 陈超, 刘珠江, 等. 四川盆地复兴地区侏罗系纹层型页岩油气富集主控因素[J]. 石油实验地质, 2024, 46(2): 319-332. doi: 10.11781/sysydz202402319

    WANG Daojun, CHEN Chao, LIU Zhujiang, et al. Main controlling factors for oil and gas enrichment in Jurassic laminated shale in Fuxing area of Sichuan Basin[J]. Petroleum Geology & Experiment, 2024, 46(2): 319-332. doi: 10.11781/sysydz202402319
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  676
  • HTML全文浏览量:  348
  • PDF下载量:  46
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-25
  • 修回日期:  2024-04-02
  • 刊出日期:  2024-05-28

目录

    /

    返回文章
    返回