Critical dynamic conditions for gas migration in tight sandstone
-
摘要: 物理模拟是认识地下油气运移和聚集机理的重要方法和手段,为了更深入地认识深层条件下致密储层天然气运移的机理,以延安气田上古生界山西组致密砂岩气为例,设计了实验模型和边界条件。基于超低渗岩石多相渗流核磁共振在线模拟实验,探讨致密砂岩中天然气运移的临界压力、临界物性动力学条件,进而分析影响天然气运聚的控制因素。选取山西组不同砂岩类型包括石英净砂岩、富石英低塑性颗粒岩屑石英砂岩、富塑性颗粒岩屑砂岩和富凝灰质杂基石英砂岩样品,代表不同孔渗分布区间的岩石相储层,进行了恒定低注入流量、不同流速(流量)和不同压差充注实验。结果表明,致密砂岩储层的临界充注压力主要受岩石相和渗透率控制,渗透率较高的优势岩石相具有更低的临界充注压力,石英净砂岩天然气临界注入压力一般小于1.2 MPa,即使是物性很差的富塑性颗粒岩屑砂岩和富凝灰质杂基石英砂岩的天然气临界注入压力一般也小于1.5 MPa。同时,致密砂岩也没有绝对的天然气充注物性下限,但致密砂岩的充注效率、含气饱和度与储层物性,尤其是渗透率呈正相关,优势岩石相越发育、渗透率越高,充注效率和含气饱和度也越高。Abstract: Physical simulation serves as a crucial method for understanding the mechanisms of underground oil and gas migration and accumulation. To gain a deeper understanding of gas migration mechanisms in tight reservoirs under deep geological conditions, experimental models and boundary conditions were designed using the tight sandstone gas reservoirs of the Upper Paleozoic Shanxi Formation in the Yan'an Gas Field as a case study. Based on ultra-low permeability rock multiphase flow nuclear magnetic resonance online simulation experiments, the study investigated the critical pressure and dynamic conditions governing gas migration in tight sandstone, while also analyzing the factors influencing gas migration and accumulation. Different types of sandstones from the Shanxi Formation were selected, including quartz clean sandstone, quartz-rich low-plasticity particle detrital quartz sandstone, plastic particle-rich detrital sandstone, and tuffaceous matrix-rich quartz sandstone samples, representing reservoir rock facies with different porosity and permeability distributions. Experiments with constant low injection flow rates, different flow velocities (flow rates), and different pressure differences were conducted. The findings indicate that the critical charging pressure of tight sandstone reservoirs is primarily influenced by rock facies and permeability. Dominant rock facies with higher permeability exhibit lower critical charging pressures. For instance, the critical injection pressure of pure quartz sandstone gas typically falls below 1.2 MPa, while it generally remains below 1.5 MPa even for plastic-rich granular lithic sandstones and tuff-rich hybridquartz sandstones with inferior physical properties. Furthermore, there exists no absolute lower limit for the gas charging physical properties of tight sandstone. However, the charging efficiency and gas saturation of tight sandstone are positively correlated with reservoir physical properties, particularly permeability. The more developed the dominant rock facies and the higher the permeability, the higher the charging efficiency and gas saturation.
-
表 1 鄂尔多斯盆地延安气田山西组不同物性系列恒流速实验结果统计
Table 1. Statistics of series results of experiments with different physical properties at a constant flow rate of Shanxi Formation, Yan'an Gas Field, Ordos Basin
岩心编号 孔隙度/% 渗透率/10-3 μm2 岩石相 P临界/MPa P准稳定/MPa 饱和度(Sg)/% 驱替时间/min Y18 4.33 0.040 富凝灰质杂基石英砂岩 0.94 10.55 8.06 610 Y19 3.92 0.011 富凝灰质杂基石英砂岩 1.08 12.05 10.65 500 Y31 5.31 0.044 富塑性颗粒岩屑砂岩 0.90 11.70 7.60 900 Y32 3.12 0.012 富塑性颗粒岩屑砂岩 1.06 10.04 9.08 500 Y33 6.20 0.010 富塑性颗粒岩屑砂岩 1.25 9.11 17.09 490 Y34 5.59 0.020 富塑性颗粒岩屑砂岩 0.99 7.09 17.74 530 Y35 6.30 0.026 富塑性颗粒岩屑砂岩 0.98 11.23 10.03 550 Y36 3.69 0.013 富塑性颗粒岩屑砂岩 1.24 9.37 8.91 510 Y37 5.51 0.050 富塑性颗粒岩屑砂岩 1.01 4.06 14.06 650 Y40 7.06 0.129 贫塑性颗粒岩屑石英砂岩 0.79 1.25 27.24 870 Y41 6.43 0.090 贫塑性颗粒岩屑石英砂岩 1.12 4.36 21.69 2 300 Y43 8.04 0.150 贫塑性颗粒岩屑石英砂岩 0.94 4.57 48.76 2 400 Y44 9.31 0.120 贫塑性颗粒岩屑石英砂岩 1.05 3.96 44.09 2 110 Y72 8.94 0.031 贫塑性颗粒岩屑石英砂岩 1.08 5.98 20.88 2 050 Y73 7.44 0.027 贫塑性颗粒岩屑石英砂岩 0.89 8.06 27.03 3 000 Y74 5.77 0.038 贫塑性颗粒岩屑石英砂岩 1.15 6.03 19.05 2 070 Y75 7.81 0.028 贫塑性颗粒岩屑石英砂岩 0.82 7.09 29.15 2 560 Y76 6.05 0.049 贫塑性颗粒岩屑石英砂岩 1.11 6.82 15.04 2 430 Y77 8.10 0.060 贫塑性颗粒岩屑石英砂岩 0.86 1.49 31.16 980 Y79 11.94 0.108 贫塑性颗粒岩屑石英砂岩 0.64 3.34 30.43 1 830 Y80 7.39 0.134 贫塑性颗粒岩屑石英砂岩 0.71 3.75 43.04 2 020 Y81 6.72 0.098 贫塑性颗粒岩屑石英砂岩 0.65 1.73 37.10 1 090 Y82 5.65 0.028 贫塑性颗粒岩屑石英砂岩 0.81 9.03 24.76 3 450 Y83 11.99 0.140 贫塑性颗粒岩屑石英砂岩 0.62 2.34 37.80 2 640 Y62 10.37 0.983 石英净砂岩 0.53 0.96 50.90 1 320 Y63 6.91 0.158 石英净砂岩 0.61 1.66 60.38 920 Y05 7.61 0.457 石英净砂岩 0.56 1.26 40.65 430 Y06 12.96 0.103 石英净砂岩 0.74 1.30 39.22 840 Y07 9.12 0.134 石英净砂岩 0.72 0.73 54.51 700 Y08 8.45 0.277 石英净砂岩 0.73 1.91 47.70 980 表 2 鄂尔多斯盆地延安气田山西组不同物性系列不同流速实验结果统计
Table 2. Statistics of results of series experiments with different physical properties at different flow rates of Shanxi Formation, Yan'An Gas Field, Ordos Basin
编号 孔隙度/% 渗透率/10-3 μm2 岩性 流速/(mL/min) P临界/MPa P准稳定/MPa 饱和度(Sg)/% 驱替时间/min Y45 8.11 0.09 贫塑性颗粒岩屑石英砂岩 0.5 0.76 1.61 24.34 420 1 0.77 3.74 29.98 360 2 0.75 8.34 39.08 300 Y46 7.60 0.12 贫塑性颗粒岩屑石英砂岩 0.5 0.64 1.07 27.30 1 740 1 0.64 2.26 32.60 1 450 2 0.63 7.30 42.20 1 320 Y09 9.07 0.44 石英净砂岩 0.5 0.63 0.97 46.88 760 1 0.58 1.73 59.04 510 2 0.65 3.04 69.43 450 Y38 6.08 0.05 富塑性颗粒岩屑砂岩 0.5 1.09 4.39 20.33 920 1 1.21 9.14 23.43 720 2 1.14 14.33 28.03 960 Y10 9.52 0.51 石英净砂岩 0.5 0.45 1.33 39.08 540 1 0.47 3.65 47.88 510 2 0.48 5.06 55.05 420 表 3 鄂尔多斯盆地延安气田山西组不同物性系列不同压差实验结果统计
Table 3. Statistics of results of series experiments with different physical properties and pressure differences of Shanxi Formation, Yan'an Gas Field, Ordos Basin
编号 孔隙度/% 渗透率/10-3 μm2 岩石相 压差/MPa 饱和度(Sg)/% Y64 8.07 0.55 石英净砂岩 1 24.90 3 33.50 6 38.70 9 43.90 Y39 5.70 0.05 富塑性颗粒岩屑砂岩 1 9.40 3 13.16 6 13.78 9 14.01 Y42 7.81 0.12 贫塑性颗粒岩屑石英砂岩 1 20.87 3 29.64 6 30.03 9 32.08 Y78 6.92 0.32 贫塑性颗粒岩屑石英砂岩 1 23.33 3 29.40 6 32.56 9 34.03 -
[1] 马永生, 蔡勋育, 云露, 等. 塔里木盆地顺北超深层碳酸盐岩油气田勘探开发实践与理论技术进展[J]. 石油勘探与开发, 2022, 49(1): 1-17. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202201001.htmMA Yongsheng, CAI Xunyu, YUN Lu, et al. Practice and theoretical and technical progress in exploration and development of Shunbei ultra-deep carbonate oil and gas field, Tarim Basin, NW China[J]. Petroleum Exploration and Development, 2022, 49(1): 1-17. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202201001.htm [2] 朱国文, 王小军, 张金友, 等. 松辽盆地陆相页岩油富集条件及勘探开发有利区[J]. 石油学报, 2023, 44(1): 110-124. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202301010.htmZHU Guowen, WANG Xiaojun, ZHANG Jinyou, et al. Enrichment conditions and favorable zones for exploration and development of continental shale oil in Songliao Basin[J]. Acta Petrolei Sinica, 2023, 44(1): 110-124. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202301010.htm [3] 付金华, 李明瑞, 张雷, 等. 鄂尔多斯盆地陇东地区铝土岩天然气勘探突破与油气地质意义探索[J]. 天然气工业, 2021, 41(11): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202111002.htmFU Jinhua, LI Mingrui, ZHANG Lei, et al. Breakthrough in the exploration of bauxite gas reservoir in Longdong area of the Ordos Basin and its petroleum geological implications[J]. Natural Gas Industry, 2021, 41(11): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202111002.htm [4] 贾承造, 庞雄奇, 宋岩. 论非常规油气成藏机理: 油气自封闭作用与分子间作用力[J]. 石油勘探与开发, 2021, 48(3): 437-452. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202103001.htmJIA Chengzao, PANG Xiongqi, SONG Yan. The mechanism of unconventional hydrocarbon formation: hydrocarbon self-containment and intermolecular forces[J]. Petroleum Exploration and Development, 2021, 48(3): 437-452. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202103001.htm [5] 赵文智, 卞从胜, 李永新, 等. 陆相页岩油可动烃富集因素与古龙页岩油勘探潜力评价[J]. 石油勘探与开发, 2023, 50(3): 455-467. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202303002.htmZHAO Wenzhi, BIAN Congsheng, LI Yongxin, et al. Enrichment factors of movable hydrocarbons in lacustrine shale oil and exploration potential of shale oil in Gulong Sag, Songliao Basin, NE China[J]. Petroleum Exploration and Development, 2023, 50(3): 455-467. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202303002.htm [6] 庞雄奇, 贾承造, 宋岩, 等. 全油气系统定量评价: 方法原理与实际应用[J]. 石油学报, 2022, 43(6): 727-759. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202206001.htmPANG Xiongqi, JIA Chengzao, SONG Yan, et al. Quantitative evaluation of whole petroleum system: principle and application[J]. Acta Petrolei Sinica, 2022, 43(6): 727-759. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202206001.htm [7] 支东明, 唐勇, 何文军, 等. 准噶尔盆地玛湖凹陷风城组常规—非常规油气有序共生与全油气系统成藏模式[J]. 石油勘探与开发, 2021, 48(1): 38-51. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202101006.htmZHI Dongming, TANG Yong, HE Wenjun, et al. Orderly coexistence and accumulation models of conventional and unconventional hydrocarbons in Lower Permian Fengcheng Formation, Mahu Sag, Junggar Basin[J]. Petroleum Exploration and Deve-lopment, 2021, 48(1): 38-51. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202101006.htm [8] 孙同文, 王芳, 王有功, 等. 海拉尔盆地贝西南地区南屯组油气侧向运移路径综合确定及运移模式探讨[J]. 特种油气藏, 2022, 29(4): 38-46. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ202204005.htmSUN Tongwen, WANG Fang, WANG Yougong, et al. Comprehensive determination of lateral migration routes and exploration of migration patterns of hydrocarbons in Nantun Formation, SW Beier Sag, Hailar Basin[J]. Special Oil & Gas Reservoirs, 2022, 29(4): 38-46. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ202204005.htm [9] 赵弟江, 江尚昆, 乔柱, 等. 稠油油藏油气运移路径刻画与成藏过程分析: 以渤海海域辽东湾坳陷LD16含油气构造为例[J]. 中国石油勘探, 2021, 26(5): 113-124. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY202105010.htmZHAO Dijiang, JIANG Shangkun, QIAO Zhu, et al. Characte-rization of migration pathway and analysis of oil accumulation process of heavy oil reservoirs: a case study of LD16 oil-bearing structure in Liaodong Bay Depression in Bohai Sea area[J]. China Petroleum Exploration, 2021, 26(5): 113-124. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY202105010.htm [10] 宋明水, 徐春华. 从烃源灶到油气田运移路径上的圈闭评价: 以济阳坳陷为例[J]. 油气地质与采收率, 2019, 26(3): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS201903001.htmSONG Mingshui, XU Chunhua. Evaluation of trap on migration pathway from hydrocarbon kitchen to oil-gas field: a case study of Jiyang Depression[J]. Petroleum Geology and Recovery Efficiency, 2019, 26(3): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS201903001.htm [11] 张立宽, 王震亮, 曲志浩, 等. 砂岩输导层内天然气运移速率影响因素的实验研究[J]. 天然气地球科学, 2007, 18(3): 342-346. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX200703004.htmZHANG Likuan, WANG Zhenliang, QU Zhihao, et al. Experiment research on influencing factors of gas migration rate in sandstone carrier beds[J]. Natural Gas Geoscience, 2007, 18(3): 342-346. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX200703004.htm [12] 林晓英, 郭春阳, 曾溅辉, 等. 低渗透砂岩天然气运移和聚集模拟实验[J]. 石油实验地质, 2014, 36(3): 370-375. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201403018.htmLIN Xiaoying, GUO Chunyang, ZENG Jianhui, et al. Experimental study on gas migration and accumulation in low-permeability sandstone reservoirs[J]. Petroleum Geology & Experiment, 2014, 36(3): 370-375. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201403018.htm [13] 范俊佳, 周海民, 柳少波. 塔里木盆地库车坳陷致密砂岩储层孔隙结构与天然气运移特征[J]. 中国科学院大学学报, 2014, 31(1): 108-116. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKYB201401017.htmFAN Junjia, ZHOU Haimin, LIU Shaobo. Pore structure and gas migration characterization of tight sandstone in Kuqa Depression of Tarim Basin[J]. Journal of University of Chinese Academy of Sciences, 2014, 31(1): 108-116. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKYB201401017.htm [14] 房涛, 张立宽, 张立强, 等. 基于核磁共振技术的致密砂岩气运移特征研究[J]. 甘肃科学学报, 2017, 29(4): 22-27. https://www.cnki.com.cn/Article/CJFDTOTAL-GSKX201704006.htmFANG Tao, ZHANG Likuan, ZHANG Liqiang, et al. Study on the migration characteristics of tight sandstone gas based on nuclear magnetic resonance[J]. Journal of Gansu Sciences, 2017, 29(4): 22-27. https://www.cnki.com.cn/Article/CJFDTOTAL-GSKX201704006.htm [15] 王若谷, 周进松, 杜永慧, 等. 鄂尔多斯盆地东南部延安气田石炭系—二叠系沉积演化模式[J]. 地质科学, 2021, 56(4): 1088-1105. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX202104007.htmWANG Ruogu, ZHOU Jinsong, DU Yonghui, et al. Deposition evolution model of the Carboniferous-Permian in Yan'an Gas Field, the southeastern Ordos Basin[J]. Chinese Journal of Geology, 2021, 56(4): 1088-1105. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX202104007.htm [16] 周进松, 乔向阳, 王若谷, 等. 鄂尔多斯盆地延安气田山西组致密砂岩气有效储层发育模式[J]. 天然气地球科学, 2022, 33(2): 195-206. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202202002.htmZHOU Jinsong, QIAO Xiangyang, WANG Ruogu, et al. Effective reservoir development model of tight sandstone gas in Shanxi Formation of Yan'an Gas Field, Ordos Basin[J]. Natural Gas Geoscience, 2022, 33(2): 195-206. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202202002.htm [17] 孙建博, 刘刚, 史鹏, 等. 延安地区山西组页岩气储层特征及资源潜力分析[J]. 非常规油气, 2023, 10(1): 44-51. https://www.cnki.com.cn/Article/CJFDTOTAL-FCYQ202301006.htmSUN Jianbo, LIU Gang, SHI Peng, et al. Reservoir characteristics and analysis of shale gas resource potential in Shanxi Formation in Yan'an area[J]. Unconventional Oil & Gas, 2023, 10(1): 44-51. https://www.cnki.com.cn/Article/CJFDTOTAL-FCYQ202301006.htm [18] 祁攀文, 薛培, 赵谦平, 等. 鄂尔多斯盆地下寺湾地区山西组页岩气储层特征与评价[J]. 非常规油气, 2019, 6(4): 10-17. https://www.cnki.com.cn/Article/CJFDTOTAL-FCYQ201904004.htmQI Panwen, XUE Pei, ZHAO Qianping, et al. Research on evaluation methods and characteristics of shale gas reservoirs in Shanxi Formation in Xiasiwan area, Ordos Basin[J]. Unconventional Oil & Gas, 2019, 6(4): 10-17. https://www.cnki.com.cn/Article/CJFDTOTAL-FCYQ201904004.htm [19] 房涛. 低渗砂岩内天然气运移机理模拟实验研究[D]. 青岛: 中国石油大学(华东), 2017.FANG Tao. Simulation experiment of gas migration mechanism in low permeability sandstone[D]. Qingdao: China University of Petroleum (East China), 2017. [20] 韩小琴, 房涛, 曹军, 等. 鄂尔多斯盆地延安气田山西组致密砂岩储层天然气充注模拟实验及含气性变化规律[J]. 天然气地球科学, 2019, 30(12): 1721-1731. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201912006.htmHAN Xiaoqin, FANG Tao, CAO Jun, et al. Simulation experiment of gas charging and gas-bearing change of tight sandstone reservoir of Shanxi Formation in Yan'an Gas Field, Ordos Basin[J]. Natural Gas Geoscience, 2019, 30(12): 1721-1731. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201912006.htm