Reservoir limits and grading evaluation criteria of tight glutenite: a case study of Cretaceous Shahezi Formation in Xujiaweizi Fault Depression, Songliao Basin
-
摘要: 徐家围子断陷下白垩统沙河子组砂砾岩储层是松辽盆地深部重要的致密气藏储层,其孔渗关系复杂,给成储界限的厘定和储层分级评价带来挑战。针对沙河子组砂砾岩储层,采用水膜厚度法、充注动力法、试气产能法和力学平衡法厘定了理论下限、成藏下限、有效渗流下限和成储上限,根据不同成岩作用主控因素下的孔渗关系确定成储界限物性值。在此基础上,结合储层微观孔隙结构差异划分储层类型,建立致密储层分级评价标准,并利用测井资料将分级评价标准进行应用,为研究区致密气甜点区优选提供依据。将沙河子组砂砾岩分为常规储层、Ⅰ—Ⅳ级致密砂砾岩储层和非储层,成储界限与分级评价结果具有很好的匹配关系。其中,常规储层孔隙度大于9%,渗透率大于0.05×10-3 μm2;Ⅰ级致密储层孔隙度为8%~9%,渗透率为(0.01~0.05)×10-3 μm2;Ⅱ级致密储层孔隙度为5%~8%,渗透率为(0.001~0.01)×10-3 μm2;Ⅲ级致密储层孔隙度为3.5%~5%,渗透率为(0.2 ~1)×10-6 μm2;Ⅳ级致密储层孔隙度为2%~3.5%,渗透率为(0.05~0.2)×10-6 μm2;非储层的孔隙度小于2%,渗透率小于0.05×10-6 μm2。致密砂砾岩气产量受控于致密储层类型;Ⅰ级、Ⅱ级致密储层是致密气高产的有利层段;徐家围子断陷北部安达—宋站地区有利储层厚度较大,为致密气勘探开发甜点区。Abstract: The Lower Cretaceous Shahezi Formation glutenite reservoirs in the Xujiaweizi Fault Depression are important tight gas reservoirs in the deep strata of the Songliao Basin. Their complex porosity and permeability relationships pose challenges to determining reservoir boundaries and evaluating reservoir grades. For the Shahezi Formation glutenite reservoirs, the water film thickness method, charge dynamics method, gas testing productivity method, and buoyancy balance method were used to determine theoretical lower limits, gas accumulation lower limits, effective flow lower limits, and reservoir-forming upper limits. The petrophysical values of the reservoir boundaries were determined based on the porosity and permeability relationships under different diagenetic controlling factors. On this basis, reservoir types were classified according to differences in microscopic pore structures, and a grading evaluation standard for tight reservoirs was established. This standard was then applied using logging data to provide a basis for selecting sweet spots in the tight gas exploration areas. The Shahezi Formation glutenite was divided into conventional reservoirs, Class Ⅰ-Ⅳ tight glutenite reservoirs, and non-reservoirs. The reservoir boundaries and classification evaluation results were well matched. Conventional reservoirs had porosity greater than 9% and permeability greater than 0.05×10-3 μm2. Class Ⅰ tight reservoirs had porosity of 8%-9% and permeability of (0.01-0.05)×10-3 μm2. Class Ⅱ tight reservoirs had porosity of 5%-8% and permeability of (0.001-0.01)×10-3 μm2. Class Ⅲ tight reservoirs had porosity of 3.5%-5% and permeability of (0.2-1)×10-3 μm2. Class Ⅳ tight reservoirs had porosity of 2%-3.5% and permeability of (0.05-0.2)×10-6 μm2. Non-reservoirs had porosity less than 2% and permeability less than 0.05×10-6 μm2. The gas production of tight glutenite was controlled by the reservoir type. Class Ⅰ and Class Ⅱ tight reservoirs were favorable high-yield layers. The thickness of favorable reservoirs in the Anda-Songzhan area of the northern Xujiaweizi Fault Depression was large, making it a sweet spot for tight gas exploration and development.
-
表 1 松辽盆地徐家围子断陷白垩系沙河子组致密砂砾岩分级评价标准及成储界限
Table 1. Grading evaluation criteria and reservoir limits of tight glutenite in Cretaceous Shahezi Formation of Xujiaweizi Fault Depression in Songliao Basin
储层分级 孔隙度/% 渗透率/10-6 μm2 界限 常规储层 >9 >50 储层上限 Ⅰ级储层 8~9 10~50 Ⅱ级储层 5~8 1~10 有效渗流下限
成藏下限
理论下限Ⅲ级储层 3.5~5 0.2~1 Ⅳ级储层 2~3.5 0.05~0.2 非储层 < 2 < 0.05 -
[1] 孙龙德, 邹才能, 贾爱林, 等. 中国致密油气发展特征与方向[J]. 石油勘探与开发, 2019, 46(6): 1015-1026. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201906002.htmSUN Longde, ZOU Caineng, JIA Ailin, et al. Development characte-ristics and orientation of tight oil and gas in China[J]. Petroleum Exploration and Development, 2019, 46(6): 1015-1026. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201906002.htm [2] 李国欣, 朱如凯. 中国石油非常规油气发展现状、挑战与关注问题[J]. 中国石油勘探, 2020, 25(2): 1-13. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY202002001.htmLI Guoxin, ZHU Rukai. Progress, challenges and key issues of unconventional oil and gas development of CNPC[J]. China Petroleum Exploration, 2020, 25(2): 1-13. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY202002001.htm [3] 邹才能, 杨智, 陶士振, 等. 纳米油气与源储共生型油气聚集[J]. 石油勘探与开发, 2012, 39(1): 13-26. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201201003.htmZOU Caineng, YANG Zhi, TAO Shizhen, et al. Nano-hydrocarbon and the accumulation in coexisting source and reservoir[J]. Petroleum Exploration and Development, 2012, 39(1): 13-26. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201201003.htm [4] 卢双舫, 李俊乾, 张鹏飞, 等. 页岩油储集层微观孔喉分类与分级评价[J]. 石油勘探与开发, 2018, 45(3): 436-444. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201803009.htmLU Shuangfang, LI Junqian, ZHANG Pengfei, et al. Classification of microscopic pore-throats and the grading evaluation on shale oil reservoirs[J]. Petroleum Exploration and Development, 2018, 45(3): 436-444. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201803009.htm [5] 周能武, 卢双舫, 王民, 等. 中国典型陆相盆地致密油成储界限与分级评价标准[J]. 石油勘探与开发, 2021, 48(5): 939-949. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202105007.htmZHOU Nengwu, LU Shuangfang, WANG Min, et al. Limits and grading evaluation criteria of tight oil reservoirs in typical continental basins of China[J]. Petroleum Exploration and Development, 2021, 48(5): 939-949. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202105007.htm [6] 田伟超, 卢双舫, 王伟明, 等. 吐哈盆地斜坡带致密储层物性上限研究[J]. 天然气地球科学, 2015, 26(11): 2107-2113. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201511011.htmTIAN Weichao, LU Shangfang, WANG Weiming, et al. Upper limits of the physical properties of tight reservoir in the slope belt of the Turpan-Hami Basin[J]. Natural Gas Geoscience, 2015, 26(11): 2107-2113. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201511011.htm [7] 曹青, 赵靖舟, 刘新社, 等. 鄂尔多斯盆地东部致密砂岩气成藏物性界限的确定[J]. 石油学报, 2013, 34(6): 1040-1048. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201306002.htmCAO Qing, ZHAO Jingzhou, LIU Xinshe, et al. Determination of physical property limits for the gas accumulation in tight sandstone reservoirs in the eastern Ordos Basin[J]. Acta Petrolei Sinica, 2013, 34(6): 1040-1048. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201306002.htm [8] 侯启军, 赵占银, 黄志龙. 松辽盆地深盆油成藏门限及勘探潜力[J]. 石油勘探与开发, 2011, 38(5): 523-529. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201105004.htmHOU Qijun, ZHAO Zhanyin, HUANG Zhilong. Accumulation threshold and exploration potential of deep basin oil in the Songliao Basin[J]. Petroleum Exploration and Development, 2011, 38(5): 523-529. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201105004.htm [9] 张鹏飞, 卢双舫, 李文浩, 等. 江汉盆地新沟嘴组页岩油储层物性下限[J]. 石油与天然气地质, 2016, 37(1): 93-100. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201601009.htmZHANG Pengfei, LU Shuangfang, LI Wenhao, et al. Lower limits of porosity and permeability of shale oil reservoirs in the Xingouzui Formation, Jianghan Basin[J]. Oil & Gas Geology, 2016, 37(1): 93-100. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201601009.htm [10] 邵长新, 王艳忠, 操应长. 确定有效储层物性下限的两种新方法及应用: 以东营凹陷古近系深部碎屑岩储层为例[J]. 石油天然气学报, 2008, 30(2): 414-416. https://www.cnki.com.cn/Article/CJFDTOTAL-JHSX200802117.htmSHAO Changxin, WANG Yanzhong, CAO Yingchang. Two new methods used to determine the low limits of effective reservoir physical properties and their applications: a case study on deep clastic reservoir of Palaeogene in Dongying Depression[J]. Journal of Oil and Gas Technology, 2008, 30(2): 414-416. https://www.cnki.com.cn/Article/CJFDTOTAL-JHSX200802117.htm [11] 耿龙祥, 曹玉珊, 易志伟, 等. 濮城油田砂岩储集层物性下限标准研究[J]. 石油勘探与开发, 1999, 26(1): 81-83. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK901.025.htmGENG Longxiang, CAO Yushan, YI Zhiwei, et al. A study on petrophysical property cutoffs of sandstone reservoirs in Pucheng oil field[J]. Petroleum Exploration and Development, 1999, 26(1): 81-83. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK901.025.htm [12] 王艳忠, 操应长, 宋国奇, 等. 试油资料在渤南洼陷深部碎屑岩有效储层评价中的应用[J]. 石油学报, 2008, 29(5): 701-706. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB200805013.htmWANG Yanzhong, CAO Yingchang, SONG Guoqi, et al. Application of production test data to evaluation of the effective reservoir in deep clastic of Bonan Sag[J]. Acta Petrolei Sinica, 2008, 29(5): 701-706. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB200805013.htm [13] 郭睿. 储集层物性下限值确定方法及其补充[J]. 石油勘探与开发, 2004, 31(5): 140-144. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK200405044.htmGUO Rui. Supplement to determining method of cut-off value of net pay[J]. Petroleum Exploration and Development, 2004, 31(5): 140-144. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK200405044.htm [14] 王伟明, 卢双舫, 田伟超, 等. 吸附水膜厚度确定致密油储层物性下限新方法: 以辽河油田大民屯凹陷为例[J]. 石油与天然气地质, 2016, 37(1): 135-140. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201601020.htmWANG Weiming, LU Shuangfang, TIAN Weichao, et al. A new method to determine porosity and permeability cutoffs of tight oil reservoirs by using thickness of adsorption water film: a case study from the Damintun Sag, Liaohe oifield[J]. Oil & Gas Geology, 2016, 37(1): 135-140. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201601020.htm [15] ZHANG Luchuan, SONG Xiaojiao, DU Yijing, et al. The upper and lower limits and grading evaluation of the Shahezi tight gas reservoirs in the Xujiaweizi Rift, northern Songliao Basin: implications from microscopic pore structures[J]. Journal of Petroleum Science and Engineering, 2022, 212: 110224. doi: 10.1016/j.petrol.2022.110224 [16] 操应长, 葸克来, 刘可禹, 等. 陆相湖盆致密砂岩油气储层储集性能表征与成储机制: 以松辽盆地南部下白垩统泉头组四段为例[J]. 石油学报, 2018, 39(3): 247-265. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201803001.htmCAO Yingchang, XI Kelai, LIU Keyu, et al. Reservoir properties characterization and its genetic mechanism for tight sandstone oil and gas reservoir in lacustrine basin: the case of the fourth member of Lower Cretaceous Quantou Formation in the southern Songliao Basin[J]. Acta Petrolei Sinica, 2018, 39(3): 247-265. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201803001.htm [17] 刘震, 刘静静, 王伟, 等. 低孔渗砂岩石油充注临界条件实验: 以西峰油田为例[J]. 石油学报, 2012, 33(6): 996-1002. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201206011.htmLIU Zhen, LIU Jingjing, WANG Wei, et al. Experimental analyses on critical conditions of oil charge for low-permeability sandstones: a case study of Xifeng oilfield, Ordos Basin[J]. Acta Petrolei Sinica, 2012, 33(6): 996-1002. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201206011.htm [18] 代金友, 林立新, 王洋, 等. 四种储层物性下限的理论探讨与实例分析[J]. 油气地质与采收率, 2022, 29(3): 29-35. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS202203004.htmDAI Jinyou, LIN Lixin, WANG Yang, et al. Theoretical discussion and case analysis of four lower limits of reservoir physical properties[J]. Petroleum Geology and Recovery Efficiency, 2022, 29(3): 29-35. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS202203004.htm [19] 刘之的, 石玉江, 周金昱, 等. 有效储层物性下限确定方法综述及适用性分析[J]. 地球物理学进展, 2018, 33(3): 1102-1109. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201803028.htmLIU Zhidi, SHI Yujiang, ZHOU Jinyu, et al. Review and applicability analysis of determining methods for the lower limit of physical properties of effective reservoirs[J]. Progress in Geophysics, 2018, 33(3): 1102-1109. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201803028.htm [20] 高梦天, 陆永潮, 杜学斌, 等. 致密砂岩多因子储层精细分级评价方法: 以东海盆地西湖凹陷渐新统花港组上段H3砂组为例[J]. 石油实验地质, 2021, 43(6): 1097-1106. doi: 10.11781/sysydz2021061097GAO Mengtian, LU Yongchao, DU Xuebin, et al. Multi-factor evaluation for fine grading of tight sandstone reservoirs: a case study from H3 sand group in the upper section of Oligocene Huagang Formation, Xihu Sag, East China Sea Basin[J]. Petroleum Geology & Experiment, 2021, 43(6): 1097-1106. doi: 10.11781/sysydz2021061097 [21] 林潼, 魏红兴, 谢亚妮. 以喉道为参数的致密砂岩气储层评价方法: 以库车坳陷迪北地区致密砂岩气为例[J]. 沉积学报, 2016, 34(5): 983-990. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201605017.htmLIN Tong, WEI Hongxing, XIE Yani. Using throat parametre to assess tight sandstone gas reservoir: a case study of Dibei tight sandstone gas in the east of Kuqa Depression[J]. Acta Sedimentologica Sinica, 2016, 34(5): 983-990. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201605017.htm [22] ZHANG Pengfei, LU Shuangfang, LI Junqian, et al. Characterization of shale pore system: a case study of Paleogene Xin'gouzui Formation in the Jianghan Basin, China[J]. Marine and Petroleum Geology, 2017, 79: 321-334. doi: 10.1016/j.marpetgeo.2016.10.014 [23] 王璟明, 肖佃师, 卢双舫, 等. 吉木萨尔凹陷芦草沟组页岩储层物性分级评价[J]. 中国矿业大学学报, 2020, 49(1): 172-183. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD202001018.htmWANG Jingming, XIAO Dianshi, LU Shuangfang, et al. Classification evaluation of shale oil reservoir physical properties in Lucaogou Formation, Jimsar Sag[J]. Journal of China University of Mining & Technology, 2020, 49(1): 172-183. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD202001018.htm [24] 肖佃师, 卢双舫, 姜微微, 等. 基于粒间孔贡献量的致密砂岩储层分类: 以徐家围子断陷为例[J]. 石油学报, 2017, 38(10): 1123-1134. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201710003.htmXIAO Dianshi, LU Shuangfang, JIANG Weiwei, et al. Classification of tight sandstone reservoirs based on the contribution of intergra-nular pores: a case study of Xujiaweizi Fault Depression[J]. Acta Petrolei Sinica, 2017, 38(10): 1123-1134. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201710003.htm [25] 陈海峰. 基于核Fisher方法的致密储层含气性识别: 以徐家围子断陷沙河子组为例[J]. 中国矿业大学学报, 2016, 45(3): 521-526. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201603014.htmCHEN Haifeng. Recognition of tight gas using kernel fisher discri-minant analysis: a case from Shahezi Formation in Xujiaweizi Depression[J]. Journal of China University of Mining & Technology, 2016, 45(3): 521-526. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201603014.htm [26] 邵曌一, 吴朝东, 张大智, 等. 松辽盆地徐家围子断陷沙河子组储层特征及控制因素[J]. 石油与天然气地质, 2019, 40(1): 101-108. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201901011.htmSHAO Zhaoyi, WU Chaodong, ZHANG Dazhi, et al. Reservoir characteristics and controlling factors of Shahezi Formation in Xujiaweizi Fault Depression, Songliao Basin[J]. Oil & Gas Geology, 2019, 40(1): 101-108. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201901011.htm [27] LU Jiamin, YANG Liang, ZHU Yingkang, et al. Pore structure and multifractal characteristics of overmature continental shale: a case study from the Xujiaweizi Fault Depression, Songliao Basin, China[J]. Geofluids, 2022, 2022: 3539482. [28] CAI Quansheng, HU Mingyi, NGIA N R, et al. Sequence stratigraphy, sedimentary systems and implications for hydrocarbon exploration in the northern Xujiaweizi Fault Depression, Songliao Basin, NE China[J]. Journal of Petroleum Science and Engineering, 2017, 152: 471-494. doi: 10.1016/j.petrol.2017.02.022 [29] 陆加敏, 刘超. 断陷盆地致密砂砾岩气成藏条件和资源潜力: 以松辽盆地徐家围子断陷下白垩统沙河子组为例[J]. 中国石油勘探, 2016, 21(2): 53-60. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201602007.htmLU Jiamin, LIU Chao. Accumulation conditions and resource potential of tight glutenite gas in fault depression basins: a case study on Lower Cretaceous Shahezi Formation in Xujiaweizi Fault Depression, Songliao Basin[J]. China Petroleum Exploration, 2016, 21(2): 53-60. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201602007.htm [30] 张大智. 利用氮气吸附实验分析致密砂岩储层微观孔隙结构特征: 以松辽盆地徐家围子断陷沙河子组为例[J]. 天然气地球科学, 2017, 28(6): 898-908. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201706010.htmZHANG Dazhi. Characterization of microscopic pore structure of tight sandstone reservoirs through nitrogen adsorption experiment: case study of Shahezi Formation in Xujiaweizi Fault Depression, Songliao Basin, China[J]. Natural Gas Geoscience, 2017, 28(6): 898-908. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201706010.htm [31] 周磊, 王永诗, 于雯泉, 等. 基于物性上、下限计算的致密砂岩储层分级评价: 以苏北盆地高邮凹陷阜宁组一段致密砂岩为例[J]. 石油与天然气地质, 2019, 40(6): 1308-1316. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201906014.htmZHOU Lei, WANG Yongshi, YU Wenquan, et al. Classification assessment of tight sandstone reservoir based on calculation of lower and upper limits of physical properties: a case study of the tight sandstone reservoir in the 1st member of Funing Formation in Gaoyou Sag, North Jiangsu Basin[J]. Oil & Gas Geology, 2019, 40(6): 1308-1316. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201906014.htm [32] 马云峰, 赵建国, 孙龙, 等. 应力作用下气藏水体微观赋存特征及渗流规律: 以鄂尔多斯盆地神木气田二叠系盒8段致密储层为例[J]. 石油实验地质, 2023, 45(3): 466-473. doi: 10.11781/sysydz202303466MA Yunfeng, ZHAO Jianguo, SUN Long, et al. Microscopic occurrence characteristics and seepage law of water bodies in gas reservoir under stress: a case study of tight reservoirs in the eighth member of Permian Shihezi Formation, Shenmu Gas Field, Ordos Basin[J]. Petroleum Geology & Experiment, 2023, 45(3): 466-473. doi: 10.11781/sysydz202303466 [33] 邹华耀, 郝芳, 李平平, 等. 四川元坝地区须家河组沥青发育分布特征及其烃源岩排烃通道标志[J]. 地球科学与环境学报, 2018, 40(1): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGX201801001.htmZOU Huayao, HAO Fang, LI Pingping, et al. Distribution and origin of the bitumen and its trace for the hydrocarbon-expelling pathway of Xujiahe Formation in Yuanba area of Sichuan, China[J]. Journal of Earth Sciences and Environment, 2018, 40(1): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGX201801001.htm [34] WASHBURN E W. The dynamics of capillary flow[J]. Physical Review, 1921, 17(3): 273-283. doi: 10.1103/PhysRev.17.273 [35] GEE M L, HEALY T W, WHITE L R. Hydrophobicity effects in the condensation of water films on quartz[J]. Journal of Colloid and Interface Science, 1990, 140(2): 450-465. doi: 10.1016/0021-9797(90)90366-V [36] 曾溅辉, 杨智峰, 冯枭, 等. 致密储层油气成藏机理研究现状及其关键科学问题[J]. 地球科学进展, 2014, 29(6): 651-661. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201406002.htmZENG Jianhui, YANG Zhifeng, FENG Xiao, et al. Study status and key scientific issue of tight reservoir oil and gas accumulation mechanism[J]. Advances in Earth Science, 2014, 29(6): 651-661. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201406002.htm [37] 孙雅雄, 张坦, 丁文龙, 等. 压汞法与数字图像分析技术在致密砂岩储层微观孔隙定量分析中的应用: 以鄂尔多斯盆地吴起油田X区块为例[J]. 石油实验地质, 2022, 44(6): 1105-1115. doi: 10.11781/sysydz2022061105SUN Yaxiong, ZHANG Tan, DING Wenlong, et al. Application of mercury intrusion method and digital image analysis in quantitative analysis of micro-scale pores in tight sandstone reservoirs: a case study of X block in Wuqi Oil Field, Ordos Basin[J]. Petroleum Geology & Experiment, 2022, 44(6): 1105-1115. doi: 10.11781/sysydz2022061105 [38] LI Kewen. More general capillary pressure and relative perme-ability models from fractal geometry[J]. Journal of Contaminant Hydrology, 2010, 111(1/4): 13-24. [39] ZHENG Jun, LIU Hongbo, WANG Keke, et al. A new capillary pressure model for fractal porous media using percolation theory[J]. Journal of Natural Gas Science and Engineering, 2017, 41: 7-16. doi: 10.1016/j.jngse.2017.02.033 [40] LI Changyong, DAI Weihua, LUO Bingfu, et al. New fractal-dimension-based relation model for estimating absolute perme-ability through capillary pressure curves[J]. Journal of Petroleum Science and Engineering, 2021, 196: 107672. doi: 10.1016/j.petrol.2020.107672