Solid-liquid organic matter interaction mechanism between kerogen and aromatic compounds
-
摘要: 地质条件下,烃源岩中最初生成的油气,达到饱和后,才能排出运移,而干酪根对烃类的吸附作用,是影响含油饱和度的重要因素。热解作用产生的烃类物质会与干酪根大分子发生相互作用,研究固体干酪根有机质对液态烃的溶解和吸附能力,可以明确烃源岩对烃类化合物的选择性滞留及生排烃特征。芳烃是石油烃类化合物的重要组成部分,在干酪根三维模型的基础上,利用Autodock软件将不同类型的芳烃化合物分子(包括苯、稠环芳烃和稠环芳烃衍生物)与不同成熟度的干酪根分子进行半柔性对接结算,计算两者结合所需的吉布斯自由能,研究芳烃化合物与干酪根结合的特征,从分子层面上研究干酪根吸附芳烃化合物的机理,揭示固—液有机质相互作用的本质。当与相同成熟度的干酪根结合时,稠环芳烃的分子质量越大、化合物中的甲基数量越多、分子缩合度越高,与干酪根分子结合所需的吉布斯自由能越低;芳烃化合物与干酪根分子之间相互作用受到芳烃的分子质量、分子缩合程度以及体系内甲基数量3个因素的影响。处于生烃高峰后,芳碳甲基含量较高的干酪根对芳烃的吸附能力较强;分子质量大、缩合度高的稠环芳烃及其衍生物与干酪根的结合能力较强;常规连接的小分子芳烃化合物在干酪根中的滞留能力较弱,更易发生排烃作用,运移富集成藏。Abstract: Under geological conditions, the initial generation of oil and gas in source rocks reaches saturation before being expelled and migrating, with the adsorption of hydrocarbons by kerogen being a key factor influencing oil saturation. The hydrocarbons produced by pyrolysis interact with kerogen macromolecules. Understanding the solvency and adsorption capacities of solid kerogen organic matter for liquid hydrocarbons can clarify the selective retention of hydrocarbons by source rocks and their characteristics in hydrocarbon generation and expulsion. Aromatic hydrocarbons are crucial components of petroleum hydrocarbons. Based on a three-dimensional model of kerogen, this study employed Autodock software to perform semi-flexible docking calculations between different types of aromatic hydrocarbon molecules (including benzene, polycyclic aromatic hydrocarbons, and their derivatives) and kerogen molecules of varying maturities. The Gibbs free energy required for their binding was calculated to study the characte-risticsof the interaction between aromatic hydrocarbons and kerogen. This study investigated the mechanism of kerogen adsorption of aromatic hydrocarbons at the molecular level, revealing the nature of solid and liquid organic matter interactions. When binding with kerogen of the same maturity, the larger the molecular weight of the polycyclic aromatic hydrocarbons, the greater the number of methyl groups in the compound, and the higher the degree of molecular condensation, the lower the Gibbs free energy required for binding with kerogen molecules. The interaction between aromatic hydrocarbons and kerogen molecules was influenced by three factors: the molecular mass of the aromatic hydrocarbons, the degree of molecular condensation, and the number of methyl groups in the system. After reaching the peak of hydrocarbon generation, kerogen with higher content of aromatic carbon methyl groups showed a stronger adsorption capacity for aromatic hydrocarbons. Polycyclic aromatic hydrocarbons and their derivatives with larger molecular mass and higher degrees of condensation demonstrated stronger binding abilities with kerogen. Conversely, smaller aromatic molecules with conventional connectivity exhibited weaker retention capacities in kerogen, making them more prone to hydrocarbon expulsion, migration, and accumulation into reservoirs.
-
表 1 吉布斯自由能计算中采用的分子对接配体
Table 1. Ligand of molecular docking used in calculating Gibbs free energy
配位体 分子模型 分子缩合度(Xbp) 稠环芳烃 苯(C6H6) 0 萘(C10H8) 0.25 蒽(C14H10) 0.40 并四苯(C18H12) 0.50 芘(C16H10) 0.60 并五苯(C22H14) 0.57 苯并芘(C20H12) 0.67 并六苯(C26H16) 0.63 C22H12 0.83 蔻(C24H12) 0.50 并七苯(C30H18) 0.67 C26H14 0.86 萘衍生物 甲基萘(C11H10) 0.25 丙基萘(C13H14) 0.25 戊基萘(C15H18) 0.25 三甲基萘(C13H14) 0.25 五甲基萘(C15H18) 0.25 表 2 准噶尔盆地二叠系芦草沟组干酪根与稠环芳烃对接结果
Table 2. Molecular docking results of kerogen with polycyclic aromatic hydrocarbons from Permian Lucaogou Formation in Junggar Basin
化合物 分子质量 连接方式 吉布斯自由能/(kJ/mol) 原始干酪根 300 ℃, Easy Ro=0.56% 340 ℃, Easy Ro=0.79% 370 ℃, Easy Ro=0.95% 400 ℃, Easy Ro=1.27% 苯(C6H6) 78 常规连接芳碳簇 -3.36 -3.59 -4.26 -4.36 -4.05 萘(C10H8) 128 -5.14 -5.56 -6.62 -5.74 -5.71 蒽(C14H10) 182 -6.62 -7.40 -7.74 -7.36 -7.08 并四苯(C18H12) 228 -8.16 -8.86 -8.79 -8.92 -8.46 并五苯(C22H14) 278 -8.74 -9.67 -9.62 -10.08 -9.31 并六苯(C26H16) 328 -10.01 -10.49 -10.22 -11.01 -9.94 并七苯(C30H18) 378 -10.79 -11.25 -10.62 -11.94 -10.23 芘(C16H10) 202 环状连接芳碳簇 -7.01 -7.83 -7.89 -7.94 -7.45 苯并芘(C20H12) 252 -8.41 -9.54 -9.44 -9.75 -9.17 C22H12 276 -8.94 -10.05 -9.65 -10.06 -9.54 C26H14 326 -9.98 -11.23 -10.71 -11.99 -10.72 蔻(C24H12) 300 -8.65 -10.43 -10.05 -10.94 -9.30 表 3 准噶尔盆地二叠系芦草沟组干酪根与萘系物对接结果
Table 3. Molecular docking results of kerogen and naphthalene derivatives from Permian Lucaogou Formation in Junggar Basin
化合物 分子质量 结构特征 吉布斯自由能/(kJ/mol) 原始干酪根 300 ℃,Easy Ro=0.56% 340 ℃,Easy Ro=0.79% 370 ℃,Easy Ro=0.95% 400 ℃,Easy Ro=1.27% 甲基萘(C11H10) 142 烷基萘 -5.6 -6.13 -6.75 -6.11 -5.99 丙基萘(C13H14) 160 -6.02 -6.61 -7.11 -6.58 -6.36 戊基萘(C15H18) 198 -6.41 -6.99 -7.09 -6.9 -6.94 三甲基萘(C13H14) 170 多甲基萘 -6.15 -6.88 -7.17 -6.71 -6.71 五甲基萘(C15H18) 198 -6.56 -7.11 -7.38 -7.34 -6.97 -
[1] LIANG Tian, ZOU Yanrong, ZHAN Zhaowen, et al. An evaluation of kerogen molecular structures during artificial maturation[J]. Fuel, 2020, 265: 116979. doi: 10.1016/j.fuel.2019.116979 [2] 王民, 余昌琦, 费俊胜, 等. 页岩油在干酪根中吸附行为的分子动力学模拟与启示[J]. 石油与天然气地质, 2023, 44(6): 1442-1452. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202306009.htmWANG Min, YU Changqi, FEI Junsheng, et al. Molecular dynamics simulation of shale oil adsorption in kerogen and its implications[J]. Oil & Gas Geology, 2023, 44(6): 1442-1452. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202306009.htm [3] 李嘉蕊, 杨智, 王兆云, 等. 准噶尔盆地玛湖凹陷二叠系风城组页岩油赋存定量表征及其主控因素[J]. 石油实验地质, 2023, 45(4): 681-692. doi: 10.11781/sysydz202304681?viewType=HTMLLI Jiarui, YANG Zhi, WANG Zhaoyun, et al. Quantitative characte-rization and main controlling factors of shale oil occurrence in Permian Fengcheng Formation, Mahu Sag, Junggar Basin[J]. Petroleum Geology & Experiment, 2023, 45(4): 681-692. doi: 10.11781/sysydz202304681?viewType=HTML [4] 侯大力, 韩鑫, 唐洪明, 等. 龙马溪组页岩干酪根表征初探及干酪根吸附特征研究[J]. 油气藏评价与开发, 2023, 13(5): 636-646. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ202305011.htmHOU Dali, HAN Xin, TANG Hongming, et al. Primary research on expression of kerogen in Longmaxi Shale and its adsorption characteristics[J]. Petroleum Reservoir Evaluation and Development, 2023, 13(5): 636-646. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ202305011.htm [5] 李晶辉, 韩鑫, 黄思婧, 等. 页岩干酪根吸附规律的分子模拟研究[J]. 油气藏评价与开发, 2022, 12(3): 455-461. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ202203007.htmLI Jinghui, HAN Xin, HUANG Sijing, et al. Molecular simulation of adsorption law for shale kerogen[J]. Petroleum Reservoir Evaluation and Development, 2022, 12(3): 455-461. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ202203007.htm [6] 钱门辉, 王绪龙, 黎茂稳, 等. 玛页1井风城组页岩含油性与烃类赋存状态[J]. 新疆石油地质, 2022, 43(6): 693-703. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD202206007.htmQIAN Menhui, WANG Xulong, LI Maowen, et al. Oil-bearing properties and hydrocarbon occurrence states of Fengcheng formation shale in Well Maye-1, Mahu sag[J]. Xinjiang Petroleum Geology, 2022, 43(6): 693-703. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD202206007.htm [7] 刘金, 王剑, 张宝真, 等. 准噶尔盆地吉木萨尔凹陷二叠系芦草沟组微—纳米孔隙页岩油原位赋存特征[J]. 石油实验地质, 2022, 44(2): 270-278. doi: 10.11781/sysydz202202270?viewType=HTMLLIU Jin, WANG Jian, ZHANG Baozhen, et al. In situ occurrence of shale oil in micro-nano pores in Permian Lucaogou Formation in Jimsar Sag, Junggar Basin[J]. Petroleum Geology & Experiment, 2022, 44(2): 270-278. doi: 10.11781/sysydz202202270?viewType=HTML [8] 杨琴, 黄亮, 周文, 等. 深层页岩伊利石孔隙中甲烷吸附相密度特征[J]. 断块油气田, 2023, 30(5): 799-807. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT202305012.htmYANG Qin, HUANG Liang, ZHOU Wen, et al. Adsorption phase density characteristics of methane in illite pores of deep shale[J]. Fault-Block Oil and Gas Field, 2023, 30(5): 799-807. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT202305012.htm [9] 李洪波, 吴智超, 张敏, 等. 吉木萨尔凹陷芦草沟组页岩油地球化学特征与运聚意义[J]. 断块油气田, 2023, 30(4): 579-585. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT202304008.htmLI Hongbo, WU Zhichao, ZHANG Min, et al. The geochemical characteristics and migration-accumulation significances of shale oil in Lucaogou Formation of Jimsar Sag[J]. Fault-Block Oil and Gas Field, 2023, 30(4): 579-585. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT202304008.htm [10] KELEMEN S R, WALTERS C C, ERTAS D, et al. Petroleum expulsion part 2. Organic matter type and maturity effects on kerogen swelling by solvents and thermodynamic parameters for kerogen from regular solution theory[J]. Energy & Fuels, 2006, 20(1): 301-308. [11] ERTAS D, KELEMEN S R, HALSEY T C. Petroleum expulsion part 1. Theory of kerogen swelling in multicomponent solvents[J]. Energy & Fuels, 2006, 20(1): 295-300. [12] HUANG Zhenkai, LIANG Tian, ZHAN Zhaowen, et al. Chemical structure evolution of kerogen during oil generation[J]. Marine and Petroleum Geology, 2018, 98: 422-436. doi: 10.1016/j.marpetgeo.2018.08.039 [13] BEHAR F, VANDENBROUCKE M. Chemical modelling of kerogens[J]. Organic Geochemistry, 1987, 11(1): 15-24. doi: 10.1016/0146-6380(87)90047-7 [14] DUAN Dandan, ZHANG Dainan, MA Xiaoxuan, et al. Chemical and structural characterization of thermally simulated kerogen and its relationship with microporosity[J]. Marine and Petroleum Geo-logy, 2018, 89: 4-13. doi: 10.1016/j.marpetgeo.2016.12.016 [15] 郭少斌, 翟刚毅, 包书景, 等. 干酪根及黏土单矿物对甲烷吸附能力的差异性[J]. 石油实验地质, 2017, 39(5): 682-685. doi: 10.11781/sysydz201705682GUO Shaobin, ZHAI Gangyi, BAO Shujing, et al. Difference of methane adsorption capacity of kerogen and clay minerals[J]. Petroleum Geology & Experiment, 2017, 39(5): 682-685. doi: 10.11781/sysydz201705682 [16] RITTER U. Solubility of petroleum compounds in kerogen: implications for petroleum expulsion[J]. Organic Geochemistry, 2003, 34(3): 319-326. doi: 10.1016/S0146-6380(02)00245-0 [17] BRAUN R L, BURNHAM A K. PMOD: a flexible model of oil and gas generation, cracking, and expulsion[J]. Organic Geochemistry, 1992, 19(1/3): 161-172. [18] CRADDOCK P R, VAN LE DOAN T, BAKE K, et al. Evolution of kerogen and bitumen during thermal maturation via semi-open pyrolysis investigated by infrared spectroscopy[J]. Energy & Fuels, 2015, 29(4): 2197-2210. [19] 孙佳楠, 梁天, 林晓慧, 等. 东营凹陷沙四上段烃源岩原油的生成与滞留动力学[J]. 地球化学, 2019, 48(4): 370-377. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX201904005.htmSUN Jianan, LIANG Tian, LIN Xiaohui, et al. Oil generation and retention kinetics from the upper Es4 source rock in the Dong-ying Depression[J]. Geochimica, 2019, 48(4): 370-377. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX201904005.htm [20] 蔡玉兰, 张馨, 邹艳荣. 溶胀: 研究石油初次运移的新途径[J]. 地球化学, 2007, 36(4): 351-356. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX200704003.htmCAI Yulan, ZHANG Xin, ZOU Yanrong. Solvent swelling: a new technique for oil primary migration[J]. Geochimica, 2007, 36(4): 351-356. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX200704003.htm [21] LIANG Tian, ZHAN Zhaowen, ZOU Yanrong, et al. Research on type Ⅰ kerogen molecular simulation and docking between kerogen and saturated hydrocarbon molecule during oil generation[J]. Chemical Geology, 2023, 617: 121263. doi: 10.1016/j.chemgeo.2022.121263