留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

气体中甲烷单组分的色谱—真空低温富集方法及其同位素分馏效应

刘清梅 李嘉成 蒋文敏 熊永强

刘清梅, 李嘉成, 蒋文敏, 熊永强. 气体中甲烷单组分的色谱—真空低温富集方法及其同位素分馏效应[J]. 石油实验地质, 2024, 46(3): 621-629. doi: 10.11781/sysydz202403621
引用本文: 刘清梅, 李嘉成, 蒋文敏, 熊永强. 气体中甲烷单组分的色谱—真空低温富集方法及其同位素分馏效应[J]. 石油实验地质, 2024, 46(3): 621-629. doi: 10.11781/sysydz202403621
LIU Qingmei, LI Jiacheng, JIANG Wenmin, XIONG Yongqiang. Chromatography-vacuum low temperature method of methane enrichment and isotopic fractionation in gas samples[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2024, 46(3): 621-629. doi: 10.11781/sysydz202403621
Citation: LIU Qingmei, LI Jiacheng, JIANG Wenmin, XIONG Yongqiang. Chromatography-vacuum low temperature method of methane enrichment and isotopic fractionation in gas samples[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2024, 46(3): 621-629. doi: 10.11781/sysydz202403621

气体中甲烷单组分的色谱—真空低温富集方法及其同位素分馏效应

doi: 10.11781/sysydz202403621
基金项目: 

国家自然科学基金项目“深层油气中甲烷团簇同位素地球化学研究” 42073065

详细信息
    作者简介:

    刘清梅(1996—),女,博士生,从事团簇同位素地球化学研究。E-mail: liuqingmei@gig.ac.cn

    通讯作者:

    熊永强(1967—),男,博士,研究员,从事分子有机地球化学研究。E-mail: xiongyq@gig.ac.cn

  • 中图分类号: TE135

Chromatography-vacuum low temperature method of methane enrichment and isotopic fractionation in gas samples

  • 摘要: 甲烷(CH4)团簇同位素分析在气候变化、能源勘探和行星生命等领域中发挥了重要作用。样品中CH4的纯度直接了影响高分辨质谱团簇同位素分析的精度和准确性。针对气样中CH4组分的富集纯化难题,根据气相色谱(GC)组分分离原理,实时监测组分峰形,进一步优化了载气线速、进样量等条件。同时,通过外标法量化回收率,GC组分分析验证纯度,保证纯化的有效性。通过优化色谱—真空低温富集制备方法,确定了IBEX系统载气最佳线速为12 mL/min,CH4进样量需小于12 mL等实验条件,可视化GC峰形确保CH4峰与相邻N2干扰峰基本分离,实现了CH4单组分的高纯富集。当气样中CH4含量小于70%而空气含量较高时,需要进行二次纯化以提高CH4纯度。讨论了5Å分子筛等吸附剂在纯化过程中可能引起CH4同位素分馏的原因,并通过适当延长CH4收集时间来消除5Å分子筛干扰。目前,该方法单次纯化过程约90 min,CH4的回收率和纯度分别为90.1%~95.7%和97.3%~98.9%,对同位素组成(δ13CVPDBδDVSMOW、Δ13CH3D和Δ12CH2D2)的差异均小于质谱仪的分析误差,几乎可以忽略不计。

     

  • 图  1  甲烷纯化系统结构示意

    Figure  1.  Schematic structure of methane purification system

    图  2  甲烷同位素分析峰形

    Figure  2.  Peak shapes of methane isotopic analysis

    图  3  纯化气样SG-1甲烷纯化回收率

    Figure  3.  Methane purification recovery rate of purified gas sample SG-1

    图  4  混合气样SG-2纯化前后气相色谱(GC)组分分析

    Figure  4.  GC component analysis of mixed gas sample SG-2 before and after purification

    图  5  气相色谱的板高与载气线速关系

    Figure  5.  Relation curve between plate height and carrier gas line speed for gas chromatography

    图  6  气相色谱峰展宽效应

    Figure  6.  Peak broadening effect in gas chromatography

    表  1  甲烷气样SG-1纯化前后同位素组成对比

    Table  1.   Comparison of isotopic composition of methane gas sample SG-1 before and after purification

    δ13CVPDB/‰ δDVSMOW/‰ Δ13CH3D/‰ Δ12CH2D2/‰ 样品数
    纯化前 -43.23 -182.78 2.65 2.14 5
    纯化后 -43.30 -182.82 2.91 1.50 5
    下载: 导出CSV

    表  2  通过改变载气线速纯化气样后甲烷回收率及纯度数据

    Table  2.   Recovery and purity data of methane after purification of gas sample by varying carrier gas line speed

    样品 体积/mL 柱温/℃ 载气流速/(mL/min) 峰面积 回收率/% 纯度/%
    O2 N2 CH4
    SG-1 6 30 30 80.8 310.2 22 372.9 82.1 98.3
    MG-20% 6 30 30 183.4 3 020.3 18 167.3 83.6 85.0
    SG-1 6 30 20 99.1 347.4 23 279.6 85.5 98.1
    MG-20% 6 30 20 187.2 1 804.5 18 913.2 87.1 90.5
    SG-1 6 30 15 145.9 408.3 24 157.7 88.7 97.8
    MG-20% 6 30 15 195.7 1 076.7 19 235.5 88.6 93.8
    SG-1 6 30 12 112.2 353.6 25 940.1 95.2 98.2
    MG-20% 6 30 12 177.3 415.1 20 831.4 95.9 97.2
    SG-1 6 30 10 136.8 348.1 25 673.3 94.2 98.1
    MG-20% 6 30 10 189.5 394.4 20 374.8 93.8 97.2
    SG-1 9 30 12 92.7 384.2 38 221.7 93.1 98.8
    SG-2 9 30 12 109.8 401.1 18 284.2 95.0 97.3
    SG-1 12 30 12 112.4 434.1 47 589.2 86.8 98.9
    SG-2 12 30 12 87.3 397.5 24 442.7 94.8 98.1
    SG-1 18 30 12 124.4 468.3 70 179.5 85.1 99.2
    SG-2 18 30 12 97.6 445.8 36 950.7 95.1 98.6
    MG-10% 8 30 12 128.4 331.3 30 912.2 94.4 98.5
    MG-20% 8 30 12 133.6 358.2 27 098.3 93.2 98.2
    MG-30% 8 30 12 115.1 3 197.8 23 289.8 91.7 87.5
    MG-30%-2nd 8 30 12 88.3 405.6 22 868.9 90.0 97.9
    MG-50% 8 30 12 150.9 5 266.9 16 851.1 93.4 75.7
    MG-50%-2nd 8 30 12 73.6 409.4 16 491.9 91.4 97.2
    注:样品名中,百分比表示气样中N2含量,“2nd”表示二次纯化。
    下载: 导出CSV

    表  3  甲烷不充分回收时同位素组成

    Table  3.   Isotopic composition of CH4 in inadequate recovery

    气样 体积/mL 采样时间/min 回收率/% 纯度/% δ13CVPDB/‰
    SG-1 6 5 36.3 98.1 -41.52
    SG-1 6 10 54.0 98.6 -42.22
    SG-1 6 17 69.4 98.4 -42.68
    SG-1 6 30 88.6 97.8 -42.89
    SG-1 6 40 90.2 98.0 -43.02
    SG-1 6 50 94.1 97.5 -43.39
    注:SG-1初始同位素组成δ13CVPDB-initial=-43.26‰。
    下载: 导出CSV
  • [1] DOUGLAS P M J, STOLPER D A, SMITH D A, et al. Diverse origins of arctic and subarctic methane point source emissions identified with multiply-substituted isotopologues[J]. Geochimica et Cosmochimica Acta, 2016, 188: 163-188. doi: 10.1016/j.gca.2016.05.031
    [2] BEAUDRY P, STEFÁNSSON A, FIEBIG J, et al. High temperature generation and equilibration of methane in terrestrial geothermal systems: evidence from clumped isotopologues[J]. Geochimica et Cosmochimica Acta, 2021, 309: 209-234. doi: 10.1016/j.gca.2021.06.034
    [3] GIUNTA T, YOUNG E D, LABIDI J, et al. Extreme methane clumped isotopologue bio-signatures of aerobic and anaerobic methanotrophy: insights from the Lake Pavin and the Black Sea sediments[J]. Geochimica et Cosmochimica Acta, 2022, 338: 34-53. doi: 10.1016/j.gca.2022.09.034
    [4] YOUNG E D, KOHL I E, SHERWOOD LOLLAR B, et al. The relative abundances of resolved l2CH2D2 and 13CH3D and mechanisms controlling isotopic bond ordering in abiotic and biotic methane gases[J]. Geochimica et Cosmochimica Acta, 2017, 203: 235-264. doi: 10.1016/j.gca.2016.12.041
    [5] 马东民, 王馨, 滕金祥, 等. 镜煤和暗煤与甲烷界面作用实验研究: 以民和盆地低阶煤为例[J]. 油气藏评价与开发, 2022, 12(4): 556-563. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ202204002.htm

    MA Dongmin, WANG Xin, TENG Jinxiang, et al. Experimental study on interfacial interaction between methane and vitrinite and durain: a case study of bituminous coal in Minhe Basin[J]. Petroleum Reservoir Evaluation and Development, 2022, 12(4): 556-563. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ202204002.htm
    [6] 杨琴, 黄亮, 周文, 等. 深层页岩伊利石孔隙中甲烷吸附相密度特征[J]. 断块油气田, 2023, 30(5): 799-807. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT202305012.htm

    YANG Qin, HUANG Liang, ZHOU Wen, et al. Adsorption phase density characteristics of methane in illite pores of deep shale[J]. Fault-Block Oil and Gas Field, 2023, 30(5): 799-807. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT202305012.htm
    [7] 毛港涛, 李治平, 王凯, 等. 全可视化双反应釜内甲烷水合物生成与分解特征研究[J]. 特种油气藏, 2023, 30(3): 73-80. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ202303009.htm

    Mao Gangtao, Li Zhiping, Wang Kai, et al. Study on the generation and decomposition characteristics of methane hydrate in Fully Visible Dual Reactor[J]. Special Oil & Gas Reservoirs, 2023, 30(3): 73-80. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ202303009.htm
    [8] 史利燕, 李卫波, 康琴琴, 等. CH4-煤吸附/解吸过程视电阻率变化的实验研究[J]. 油气藏评价与开发, 2022, 12(4): 572-579. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ202204004.htm

    SHI Liyan, LI Weibo, KANG Qinqin, et al. Experimental study on variation of apparent resistivity in CH4-coal adsorption/desorption process[J]. Petroleum Reservoir Evaluation and Development, 2022, 12(4): 572-579. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ202204004.htm
    [9] 张添锦, 王延峰, 李军, 等. 注CO2提高页岩吸附甲烷采收率核磁共振实验[J]. 特种油气藏, 2023, 30(5): 113-120. doi: 10.3969/j.issn.1006-6535.2023.05.015

    Zhang Tianjin, Wang Yanfeng, Li Jun, et al. Nuclear magnetic resonance experiment for enhanced recovery af adsorbed methane from shale through carbon dioxide injection[J]. Special Oil & Gas Reservoirs, 2023, 30(5): 113-120. doi: 10.3969/j.issn.1006-6535.2023.05.015
    [10] WHITICAR M J. Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane[J]. Chemical Geology, 1999, 161(1/3): 291-314.
    [11] EILER J M. A practical guide to clumped isotope geochemistry[J]. Geochimica et Cosmochimica Acta, 2006, 70(S18): A157.
    [12] EILER J M. "Clumped-isotope" geochemistry—The study of naturally-occurring, multiply-substituted isotopologues[J]. Earth and Planetary Science Letters, 2007, 262(3/4): 309-327.
    [13] EILER J M, CLOG M, MAGYAR P, et al. A high-resolution gas-source isotope ratio mass spectrometer[J]. International Journal of Mass Spectrometry, 2013, 335: 45-56. doi: 10.1016/j.ijms.2012.10.014
    [14] YOUNG E D, RUMBLE Ⅲ D, FREEDMAN P, et al. A large-radius high-mass-resolution multiple-collector isotope ratio mass spectrometer for analysis of rare isotopologues of O2, N2, CH4 and other gases[J]. International Journal of Mass Spectrometry, 2016, 401: 1-10. doi: 10.1016/j.ijms.2016.01.006
    [15] ONO S, WANG D T, GRUEN D S, et al. Measurement of a doubly substituted methane isotopologue, 13CH3D, by tunable infrared laser direct absorption spectroscopy[J]. Analytical Chemistry, 2014, 86(13): 6487-6494. doi: 10.1021/ac5010579
    [16] GONZALEZ Y, NELSON D D, SHORTER J H, et al. Precise measurements of 12CH2D2 by tunable infrared laser direct absorption spectroscopy[J]. Analytical Chemistry, 2019, 91(23): 14967-14974. doi: 10.1021/acs.analchem.9b03412
    [17] GILBERT A, YAMADA K, YOSHIDA N. Exploration of intramolecular 13C isotope distribution in long chain n-alkanes (C11-C31) using isotopic 13C NMR[J]. Organic Geochemistry, 2013, 62: 56-61. doi: 10.1016/j.orggeochem.2013.07.004
    [18] MARTIN G J, GUILLOU C, MARTIN M L, et al. Natural factors of isotope fractionation and the characterization of wines[J]. Journal of Agricultural and Food Chemistry, 1988, 36(2): 316-322. doi: 10.1021/jf00080a019
    [19] GILBERT A, SILVESTRE V, SEGEBARTH N, et al. The intramolecular 13C-distribution in ethanol reveals the influence of the CO2-fixation pathway and environmental conditions on the site-specific 13C variation in glucose[J]. Plant, Cell & Environment, 2011, 34(7): 1104-1112.
    [20] GILBERT A. The organic isotopologue frontier[J]. Annual Review of Earth and Planetary Sciences, 2021, 49(1): 435-464. doi: 10.1146/annurev-earth-071420-053134
    [21] STOLPER D A, SESSIONS A L, FERREIRA A A, et al. Combined 13C-D and D-D clumping in methane: methods and preliminary results[J]. Geochimica et Cosmochimica Acta, 2014, 126: 169-191. doi: 10.1016/j.gca.2013.10.045
    [22] STOLPER D A, LAWSON M, DAVIS C L, et al. Formation temperatures of thermogenic and biogenic methane[J]. Science, 2014, 344(6191): 1500-1503. doi: 10.1126/science.1254509
    [23] WANG D T, GRUEN D S, LOLLAR B S, et al. Nonequilibrium clumped isotope signals in microbial methane[J]. Science, 2015, 348(6233): 428-431. doi: 10.1126/science.aaa4326
    [24] WANG D T, WELANDER P V, ONO S. Fractionation of the methane isotopologues 13CH4, 12CH3D, and 13CH3D during aerobic oxidation of methane by Methylococcus capsulatus (Bath)[J]. Geochimica et Cosmochimica Acta, 2016, 192: 186-202. doi: 10.1016/j.gca.2016.07.031
    [25] JENNINGS W. Analytical gas chromatography[M]. Orlando: Academic Press Inc., 1987.
    [26] CHEN Zhigang, YIN Xijie, ZHOU Youping. Effects of GC temperature and carrier gas flow rate on on-line oxygen isotope measurement as studied by on-column CO injection[J]. Journal of Mass Spectrometry, 2015, 50(8): 1023-1030. doi: 10.1002/jms.3617
    [27] WERRES T, SCHMIDT T C, TEUTENBERG T. The influence of injection volume on efficiency of microbore liquid chromatography columns for gradient and isocratic elution[J]. Journal of Chromatography A, 2021, 1641: 461965. doi: 10.1016/j.chroma.2021.461965
    [28] STRАPOĆD, SCHIMMELMANN A, MASTALERZ M. Carbon isotopic fractionation of CH4 and CO2 during canister desorption of coal[J]. Organic Geochemistry, 2006, 37(2): 152-164. doi: 10.1016/j.orggeochem.2005.10.002
    [29] XIA Xinyu, TANG Yongchun. Isotope fractionation of methane during natural gas flow with coupled diffusion and adsorption/desorption[J]. Geochimica et Cosmochimica Acta, 2012, 77: 489-503. doi: 10.1016/j.gca.2011.10.014
    [30] 苏现波, 陈润, 林晓英, 等. 煤吸附13CH412CH4的特性曲线及其应用[J]. 煤炭学报, 2007, 32(5): 539-543. doi: 10.3321/j.issn:0253-9993.2007.05.021

    SU Xianbo, CHEN Run, LIN Xiaoying, et al. The adsorption characteristic curves of 13CH4 and 12CH4 on coal and its application[J]. Journal of China Coal Society, 2007, 32(5): 539-543. doi: 10.3321/j.issn:0253-9993.2007.05.021
    [31] WANG Xiaofeng, LI Xiaofu, WANG Xiangzeng, et al. Carbon isotopic fractionation by desorption of shale gases[J]. Marine and Petroleum Geology, 2015, 60: 79-86. doi: 10.1016/j.marpetgeo.2014.11.003
    [32] MASON E A, KRONSTADT B. Graham's laws of diffusion and effusion[J]. Journal of Chemical Education, 1967, 44(12): 740. doi: 10.1021/ed044p740
    [33] GUNTER B D, GLEASON J D. Isotope fractionation during gas chromatographic separations[J]. Journal of Chromatographic Science, 1971, 9(3): 191-192. doi: 10.1093/chromsci/9.3.191
    [34] CUI Xiaojun, MARC BUSTIN R, DIPPLE G. Selective transport of CO2, CH4, and N2 in coals: insights from modeling of experimental gas adsorption data[J]. Fuel, 2004, 83(3): 293-303. doi: 10.1016/j.fuel.2003.09.001
    [35] WANG Xiaofeng, LIU Peng, MENG Qiang, et al. Physical selectivity on isotopologues of gaseous alkanes by shale pore network: evidence from dynamic adsorption process of natural gas[J]. Journal of Natural Gas Science and Engineering, 2022, 97: 104252. doi: 10.1016/j.jngse.2021.104252
    [36] CRANK J. The mathematics of diffusion[M]. 2nd ed. Oxford: Clarendon Press, 1975.
    [37] 程付启, 金强. 成藏后天然气组分与同位素的分馏效应研究[J]. 天然气地球科学, 2005, 16(4): 522-525. doi: 10.3969/j.issn.1672-1926.2005.04.022

    CHENG Fuqi, JIN Qiang. Composition and isotope fractionations of accumulated natural gas and their significance[J]. Natural Gas Geoscience, 2005, 16(4): 522-525. doi: 10.3969/j.issn.1672-1926.2005.04.022
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  236
  • HTML全文浏览量:  93
  • PDF下载量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-05
  • 修回日期:  2024-03-28
  • 刊出日期:  2024-05-28

目录

    /

    返回文章
    返回