Fracture characteristics and stress disturbance analysis for well optimization of Silurian in Shunbei area, central Tarim Basin
-
摘要: 塔里木盆地中部顺北地区复杂构造应力造成了多层系断裂样式的差异性。当钻井钻至志留系断裂破碎带,地层压力小于钻井液液柱压力时,易发生漏失现象。为保障钻井的高效钻进,亟需开展志留系断裂特征与应力场扰动分析以指导井位设计。通过志留系断裂增强解释性处理及空间解释,结合断裂生长指数,开展断裂综合解析。研究区断裂整体特征为下伏陡直走滑与上覆雁列正断层分层变形,志留系断裂样式以加里东晚期至海西早期活动的雁列式负花状正断层组合排列为主,呈右阶雁列式展布,走滑伸展作用强烈。基于已钻井SHZ1等偶极阵列声波测井等资料,确定了顺北中部地区志留系主应力方向为北东向54°。结合研究区三维地震资料综合解释,建立地质模型,开展迭代边界元数值模拟,明确研究区现今地应力的平面分布规律,包括最大、最小和中间主应力,并将应力场模拟结果与实际测井资料解释结果进行对比分析。受断裂产状和断距的影响,平面上应力扰动带宽度不同,同一断裂的上、下盘应力扰动范围呈现出非对称分布。通过对志留系断裂空间立体雕刻及应力扰动分析,避开志留系断裂强度大、倾角大的雁列单元边界断裂、断裂应力集中部位及强能量异常断裂、裂缝发育区,结合目的层靶点空间特征,优选井位及其井轨迹设计。志留系断裂综合解析与应力场扰动分析为井位优选中规避志留系严重漏失、保障钻井高效钻进提供了保障。Abstract: The complex tectonic stress in the Shunbei area of the central Tarim Basin results in varied patterns of multilayered fractures. When drilling into the Silurian fracture zone and the formation pressure is lower than the drilling fluid column pressure, leakage easily occurs. To ensure efficient drilling, it is crucial to conduct an analysis of Silurian fracture characteristics and stress field disturbances to guide well design. Through enhanced interpretation and spatial analysis of Silurian faults, a comprehensive analysis of fractures was conducted in conjunction with the fault growth index. The overall characteristics of fractures in the study area included steeply dipping strike-slip faults and overlying en echelon normal faults with layered deformation. The Silurian fracture patterns primarily consist of echelon negative flower-like normal fault combinations, reflecting activity from late Caledonian to early Hercynian. The principal stress direction of the Silurian is 54° NE based on dipole array acoustic logging data from well SHZ1. By integrating three-dimensional seismic data interpretation with geological modeling and iterative boundary element numerical simulations, the current spatial distribution of stress fields, including maximum, minimum, and intermediate principal stresses, was established. The results of the stress field simulation were compared with interpretations derived from actual logging data. Due to the influence of fault occurrence and spacing, the width of stress disturbance zones varies on the plane, and stress disturbances above and below the fault plates show an asymmetric distribution. Through spatial sculpting of Silurian fractures and analysis of stress disturbances, optimal well locations and trajectories were selected to avoid areas with high fracture intensity, large dip angles, concentrated stress zones, strong energy anomaly fractures, and developed crack zones. The comprehensive analysis of Silurian fractures and stress field disturbance ensures efficient drilling and mitigates risks of significant Silurian leakage during well optimization.
-
Key words:
- principal stress /
- strike-slip fault /
- stress disturbance /
- well optimization /
- Shunbei area /
- Tarim Basin
-
1. 研究区概况
顺北地区位于塔里木盆地中部,构造应力复杂,断裂样式多样(图 1),目的层走滑断裂有利于断控储层发育,但非目的层段走滑断裂及其破碎带不利于井壁稳定,影响高效成井[1-8]。志留系地层岩性复杂,主要包括依木干他乌组、塔塔埃尔塔格组和柯坪塔格组。其中下志留统柯坪塔格组根据岩性、电性特征分析,自上而下分为3个岩性段,柯上段、柯中段和柯下段。志留系与上覆泥盆系平行不整合接触,与下覆奥陶系呈角度不整合接触(表 1)[9]。顺北油田钻井钻至上古生界复杂断裂断距较大、裂缝发育部位时,易发生严重漏失。研究区内SHB52井志留系严重漏失2 500 m3,无法继续钻井,造成井口移位。为进一步降低漏失风险,亟需开展研究区断裂空间发育特征及主应力分析,预测断裂发育强度,评价裂缝发育规律,优选非目的层段裂缝发育较弱区域,部署设计井位,降低志留系严重漏失风险,为高效成井提供条件。
表 1 塔中顺北地区志留系相关地层格架及地震波组综合划分Table 1. Comprehensive division of Silurian-related stratigraphic framework and seismic wave groups in Shunbei area, central Tarim Basin2. 断裂解析与发育特征
2.1 断裂增强解释性处理
通过研究区三维地震资料志留系频谱分析,利用带通滤波解释性处理技术,优选走滑雁列断裂敏感频段,进一步进行倾角导向滤波处理,提高走滑雁列断裂成像精度。志留系—奥陶系桑塔木组主频为22 Hz,带宽为6~38 Hz。开展低频段、中频段、高频段带通滤波测试,其中带通滤波参数频段滤去6 Hz以下及22 Hz以上信息,保留10~15 Hz低频信息,倾角导向滤波敏感平滑参数线方向7线、道方向7道、纵向15 ms,基于走滑雁列断裂敏感频段,结合倾角导向滤波解释性处理,志留系断裂断点、断面特征较断裂增强处理前资料更加清晰(图 2),结合区域已钻井标定,进行了引层综合对比分析及解析,确定了志留系、奥陶系各地层相应地震波组位置,同时结合志留系断裂发育区相轴错断位置,通过断面、断点及断裂发育继承性关系分析对比,进行了志留系断裂精细解释,志留系发育多条断裂,不同位置断裂断至位置存在差异。
2.2 断裂及发育特征
2.2.1 平面特征
不同位置走滑断裂对储层及钻井影响存在差异,走滑断裂利于储层发育[10-11],但非目的层位置对钻井而言,走滑断裂破碎带不利于井壁稳定。走滑断裂不同位置产生不同应力场环境。左阶左行式、右阶右行式表现出伸展应力场环境;右阶左行式、左阶右行式表现出挤压应力场环境[12-13]。基于地震反射标志层界面志留系顶(T60)、志留系柯坪塔格组顶(T63)、志留系柯坪塔格组内幕(T65)、志留系底(T70)及其敏感断裂检测相干属性,志留系断裂右阶雁列式展布规律明显(图 3a),雁列断裂对应性较好,断裂强度大。
2.2.2 剖面特征
顺北地区断裂带加里东中期断裂样式主要为走滑挤压段正花状构造、平移段直立断层样式、走滑拉分段下掉正断层负花状样式[14-15]。结合志留系地震资料断裂响应平面、剖面特征,基于断裂空间闭合解释,主要为拉张伸展应力作用下拉分段的负花状正断层特征(图 3b), 断裂空间特征表现为同一条断裂在不同位置,其走向、倾向会发生微弱变化,具有明显的“丝带效应”(图 3c-d)。
2.3 断裂解析
顺北油田志留系整体以雁列式负花状正断层组合样式为主,呈右阶雁列式展布,走滑伸展作用强烈[16-17]。结合志留系漏失位置及剖面、平面地震特征,志留系雁列断裂地震响应特征主要为地震反射同相轴牵引挠曲弯折或错断。顺北地区志留系断裂结合断裂生长指数分析,志留系克孜尔塔格组、依木干他乌组断裂生长指数大于1(图 4),表明雁列断裂单元内厚度较断裂带外厚度大,判断志留系断裂期次主要为加里东晚期到海西早期。其中断层生长指数具体为同一地层断裂上盘地层厚度除以断裂下盘相同地层厚度,断层生长指数大于1,代表地层沉积加厚。同时结合顺北地区下古生界中、下奥陶统目的层鹰山组、蓬莱坝组及寒武系发育刚性灰岩、白云岩地层及上奥陶统桑塔木组—志留系发育塑性碎屑岩地层,刚性—塑形叠合地层结构在走滑应力作用下控制形成了顺北走滑断裂带“下伏陡直走滑段与上覆雁列正断层”分层变形[18-21](图 5)。其中下伏陡直走滑段断裂倾角为80°~90°,在部分区域寒武系膏盐岩段发育逆冲滑脱断裂,上覆雁列正断层倾角为50°~55°。
图 5 塔中顺北地区走滑断裂带特征剖面位置图见图 1的a—a’。Figure 5. Characteristics of strike-slip fault zone in Shunbei area, central Tarim Basin3. 应力扰动特征分析
3.1 现今最大主应力方向确定
塔里木盆地顺北地区不同地层应力场分布特征具有微弱差异。利用实验测试和测井资料计算可以确定研究区目的层的岩石力学参数和关键井的地应力大小。水平主应力差异、裂缝开启程度、断裂强度等影响横波波速各向异性。水平最大主应力方向或断裂走向与快横波方位角对应,偶极阵列声波测井数据分离后可得快、慢横波速度及方位。在顺北地区志留系砂泥岩地层中,横波传播速度沿最大水平主应力方向快,沿最小水平主应力方向速度慢。基于顺北地区SHZ1井等已钻井志留系偶极阵列声波测井数据波速各向异性方向分析,确定研究区区域现今地应力场的方向为北东方向54°左右(图 6)。
3.2 应力扰动特征分析
3.2.1 地质模型建立
走滑断裂位置不同会产生不同性质的应力场环境,平面上不同构造单元力学性质有所差异。左阶左行式和右阶右行式在连接带表现出伸展应力场的环境。而右阶左行式和左阶右行式在连接带表现出聚敛应力场的环境。在三维地震资料解释基础上,利用实验测试和测井资料计算确定研究区目的层的岩石力学参数和关键井的地应力大小,结合井壁坍塌、椭圆井眼、诱导缝和GPS数据等被用来确定地应力的方向,将研究区中解释好的断裂带进行数字化,以顺北地区顺北4号断裂带为例,将数字化的断层结合现今地貌及断裂体系图建立地质模型(图 7)。一般断裂带较正常沉积的地层强度有弱化。根据顺北地区测井资料计算的岩石力学参数结果,参考邻井SHB5-1X井的地应力梯度:上覆岩层压力梯度为0.025 6 MPa/m,最大水平地应力梯度为0.023 4 MPa/m,最小水平地应力梯度为0.018 7 MPa/m。SHB51X井的地应力梯度:上覆岩层压力梯度为0.024 6 MPa/m,最大水平地应力梯度为0.022 5 MPa/m,最小水平地应力梯度为0.018 8 MPa/m。地应力方向参考塔里木盆地现今应力场方向,模拟时采用北东向40°,不同区块的应力场模拟分别赋以不同的力学参数。
3.2.2 应力扰动特征
对塔里木盆地顺北4号断裂带开展了迭代边界有限元法数值模拟,过程为基于4号断裂带构造断裂精细解析,利用三维地震数据解释的地层起伏、构造高低,建立地质模型。进一步利用已钻井资料、区域应力特征,结合力学模型,求解运算得到现今三轴主应力分布规律。相应位移、应变、应力等是根据地质体离散后利用离散单元的弹性模量、泊松比等岩石力学参数计算所得。根据不同岩石的应变特性,选用不同的网格单元类型进行地质模型的划分以得到有限元模型,地质模型网格化后,进行网格检查,其中纵横比检查、平衡度偏差检查、最大扭角检查等均在可接受范围,网格质量良好。在建立地质模型及确定各项岩石力学参数的基础上,即可按照现今应力场的方向对模型进行加载求解(本次研究边界力只包括水平构造力)。根据顺北地区现今应力状态,最终确定在模型北东—南西及北西—南东边界施加挤压应力。应力场模拟结果揭示了研究区现今地应力的平面分布规律,包括最大(S1)、最小(S3)和中间主应力(S2),并将应力场模拟结果与实际测井资料解释结果进行对比分析(图 8)。3个主应力在断裂端部集中,受断裂产状和断距的影响,平面上应力扰动带宽度不同,同一断裂的上下盘应力扰动范围呈现出非对称分布。应力扰动的不同进一步增加了井筒周围应力分布(井周应力场)的复杂性,可能会导致断裂两盘的漏失情况存在差异[22-26]。进一步验证了地质模型和模拟结果的合理性,指导了该地区油气勘探开发。
3.3 裂缝发育系数与漏失关系
裂缝发育强度影响泥浆漏失程度。岩石内部受应力作用发生张性、剪切破裂。利用Griffith、Mohr-Coulomb相应破裂准则分别预测张性破裂、剪切破裂,综合分析顺北地区志留系地层裂缝的平面分布情况,顺北地区4号断裂带志留系的裂缝发育系数(IF)分布在0.61~2.69。地层IF为1时,为岩石产生破裂临界值。根据顺北地区的IF值分布范围,IF值越大,岩石越容易产生破裂。针对顺北地区4号断裂带上的已钻井,统计裂缝发育系数,分析与漏失量的关系,总体表现出裂缝发育程度越高,漏失量逐渐增大。而SHB43井漏失量较大,裂缝发育系数较小,但应力差小,为46 MPa,较其他应力差小2~12 MPa,揭示该井漏失主要受控于地应力。
4. 井位优选
顺北油田雁列断裂空间差异性强,断裂相邻、相向而倾两条断裂所围限区域为雁列单元,雁列单元边界断裂强度大,其他伴生断裂断裂强度小[27-30];志留系雁列断裂丝带效应明显,断裂强度大,控制范围内裂缝较发育,断裂旁强能量异常区域预测裂缝较发育;结合空间立体雕刻,避开断裂解析及应力扰动分析成果中认为志留系断裂强度大、倾角大的雁列单元边界断裂、断裂应力集中部位及强能量异常断裂、裂缝发育区,结合目的层靶点空间特征,优选设计井轨迹。顺北41X井优选井口后,井深结构从前期六开优化为四开,志留系未发生严重漏失(志留系仅漏失14 m3),节约钻井周期63 d(提速28%)。
5. 结论
(1) 顺北地区志留系克孜尔塔格组、依木干他乌组断裂生长指数大于1,揭示断裂单元内厚度较断裂带外厚度大,判定志留系断裂期次主要为加里东晚期到海西早期活动。结合剖面断裂样式及平面分布特征,断裂展布规律主要为雁列式负花状正断层组合排列样式,呈右阶雁列式展布。走滑伸展作用强烈,延伸长度较小,部分成对存在,地层破碎严重。
(2) 顺北地区志留系主应力方向为北东向54°。迭代边界元数值模拟明确研究区现今地应力的平面分布规律,包括最大、最小和中间主应力,3个主应力在断裂端部集中,受断裂产状和断距的影响,平面上应力扰动带宽度不同,同一断裂的上下盘应力扰动范围呈现出非对称分布。
(3) 避开断裂解析及应力扰动分析成果中认为志留系断裂强度大、倾角大的雁列单元边界断裂、断裂应力集中部位及强能量异常断裂、裂缝发育区,结合目的层靶点空间特征,优选设计井轨迹。顺北41斜井优选井口后,井深结构从前期六开优化为四开,志留系未发生严重漏失(志留系仅漏失14 m3),节约钻井周期63 d(提速28%)。
致谢: 感谢审稿专家提出的修改意见和编辑部的大力支持!利益冲突声明/Conflict of Interests所有作者声明不存在利益冲突。All authors disclose no relevant conflict of interests.作者贡献/Authors’Contributions王来源、黄诚、龚伟、丁文龙、赵展参与论文写作、修改。所有作者均阅读并同意最终稿件的提交。The manuscript was drafted and revised by WANG Laiyuan, HUANG Cheng, GONG Wei, DING Wenlong, and ZHAO Zhan. All authors have read the last version of the paper and consented to its submission. -
图 5 塔中顺北地区走滑断裂带特征
剖面位置图见图 1的a—a’。
Figure 5. Characteristics of strike-slip fault zone in Shunbei area, central Tarim Basin
表 1 塔中顺北地区志留系相关地层格架及地震波组综合划分
Table 1. Comprehensive division of Silurian-related stratigraphic framework and seismic wave groups in Shunbei area, central Tarim Basin
-
[1] 马永生, 蔡勋育, 云露, 等. 塔里木盆地顺北超深层碳酸盐岩油气田勘探开发实践与理论技术进展[J]. 石油勘探与开发, 2022, 49(1): 1-17. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202201001.htmMA Yongsheng, CAI Xunyu, YUN Lu, et al. Practice and theoretical and technical progress in exploration and development of Shunbei ultra-deep carbonate oil and gas field, Tarim Basin, NW China[J]. Petroleum Exploration and Development, 2022, 49(1): 1-17. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202201001.htm [2] 云露, 邓尚. 塔里木盆地深层走滑断裂差异变形与控储控藏特征: 以顺北油气田为例[J]. 石油学报, 2022, 43(6): 770-787. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202206003.htmYUN Lu, DENG Shang. Structural styles of deep strike-slip faults in Tarim Basin and the characteristics of their control on reservoir formation and hydrocarbon accumulation: a case study of Shunbei oil and gas field[J]. Acta Petrolei Sinica, 2022, 43(6): 770-787. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202206003.htm [3] 何登发, 贾承造, 赵文智, 等. 中国超深层油气勘探领域研究进展与关键问题[J]. 石油勘探与开发, 2023, 50(6): 1162-1172. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202306006.htmHE Dengfa, JIA Chengzao, ZHAO Wenzhi, et al. Research progress and key issues of ultra-deep oil and gas exploration in China[J]. Petroleum Exploration and Development, 2023, 50(6) : 1162-1172. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202306006.htm [4] 李小波, 魏学刚, 刘学利, 等. 顺北油田超深断控缝洞型油藏注水开发实践[J]. 新疆石油地质, 2023, 44(6): 702-710. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD202306009.htmLI Xiaobo, WEI Xuegang, LIU Xueli, et al. Practice of water injection development in ultra-deep fault-controlled fractured-vuggy reservoirs in Shunbei oilfield[J]. Xinjiang Petroleum Geology, 2023, 44(6): 702-710. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD202306009.htm [5] 刘彪, 潘丽娟, 王沫. 顺北油气田二区断控体油气藏井身结构设计及配套技术[J]. 断块油气田, 2023, 30(4): 692-697.LIU Biao, PAN Lijuan, WANG Mo. Well structure design and supporting technology of fault-controlled reservoir of No. 2 block in Shunbei oil-gas field[J]. Fault-Block Oil and Gas Field, 2023, 30(4): 692-697. [6] 李海英, 韩俊, 陈平, 等. 塔里木盆地顺北4号走滑断裂带变形特征及有利区评价[J]. 新疆石油地质, 2023, 44(2): 127-135. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD202302001.htmLI Haiying, HAN Jun, CHEN Ping, et al. Deformation and favorable area evaluation of Shunbei No. 4 strike-slip fault zone in Tarim Basin[J]. Xinjiang Petroleum Geology, 2023, 44(2): 127-135. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD202302001.htm [7] 刘学利, 谭涛, 陈勇, 等. 顺北一区断溶体油藏溶解气驱开发特征[J]. 新疆石油地质, 2023, 44(2): 195-202. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD202302009.htmLIU Xueli, TAN Tao, CHEN Yong, et al. Development characte-ristics of solution-gas drive in fault-karst reservoirs in Shunbei-1 block[J]. Xinjiang Petroleum Geology, 2023, 44(2): 195-202. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD202302009.htm [8] 陈勇, 朱乐乐, 刘学利. 顺北一区超深断控油藏注天然气开发的可行性[J]. 新疆石油地质, 2023, 44(2): 203-209. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD202302010.htmCHEN Yong, ZHU Lele, LIU Xueli. Feasibility of natural gas miscible flooding in ultra-deep fault-controlled reservoirs in Shunbei-1 block[J]. Xinjiang Petroleum Geology, 2023, 44(2): 203-209. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD202302010.htm [9] 康弘男. 塔里木盆地顺北地区油气地球化学及油气成藏期研究[D]. 北京: 中国石油大学(北京), 2019: 1-75.KANG Hongnan. The geochemical characteristics and accumulation period of oil and gas in the north Shuntuoguole of Tarim Basin[D]. Beijing: China University of Petroleum, Beijing, 2019: 1-75. [10] 肖雷. 断裂输导形成上覆油气藏有利部位预测方法及其应用[J]. 特种油气藏, 2023, 30(1): 22-28. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ202301003.htmXIAO Lei. Method for predicting the favorable site of overlying oil and gas reservoir formed by fault conduit and its application[J]. Special Oil & Gas Reservoirs, 2023, 30(1): 22-28. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ202301003.htm [11] 陈平, 能源, 吴鲜, 等. 塔里木盆地顺北5号走滑断裂带分层分段特征及构造演化[J]. 新疆石油地质, 2023, 44(1): 33-42. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD202301005.htmCHEN Ping, NENG Yuan, WU Xian, et al. Stratification and segmentation characteristics and tectonic evolution of Shunbei No. 5 strike-slip fault zone in Tarim Basin[J]. Xinjiang Petroleum Geology, 2023, 44(1): 33-42. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD202301005.htm [12] 贾承造, 马德波, 袁敬一, 等. 塔里木盆地走滑断裂构造特征、形成演化与成因机制[J]. 天然气工业, 2021, 41(8): 81-91. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202108012.htmJIA Chengzao, MA Debo, YUAN Jingyi, et al. Structural characteristics, formation & evolution and genetic mechanisms of strike-slip faults in the Tarim Basin[J]. Natural Gas Industry, 2021, 41(8): 81-91. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202108012.htm [13] 云露. 顺北东部北东向走滑断裂体系控储控藏作用与突破意义[J]. 中国石油勘探, 2021, 26(3): 41-52. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY202103004.htmYUN Lu. Controlling effect of NE strike-slip fault system on reservoir development and hydrocarbon accumulation in the eastern Shunbei area and its geological significance, Tarim Basin[J]. China Petroleum Exploration, 2021, 26(3): 41-52. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY202103004.htm [14] 卜旭强, 王来源, 朱莲花, 等. 塔里木盆地顺北油气田奥陶系断控缝洞型储层特征及成藏模式[J]. 岩性油气藏, 2023, 35(3): 152-160. https://www.cnki.com.cn/Article/CJFDTOTAL-YANX202303013.htmBU Xuqiang, WANG Laiyuan, ZHU Lianhua, et al. Characteristics and reservoir accumulation model of Ordovician fault controlled fractured-vuggy reservoirs in Shunbei oil and gas field, Tarim Basin[J]. Lithologic Reservoirs, 2023, 35(3): 152-160. https://www.cnki.com.cn/Article/CJFDTOTAL-YANX202303013.htm [15] 刘军, 廖茂辉, 王来源, 等. 顺北油田顺北4号断裂带中段断控储集体连通性评价[J]. 新疆石油地质, 2023, 44(4): 456-464. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD202304010.htmLIU Jun, LIAO Maohui, WANG Laiyuan, et al. Static connectivity evaluation on fault-controlled reservoir system in the middle section of Shunbei no. 4 fault zone, Shunbei oilfield[J]. Xinjiang Petroleum Geology, 2023, 44(4): 456-464. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD202304010.htm [16] 徐珂, 杨海军, 张辉, 等. 塔里木盆地克拉苏构造带超深层致密砂岩气藏一体化增产关键技术与实践[J]. 中国石油勘探, 2022, 27(5): 106-115. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY202205009.htmXU Ke, YANG Haijun, ZHANG Hui, et al. Key technology and practice of the integrated well stimulation of ultra-deep tight sand stone gas reservoir in Kelasu structural belt, Tarim Basin[J]. China Petroleum Exploration, 2022, 27(5): 106-115. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY202205009.htm [17] 何登发, 周新源, 杨海军, 等. 塔里木盆地克拉通内古隆起的成因机制与构造类型[J]. 地学前缘, 2008, 15(2): 207-221. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200802029.htmHE Dengfa, ZHOU Xinyuan, YANG Haijun, et al. Formation mechanism and tectonic types of intracratonic paleo-uplifts in the Tarim Basin[J]. Earth Science Frontiers, 2008, 15(2): 207-221. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200802029.htm [18] 杨海军, 李勇, 唐雁刚, 等. 塔里木盆地克深气田成藏条件及勘探开发关键技术[J]. 石油学报, 2021, 42(3): 399-414. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202103012.htmYANG Haijun, LI Yong, TANG Yangang, et al. Accumulation conditions, key exploration and development technologies for Keshen gas field in Tarim Basin[J]. Acta Petrolei Sinica, 2021, 42(3): 399-414. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202103012.htm [19] 江同文, 张辉, 徐珂, 等. 超深层裂缝型储层最佳井眼轨迹量化优选技术与实践: 以克拉苏构造带博孜A气藏为例[J]. 中国石油勘探, 2021, 26(4): 149-161. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY202104012.htmJIANG Tongwen, ZHANG Hui, XU Ke, et al. Technology and practice of quantitative optimization of borehole trajectory in ultra- deep fractured reservoir: a case study of Bozi A gas reservoir in Kelasu structural belt, Tarim Basin[J]. China Petroleum Exploration, 2021, 26(4): 149-161. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY202104012.htm [20] 邓兴梁, 闫婷, 张银涛, 等. 走滑断裂断控碳酸盐岩油气藏的特征与井位部署思路: 以塔里木盆地为例[J]. 天然气工业, 2021, 41(3): 21-29. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202103004.htmDENG Xingliang, YAN Ting, ZHANG Yintao, et al. Characteristics and well location deployment ideas of strike-slip fault controlled carbonate oil and gas reservoirs: a case study of the Tarim Basin[J]. Natural Gas Industry, 2021, 41(3): 21-29. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202103004.htm [21] 田军, 杨海军, 朱永峰, 等. 塔里木盆地富满油田成藏地质条件及勘探开发关键技术[J]. 石油学报, 2021, 42(8): 971-985. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202108001.htmTIAN Jun, YANG Haijun, ZHU Yongfeng, et al. Geological conditions for hydrocarbon accumulation and key technologies for exploration and development in Fuman oilfield, Tarim Basin[J]. Acta Petrolei Sinica, 2021, 42(8): 971-985. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202108001.htm [22] 刘敬寿, 丁文龙, 杨海盟, 等. 鄂尔多斯盆地华庆地区天然裂缝与岩石力学层演化: 基于数值模拟的定量分析[J]. 地球科学, 2023.48(7): 2572-2588. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202307010.htmLIU Jingshou, DING Wenlong, YANG Haimeng, et al. Natural fractures and rock mechanical stratigraphy evaluation in Huaqing area, Ordos Basin: a quantitative analysis based on numerical simulation[J]. Earth Science, 2023, 48(7): 2572-2588. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202307010.htm [23] 刘敬寿, 丁文龙, 肖子亢, 等. 储层裂缝综合表征与预测研究进展[J]. 地球物理学进展, 2019, 34(6): 2283-2300. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201906019.htmLIU Jingshou, DING Wenlong, XIAO Zikang, et al. Advances in comprehensive characterization and prediction of reservoir fractures[J]. Progress in Geophysics, 2019, 34(6): 2283-2300. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201906019.htm [24] MAERTEN L, MAERTEN F. Chronologic modeling of faulted and fractured reservoirs using geomechanically based restoration: technique and industry applications[J]. AAPG Bulletin, 2006, 90(8): 1201-1226. doi: 10.1306/02240605116 [25] 李勇, 徐珂, 张辉, 等. 塔里木盆地超深层油气钻探工程的特殊地质因素[J]. 中国石油勘探, 2022, 27(3): 88-98. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY202203007.htmLI Yong, XU Ke, ZHANG Hui, et al. Special geological factors in drilling engineering of ultra-deep oil and gas reservoir in Tarim Baisn[J]. China Petroleum Exploration, 2022, 27(3): 88-98. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY202203007.htm [26] 李文哲, 于兴川, 赖燕, 等. 深层脆性页岩井钻井液漏失机理及主控因素[J]. 特种油气藏, 2022, 29(3): 162-169. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ202203024.htmLI Wenzhe, YU Xingchuan, LAI Yan, et al. Lost circulation mechanism and main controlling factors in deep brittle shale wells[J]. Special Oil & Gas Reservoirs, 2022, 29(3): 162-169. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ202203024.htm [27] 曾联波, 漆家福, 王成刚, 等. 构造应力对裂缝形成与流体流动的影响[J]. 地学前缘, 2008, 15(3): 292-298. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200803029.htmZENG Lianbo, QI Jiafu, WANG Chenggang, et al. The influence of tectonic stress on fracture formation and fluid flow[J]. Earth Science Frontiers, 2008, 15(3): 292-298. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200803029.htm [28] 赵腾. 顺北5断裂带现今应力场数值模拟[D]. 北京: 中国石油大学(北京), 2020: 1-92.ZHAO Teng. Current stress field simulation of Shunbei 5 fault zone[D]. Beijing: China University of Petroleum, Beijing, 2020: 1-92. [29] 李映涛, 汝智星, 邓尚, 等. 塔里木盆地顺北特深碳酸盐岩储层天然裂缝实验评价及油气意义[J]. 石油实验地质, 2023, 45(3): 422-433. doi: 10.11781/sysydz202303422LI Yingtao, RU Zhixing, DENG Shang, et al. Experimental evaluation and hydrocarbon significance of natural fractures in Shunbei ultra-deep carbonate reservoir, Tarim Basin[J]. Petroleum Geology & Experiment, 2023, 45(3): 422-433. doi: 10.11781/sysydz202303422 [30] 宋刚, 李海英, 叶宁, 等. 塔里木盆地顺托果勒低隆起顺北4号走滑断裂带成岩流体类型及活动特征[J]. 石油实验地质, 2022, 44(4): 603-612. doi: 10.11781/sysydz202204603SONG Gang, LI Haiying, YE Ning, et al. Types and features of diagenetic fluids in Shunbei no. 4 strike-slip fault zone in Shun-tuoguole Low Uplift, Tarim Basin[J]. Petroleum Geology & Experiment, 2022, 44(4): 603-612. doi: 10.11781/sysydz202204603 -