Stress field propagation characteristics of deep complex fault blocks based on digital speckle deformation simulation experiment
-
摘要: 在油田勘探开发过程中,地应力研究在掌握深层油气的运聚规律、改善储层压裂效果和钻井工程风险评价等方面发挥着重要的作用。而前人对地应力的研究主要集中在二维/三维模拟方面,对区域构造变动和生产开发过程中的应力动态变化规律研究甚少。以渤海湾盆地南堡凹陷G区块为例,通过制作相似地质模型,设置边界条件并进行数字散斑变形动态模拟实验,基于LOESS局部回归分析方法,得到应力/应变在空间上的传播规律。结合经典的应力波理论认为,在构造力的持续作用下,地层中任一点的应力/应变随时间的变化呈现明显的旋回波动性,在断层附近这种旋回特征更加明显,且旋回幅度更大;应力波穿过断层发生多重反射、透射现象,众多左行波与右行波相遇造成局部应力和应变集中,从而呈现为高值区,穿过断层时应力波产生应变或变形,导致明显的能量衰减;随着时间的变化,应力/应变的总体传播方向具有选择性,其总是垂直于断裂带压实强、结构致密的方向,即透射过后会造成能量急剧衰减的方向;随着时间的变化,地层中任一点应力/应变的传播均呈现为波动旋回式,但应力波不同于声波,整体来看,应力/应变旋回曲线的最大幅度和最小幅度在空间上沿着作用力方向也呈现为波动式。Abstract: In the process of oilfield exploration and development, the study of crustal stress plays an extremely important role in understanding the patterns of deep oil and gas migration and accumulation, enhancing reservoir fracturing efficiency and assessing drilling engineering risks. Previous studies on crustal stress have mainly focused on 2D/3D simulations, with very little research on regional structural changes and stress dynamic changes in the process of production and development. Taking block G of the Nanpu Sag of Bohai Bay Basin as an example, by creating similar geological models, setting boundary conditions, and conducting digital speckle deformation dynamic simulation experiment, the spatial propagation characteristics of stress/strain were obtained using the LOESS local regression analysis method. Combined with the classical stress wave theory, it was concluded that under the continuous action of tectonic force, the change of stress/strain at any point in the layer over time shows obvious cyclic volatility. This cyclic characteristic is more evident near the fault, with larger cyclic amplitude. Multiple reflections and transmissions occur when the stress wave passes through the fault. When numerous leftgoing waves meet rightgoing waves, the local stress and strain are concentrated, forming high-value areas. When a stress wave passes through a fault, the resulting strain causes a significant energy attenuation. Over time, the direction of stress/strain propagation is selective, always perpendicular to the direction of strong compaction and dense structure of the fault, leading to sharp energy decay after transmission. Over time, the propagation of stress/strain at any point in the formation appears as a wave cycle. However, unlike sound waves, the maximum and minimum amplitudes of the stress/strain cycle curve exhibit fluctuation characteristics along the direction of the applied force in space.
-
Key words:
- stress propagation /
- digital speckle experiment /
- complex fault block /
- cyclical features /
- stress wave /
- Nanpu Sag /
- Bohai Bay Basin
-
图 5 数字散斑变形模拟实验中应变随时间的变化趋势及其拟合曲线
a.第一类拟合趋势;b.第一类拟合函数曲线;c.第二类拟合趋势;d. 第二类拟合函数曲线;e.第三类拟合趋势;f.第三类拟合函数曲线。左图中的黑点为应变—时间数据真实数值散点,曲线则是通过LOESS局部加权回归拟合出的曲线,阴影部分为95%的置信区间,即出现异常值的概率仅为5%。
Figure 5. Trends of strain variation with time and corresponding fitted curves in digital speckle deformation simulation experiment
表 1 数字散斑变形模拟实验中模型的力学参数
Table 1. Mechanical parameters of the model in digital speckle deformation simulation experiment
弹性模量/GPa 泊松比 抗压强度/MPa 密度/(g/cm3) 实验模型对应材料 地层 5.5 0.24 8.5 2.1 水泥为主 断层 0.8 0.24 1.2 1.7 石膏为主 -
[1] 陈勉, 金衍, 张广清. 石油工程岩石力学[M]. 北京: 科学出版社, 2008: 67-97.CHEN Mian, JIN Yan, ZHANG Guangqing. Rock mechanics in petroleum engineering[M]. Beijing: Science Press, 2008: 67-97. [2] 王连捷, 孙宝珊, 王薇, 等. 地应力对油气运移的驱动作用[J]. 地质力学学报, 2011, 17(2): 132-143. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX201102004.htmWANG Lianjie, SUN Baoshan, WANG Wei, et al. Driving effect of the crustal stress on petroleum migration[J]. Journal of geomechanics, 2011, 17(2): 132-143. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX201102004.htm [3] 万天丰. 古构造应力场[M]. 北京: 地质出版社, 1988.WAN Tianfeng. Paleotectonic stress field[M]. Beijing: Geological Publishing House, 1988. [4] 陈庆宣. 岩石力学与构造应力场分析[M]. 北京: 地质出版社, 1998.CHEN Qingxuan. Pock mechanics and analysis of tectonic stress field[M]. Beijing: Geological Publishing House, 1998. [5] 李四光. 地质力学的方法与实践. 第一篇: 地质力学概论[M]. 2版. 北京: 地质出版社, 1999.LI Siguang. The methods and practice of geomechanics. Part Ⅰ: introduction to geomechanics[M]. 2nd ed. Beijing: Geological Publishing House, 1999. [6] 朱守彪, 石耀霖. 中国大陆及邻区构造应力场成因的研究[J]. 中国科学(D辑: 地球科学), 2006, 36(12): 1077-1083. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200612000.htmZHU Shoubiao, SHI Yao Lin. Study on the genesis of tectonic stress field in China Chinese mainland and its adjacent area[J]. Science in China (Series D: Earth Sciences), 2006, 36(12): 1077-1083. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200612000.htm [7] 赵军, 彭文, 李进福, 等. 前陆冲断构造带地应力响应特征及其对油气分布的影响[J]. 地球科学(中国地质大学学报), 2005, 30(4): 467-472. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200504012.htmZHAO Jun, PENG Wen, LI Jinfu, et al. In-situ stress logging responding characteristics of piedmont thrust belt and its influence on hydrocarbon distribution[J]. Earth Science (Journal of China University of Geosciences), 2005, 30(4): 467-472. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200504012.htm [8] 宋洪亮, 徐守余, 郑丁. 构造应力场与油气运移[J]. 断块油气田, 2007, 14(5): 12-14. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT200705005.htmSONG Hongliang, XU Shouyu, ZHENG Ding. Tectonic stress field and hydrocarbon migration[J]. Fault-Block Oil and Gas Field, 2007, 14(5): 12-14. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT200705005.htm [9] 尹尚先, 王尚旭. 不同尺度下岩层渗透性与地应力的关系及机理[J]. 中国科学(D辑: 地球科学), 2006, 36(5): 472-480. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200605008.htmYIN Shangxian, WANG Shangxu. Relationship and mechanism between rock permeability and in-situ stress at different scales[J]. Science in China (Series D: Earth Sciences), 2006, 36(5): 472-480. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200605008.htm [10] 赵金洲, 赵金, 胡永全, 等. 水力压裂裂缝应力场变化规律[J]. 天然气地球科学, 2019, 30(12): 1677-1683. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201912001.htmZHAO Jinzhou, ZHAO Jin, HU Yongquan, et al. Study on stress field distribution of hydraulic fracturing[J]. Natural Gas Geoscience, 2019, 30(12): 1677-1683. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201912001.htm [11] ANDERSON E M. The dynamics of faulting[J]. Transactions of the Edinburgh Geological Society, 1905, 8(3): 387-402. doi: 10.1144/transed.8.3.387 [12] BERGSTRÖM A, JAYATISSA M N, MØRK A, et al. Stress sensitivity and resilience in the chronic mild stress rat model of depression; an in situ hybridization study[J]. Brain Research, 2008, 1196: 41-52. doi: 10.1016/j.brainres.2007.12.025 [13] BASNET C B, PANTHI K K. 3D in-situ stress model of upper Tamakoshi hydroelectric project area[J]. Hydro Nepal: Journal of Water, Energy and Environment, 2017, 21: 34-41. doi: 10.3126/hn.v21i0.17819 [14] FEDERICO A, KAUFMANN G H, GALIZZI G E, et al. Simulation of dynamic speckle sequences and its application to the analysis of transient processes[J]. Optics Communications, 2006, 260(2): 493-499. [15] 李斌, 杨国标. 光弹性-数字散斑相关混合法在光弹条纹主应力分解中的应用[J]. 实验力学, 2013, 28(2): 180-186. https://www.cnki.com.cn/Article/CJFDTOTAL-SYLX201302007.htmLI Bin, YANG Guobiao. On the application of photoelasticity-digital speckle correlation hybrid method in separation of main stress photoelastic fringes[J]. Journal of Experimental Mecha-nics, 2013, 28(2): 180-186. https://www.cnki.com.cn/Article/CJFDTOTAL-SYLX201302007.htm [16] 康向涛, 高璐, 罗蜚, 等. 数字散斑技术在煤矿相似模拟实验中的应用[J]. 中国安全生产科学技术, 2020, 16(11): 140-146. https://www.cnki.com.cn/Article/CJFDTOTAL-LDBK202011028.htmKANG Xiangtao, GAO Lu, LUO Fei, et al. Application of digital speckle technology in similar simulation test of coal mine[J]. Journal of Safety Science and Technology, 2020, 16(11): 140-146. https://www.cnki.com.cn/Article/CJFDTOTAL-LDBK202011028.htm [17] 宋来明, 彭仕宓, 徐强, 等. 陆相等时地层格架建立方法新探: 以冀东高尚堡深层Es32+3油藏为例[J]. 地质学报, 2007, 81(5): 712-720. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200705014.htmSONG Laiming, PENG Shimi, XU Qiang, et al. New discussion on isochronous framework of lacustrine formation: an example from reservoir Es32+3 of the Gaoshangpu oil field in eastern Hebei[J]. Acta Geologica Sinica, 2007, 81(5): 712-720. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200705014.htm [18] 王友净, 宋新民, 何鲁平, 等. 高尚堡深层低阻油层的地质成因[J]. 石油学报, 2010, 31(3): 426-431. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201003012.htmWANG Youjing, SONG Xinmin, HE Luping, et al. Geologic origin of low-resistivity layers in deep reservoir of Gaoshangpu Oilfield[J]. Acta Petrolei Sinica, 2010, 31(3): 426-431. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201003012.htm [19] 刘光利, 姜红艳. 数字散斑相关方法的原理及土木工程应用简介[J]. 安徽建筑大学学报, 2015, 23(6): 52-58. https://www.cnki.com.cn/Article/CJFDTOTAL-AHJG201506011.htmLIU Guangli, JIANG Hongyan. Principle of digital speckle correlation method and its applications in civil engineering deformation measurement[J]. Journal of Anhui Institute of Architecture Industry, 2015, 23(6): 52-58. https://www.cnki.com.cn/Article/CJFDTOTAL-AHJG201506011.htm [20] 万国庆, 黄锋, 刘星辰, 等. 数字散斑技术在混凝土单轴压缩试验中的应用[J]. 光学技术, 2020, 46(2): 152-157. https://www.cnki.com.cn/Article/CJFDTOTAL-GXJS202002005.htmWAN Guoqing, HUANG Feng, LIU Xingchen, et al. Application of digital speckle technique in concrete uniaxial compression test[J]. Optical Technique, 2020, 46(2): 152-157. https://www.cnki.com.cn/Article/CJFDTOTAL-GXJS202002005.htm [21] 姚煜程. 数字散斑相关与衬比成像方法的研究[D]. 杭州: 杭州电子科技大学, 2020: 8-18.YAO Yucheng. Research on digital speckle correlation and contrast imaging methods[D]. Hangzhou: Hangzhou University of Electronic Science and technology, 2020: 8-18. [22] 张岳桥, 董树文. 郯庐断裂带中生代构造演化史: 进展与新认识[J]. 地质通报, 2008, 27(9): 1371-1390. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200809004.htmZHANG Yueqiao, DONG Shuwen. Mesozoic tectonic evolution history of the Tan-Lu fault zone, China: advances and new understanding[J]. Geological Bulletin of China, 2008, 27(9): 1371-1390. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200809004.htm [23] 朱光, 王道轩, 刘国生, 等. 郯庐断裂带的演化及其对西太平洋板块运动的响应[J]. 地质科学, 2004, 39(1): 36-49. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX200401005.htmZHU Guang, WANG Daoxuan, LIU Guosheng, et al. Evolution of the Tan-Lu fault zone and its responses to plate movements in West Pacific Basin[J]. Chinese Journal of Geology, 2004, 39(1): 36-49. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX200401005.htm [24] 张鹏, 秦向辉, 丰成君, 等. 郯庐断裂带山东段深孔地应力测量及其现今活动性分析[J]. 岩土力学, 2013, 34(8): 2329-2335. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201308042.htmZHANG Peng, QIN Xianghui, FENG Chengjun, et al. In-situ stress measurement of deep borehole in Shandong segment of Tan-Lu fracture belt and analysis of its activity[J]. Rock and Soil Mechanics, 2013, 34(8): 2329-2335. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201308042.htm [25] 葛荣峰, 张庆龙, 解国爱, 等. 郯庐断裂带北段及邻区现代地震活动性与应力状态[J]. 地震地质, 2009, 31(1): 141-154. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ200901012.htmGE Rongfeng, ZHANG Qinglong, XIE Guoai, et al. Seismic activity and stress state of the northern Tanlu fault zone and its adjacent areas[J]. Seismology and Geology, 2009, 31(1): 141-154. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ200901012.htm [26] 梁洪宝. 日本3·11地震后郯庐断裂带中南段GPS形变分析[J]. 国际地震动态, 2019(8): 137. https://www.cnki.com.cn/Article/CJFDTOTAL-GJZT201908110.htmLIANG Hongbao. The GPS deformation analysis of Tanlu fault zone in middle and southern segments after the Japan 3·11 earthquake[J]. Recent Developments in World Seismology, 2019(8): 137. https://www.cnki.com.cn/Article/CJFDTOTAL-GJZT201908110.htm [27] MAVKO G, MUKERJI T, DVORKIN J. Elasticity and Hooke's law[M]//The rock physics handbook. Cambridge: Cambridge University Press, 2020. [28] HESS A S, HESS J R. Linear regression and correlation[J]. Transfusion, 2017, 57(1): 9-11. [29] 朋文佳, 朱玉, 贾贤杰, 等. 以案例为基础的参数与非参数回归教学辨析[J]. 淮海医药, 2020, 38(6): 657-659. https://www.cnki.com.cn/Article/CJFDTOTAL-HHYY202006039.htmPENG Wenjia, ZHU Yu, JIA Xianjie, et al. Analysis of case-based parametric and nonparametric regression teaching[J]. Journal of Huaihai Medicine, 2020, 38(6): 657-659. https://www.cnki.com.cn/Article/CJFDTOTAL-HHYY202006039.htm [30] 江新乐, 龙军, 陈刚, 等. 结合局部加权回归的时序异常检测方法研究[J]. 软件工程, 2019, 22(11): 27-30. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGC201911007.htmJIANG Xinle, LONG Jun, CHEN Gang, et al. Research on time series anomaly detection based on locally weighted regression[J]. Software Engineering, 2019, 22(11): 27-30. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGC201911007.htm [31] NOWACKI W K. Stress waves in non-elastic solids[M]. London: Pergamon Press, 1978. [32] 王梦, 范立峰. 岩体内应力波传播的研究进展与展望[J]. 北京工业大学学报, 2021, 47(7): 802-814. https://www.cnki.com.cn/Article/CJFDTOTAL-BJGD202107015.htmWANG Meng, FAN Lifeng. Research progress and prospect of stress wave propagation through rock mass[J]. Journal of Beijing University of technology, 2021, 47(7): 802-814. https://www.cnki.com.cn/Article/CJFDTOTAL-BJGD202107015.htm [33] PYRAK-NOLTE L J, COOK N G W. Elastic interface waves along a fracture[J]. Geophysical Research Letters, 1987, 14(11): 1107-1110. [34] KASAL B, LEAR G, TANNERT T. Stress waves[M]//In situ assessment of structural timber. Dordrecht: Springer, 2011. [35] 卢爱红, 茅献彪, 张连英. 应力波在岩体中传播的叠加效应[J]. 徐州工程学院学报(自然科学版), 2008, 23(3): 74-79. https://www.cnki.com.cn/Article/CJFDTOTAL-OXZG200803019.htmLU Aihong, MAO Xianbiao, ZHANG Lianying. Accumulation effect of stress wave propagation in the rock mass[J]. Journal of Xuzhou Institute of Engineering (Natural Science Edition), 2008, 23(3): 74-79. https://www.cnki.com.cn/Article/CJFDTOTAL-OXZG200803019.htm [36] HORIGUCHI R, ODA Y, YAMAGUCHI T. Propagation of stress waves in viscoelastic rods and plates[J]. Journal of Technology and Social Science, 2018, 2(1): 24-39. [37] ELGHORAIBY M A, MANZARI M T. Cyclic behavior of sand under non-uniform shear stress waves[J]. Soil Dynamics and Earthquake Engineering, 2021, 143: 106590. [38] 刘自卿, 王延茂, 张瑞强, 等. 正交偶极子声波测井仪原理简介及应用[J]. 国外测井技术, 2010(4): 56-59.LIU Ziqing, WANG Yanmao, ZHANG Ruiqiang, et al. Principle of cross-dipole acoustic logging tool and its application[J]. Foreign logging technology, 2010(4): 56-59. [39] 温柔, 杨学武, 刘东明, 等. 近远井测井测试技术综合评价压裂裂缝分布[J]. 测井技术, 2019, 43(5): 531-535. https://www.cnki.com.cn/Article/CJFDTOTAL-CJJS201905018.htmWEN Rou, YANG Xuewu, LIU Dongming, et al. Comprehensive evaluation of fracture distribution by near-and far-well logging and monitoring technology[J]. Well Logging Technology, 2019, 43(5): 531-535. https://www.cnki.com.cn/Article/CJFDTOTAL-CJJS201905018.htm [40] 马瑞芝. 关于"胡克定律"的几个问题[J]. 物理通报, 1965(2): 85-88. https://www.cnki.com.cn/Article/CJFDTOTAL-WLZZ196502008.htmMA Ruizhi. Some problems on Hooke's law[J]. Bulletin of Physics, 1965(2): 85-88. https://www.cnki.com.cn/Article/CJFDTOTAL-WLZZ196502008.htm