留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

塔里木盆地库车坳陷克深气藏超深层致密砂岩储层天然裂缝发育特征及对水侵的影响

徐小童 曾联波 董少群 第五鹏祥 李海明 刘剑忠 韩高松 徐辉 冀春秋

徐小童, 曾联波, 董少群, 第五鹏祥, 李海明, 刘剑忠, 韩高松, 徐辉, 冀春秋. 塔里木盆地库车坳陷克深气藏超深层致密砂岩储层天然裂缝发育特征及对水侵的影响[J]. 石油实验地质, 2024, 46(4): 812-822. doi: 10.11781/sysydz202404812
引用本文: 徐小童, 曾联波, 董少群, 第五鹏祥, 李海明, 刘剑忠, 韩高松, 徐辉, 冀春秋. 塔里木盆地库车坳陷克深气藏超深层致密砂岩储层天然裂缝发育特征及对水侵的影响[J]. 石油实验地质, 2024, 46(4): 812-822. doi: 10.11781/sysydz202404812
XU Xiaotong, ZENG Lianbo, DONG Shaoqun, DIWU Pengxiang, LI Haiming, Liu Jianzhong, HAN Gaosong, XU Hui, JI Chunqiu. Fracture development characteristics and their influence on water invasion of ultra-deep tight sandstone reservoirs in Keshen gas reservoir of Kuqa Depression, Tarim Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2024, 46(4): 812-822. doi: 10.11781/sysydz202404812
Citation: XU Xiaotong, ZENG Lianbo, DONG Shaoqun, DIWU Pengxiang, LI Haiming, Liu Jianzhong, HAN Gaosong, XU Hui, JI Chunqiu. Fracture development characteristics and their influence on water invasion of ultra-deep tight sandstone reservoirs in Keshen gas reservoir of Kuqa Depression, Tarim Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2024, 46(4): 812-822. doi: 10.11781/sysydz202404812

塔里木盆地库车坳陷克深气藏超深层致密砂岩储层天然裂缝发育特征及对水侵的影响

doi: 10.11781/sysydz202404812
基金项目: 

国家自然科学基金项目 U21B2062

详细信息
    作者简介:

    徐小童(1996—), 男, 博士生, 从事超深层致密砂岩储层的形成机理研究。E-mail: xxt961961@outlook.com

    通讯作者:

    曾联波(1967—), 男, 教授, 博士生导师, 从事储层裂缝形成、分布及预测技术、应力场分析与应用及非常规油气储层地质评价等方面的研究。E-mail: lbzeng@sina.com

  • 中图分类号: TE122.3

Fracture development characteristics and their influence on water invasion of ultra-deep tight sandstone reservoirs in Keshen gas reservoir of Kuqa Depression, Tarim Basin

  • 摘要: 天然裂缝是影响塔里木盆地库车坳陷克深超深层致密砂岩气藏气井高产和水侵的重要因素,裂缝研究对明确气藏水侵规律及防控水政策的制定意义重大。通过岩心、铸体薄片、常规测井、成像测井、生产数据、试井等资料,研究了有效裂缝发育特征、分布规律及气藏水侵特征,探讨了不同缝网系统水侵的影响。高角度和近直立的剪切裂缝为该区最主要的裂缝类型。垂向上,巴什基奇克组一段多为全充填裂缝,为无效裂缝;巴二段和巴三段多为半—无充填裂缝,为有效裂缝。平面上,NNW—SSE向有效裂缝富集在气藏西部,且平均开度大;东部相对发育近E—W向、NWW—SEE向的有效裂缝,平均开度较小。有效裂缝越发育,开度越大,气井初期封存水的产出越低,多产出凝析水。从投产到见水,地层水呈封存水、凝析水、可动水、纯地层水等赋存形式产出。有效裂缝的发育程度,开度及走向是影响非均质水侵的重要因素。与水侵方向近平行的、密集的、高有效性的缝网系统会加快水侵速度,导致气井大量产水,严重降低气井产能。综合有效裂缝的发育特征和单井水侵特征,气藏呈现出边底水沿断裂/密集裂缝快速水窜型、边水沿稀疏裂缝缓慢锥进型、边底水缓慢抬升侵入型3种水侵模式。

     

  • 图  1  塔里木盆地库车坳陷克深气田区域位置(a)、构造剖面(b)及地层柱状图(c)

    据参考文献[16]修改。

    Figure  1.  Regional location (a), structural profile (b) and stratigraphic column (c) of Keshen gas reservoir in Kuqa Depression, Tarim Basin

    图  2  塔里木盆地库车坳陷克深气藏巴什基奇克组天然裂缝宏观岩心及微观镜下特征

    a.直立剪切裂缝,垂向贯穿多组层系,可见阶步,M井,7 545.28~7 545.50 m;b.全充填剪切裂缝,A井,7 507.08~7 507.18 m;c.张性裂缝,I井,7 345.30~7 345.42 m;d.全充填张性裂缝,M井,7 635.56~7 635.68 m;e.被硅质半充填的剪切裂缝,I井,7 343.75 m;f.张性裂缝,I井,7 345.85 m。

    Figure  2.  Macroscopic cores and microscopic characteristics of natural fractures in the Bashijiqike Formation, Keshen gas reservoir, Kuqa Depression, Tarim Basin

    图  3  塔里木盆地库车坳陷克深气藏巴什基奇克组构造裂缝参数统计

    Figure  3.  Parameters of tectonic fractures in the Bashijiqike Formation of Keshen gas field, Kuqa Depression, Tarim Basin

    图  4  塔里木盆地库车坳陷克深气藏成像解释的无效裂缝和有效裂缝(a)及有效裂缝线密度、开度、走向、测井解释平均孔隙度分布(b)

    Figure  4.  Ineffective and effective fractures interpreted from imaging logging (a), distribution patterns of linear density, aperture, strike of effective fractures and average porosity interpreted from well logging (b) of the Keshen gas reservoir in Kuqa Depression, Tarim Basin

    图  5  塔里木盆地库车坳陷克深气藏气井泥浆漏失直方图和初期无阻流量折线图(a)及D井、E井、F井和K井的压力恢复双对数曲线(b)

    Figure  5.  Histogram of mud loss and line chart of initial open flow for gas wells (a), double logarithmic curves of the pressure build-up test for wells D, E, F and K (b) of the Keshen gas reservoir in Kuqa Depression, Tarim Basin

    图  6  塔里木盆地库车坳陷克深气藏D井、K井和M井的日产水量和氯离子浓度变化曲线

    Figure  6.  Variation curves of daily water production and chloride ion concentration for wells D, K and M of the Keshen gas reservoir in Kuqa Depression, Tarim Basin

    图  7  塔里木盆地库车坳陷克深气藏水侵模式

    a.D井南北向剖面; b.K井南北向剖面; c.M井东西向剖面; d.M井南北向剖面; e.气井水侵模式平面图。

    Figure  7.  Water invasion patterns of the Keshen gas reservoir in Kuqa Depression, Tarim Basin

    表  1  塔里木盆地库车坳陷克深气藏不同类型地层水的特征、氯离子浓度及水气比

    Table  1.   Characteristics, chloride ion concentration, and water-gas ratio of different formation waters of the Keshen gas reservoir in Kuqa Depression, Tarim Basin

    地层水类型 特征 氯离子浓度/(mg/L) 水气比/(10-4 m3/m3)
    封存水 未能及时驱替被局部封存的地层水 30 000~110 000 0.18~0.44
    30 000~70 000 0.44~0.50
    凝析水 天然气中溶解的气态水 < 5 000 < 0.1
    可动水 一定压差下地层孔隙中可流动的水 < 80 000 0.10~0.17
    < 30 000 0.17~0.38
    纯地层水 边底水 >70 000 >0.38
    下载: 导出CSV
  • [1] 贾承造. 含油气盆地深层—超深层油气勘探开发的科学技术问题[J]. 中国石油大学学报(自然科学版), 2023, 47(5): 1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDX202305001.htm

    JIA Chengzao. Key scientific and technological problems of petroleum exploration and development in deep and ultra-deep formation[J]. Journal of China University of Petroleum (Edition of Natural Science), 2023, 47(5): 1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDX202305001.htm
    [2] 操应长, 远光辉, 杨海军, 等. 含油气盆地深层—超深层碎屑岩油气勘探现状与优质储层成因研究进展[J]. 石油学报, 2022, 43(1): 112-140. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202201010.htm

    CAO Yingchang, YUAN Guanghui, YANG Haijun, et al. Current situation of oil and gas exploration and research progress of the origin of high-quality reservoirs in deep-ultra-deep clastic reservoirs of petroliferous basins[J]. Acta Petrolei Sinica, 2022, 43(1): 112-140. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202201010.htm
    [3] 李剑, 佘源琦, 高阳, 等. 中国陆上深层—超深层天然气勘探领域及潜力[J]. 中国石油勘探, 2019, 24(4): 403-417. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201904001.htm

    LI Jian, SHE Yuanqi, GAO Yang, et al. Onshore deep and ultra-deep natural gas exploration fields and potentials in China[J]. China Petroleum Exploration, 2019, 24(4): 403-417. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201904001.htm
    [4] 张荣虎, 王珂, 王俊鹏, 等. 塔里木盆地库车坳陷克深构造带克深8区块裂缝性低孔砂岩储层地质模型[J]. 天然气地球科学, 2018, 29(9): 1264-1273. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201809005.htm

    ZHANG Ronghu, WANG Ke, WANG Junpeng, et al. Reservoir geological model of fracture low porosity sandstone of Keshen 8 wellblock in Kuqa Depression, Tarim Basin[J]. Natural Gas Geoscience, 2018, 29(9): 1264-1273. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201809005.htm
    [5] 贾承造, 郑民, 张永峰. 中国非常规油气资源与勘探开发前景[J]. 石油勘探与开发, 2012, 39(2): 129-136. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201202002.htm

    JIA Chengzao, ZHENG Min, ZHANG Yongfeng. Unconventional hydrocarbon resources in China and the prospect of exploration and development[J]. Petroleum Exploration and Development, 2012, 39(2): 129-136. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201202002.htm
    [6] 蒋凌志, 顾家裕, 郭彬程. 中国含油气盆地碎屑岩低渗透储层的特征及形成机理[J]. 沉积学报, 2004, 22(1): 13-18. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB200401002.htm

    JIANG Lingzhi, GU Jiayu, GUO Bincheng. Characteristics and mechanism of low permeability clastic reservoir in Chinese petroliferous basin[J]. Acta Sedimentologica Sinica, 2004, 22(1): 13-18. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB200401002.htm
    [7] 曾联波, 周天伟. 塔里木盆地库车坳陷储层裂缝分布规律[J]. 天然气工业, 2004, 24(9): 23-25. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG200409007.htm

    ZENG Lianbo, ZHOU Tianwei. Reservoir fracture distribution law of Kuche Depression in Talimu Basin[J]. Natural Gas Industry, 2004, 24(9): 23-25. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG200409007.htm
    [8] 王俊鹏, 张惠良, 张荣虎, 等. 裂缝发育对超深层致密砂岩储层的改造作用: 以塔里木盆地库车坳陷克深气田为例[J]. 石油与天然气地质, 2018, 39(1): 77-88. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202102008.htm

    WANG Junpeng, ZHANG Huiliang, ZHANG Ronghu, et al. Enhancement of ultra-deep tight sandstone reservoir quality by fractures: a case study of Keshen gas field in Kuqa Depression, Tarim Basin[J]. Oil & Gas Geology, 2018, 39(1): 77-88. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202102008.htm
    [9] 魏聪, 张承泽, 陈东, 等. 塔里木盆地克深2气藏断层、裂缝、基质"三重介质"渗流及开发机理[J]. 天然气地球科学, 2019, 30(12): 1684-1693. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201912002.htm

    WEI Cong, ZHANG Chengze, CHEN Dong, et al. Seepage characteristics and development mechanism characterized by faults-fracture-pores "triple medium" in Keshen 2 gas reservoirs, Tarim Basin[J]. Natural Gas Geoscience, 2019, 30(12): 1684-1693. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201912002.htm
    [10] 刘群明, 唐海发, 吕志凯, 等. 超深层气藏裂缝发育模式及水侵规律: 以塔里木盆地克深2、9、8气藏为例[J]. 天然气地球科学, 2023, 34(6): 963-972. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202306002.htm

    LIU Qunming, TANG Haifa, LÜ Zhikai, et al. Study on gas-water distribution and water invasion law under different fracture development models in ultra-deep gas reservoir: taking Keshen 2, 9 and 8 gas reservoirs of Tarim Basin as examples[J]. Natural Gas Geoscience, 2023, 34(6): 963-972. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202306002.htm
    [11] 方建龙, 郭平, 肖香姣, 等. 高温高压致密砂岩储集层气水相渗曲线测试方法[J]. 石油勘探与开发, 2015, 42(1): 84-87. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201501011.htm

    FANG Jianlong, GUO Ping, XIAO Xiangjiao, et al. Gas-water relative permeability measurement of high temperature and high pressure tight gas reservoirs[J]. Petroleum Exploration and Development, 2015, 42(1): 84-87. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201501011.htm
    [12] 李明强, 马梓珂, 唐松, 等. 四川盆地磨溪地区龙王庙组碳酸盐岩气藏水侵规律[J]. 天然气地球科学, 2024, 35(2): 366-378. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202402014.htm

    LI Mingqiang, MA Zike, TANG Song, et al. Water invasion law of carbonate gas reservoir of Longwangmiao Formation in Moxi area, Sichuan Basin[J]. Natural Gas Geoscience, 2024, 35(2): 366-378. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202402014.htm
    [13] 张惠良, 张荣虎, 杨海军, 等. 超深层裂缝—孔隙型致密砂岩储集层表征与评价: 以库车前陆盆地克拉苏构造带白垩系巴什基奇克组为例[J]. 石油勘探与开发, 2014, 41(2): 158-167. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201402005.htm

    ZHANG Huiliang, ZHANG Ronghu, YANG Haijun, et al. Characte-rization and evaluation of ultra-deep fracture-pore tight sandstone reservoirs: a case study of Cretaceous Bashijiqike Formation in Kelasu tectonic zone in Kuqa foreland basin, Tarim, NW China[J]. Petroleum Exploration and Development, 2014, 41(2): 158-167. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201402005.htm
    [14] 赵力彬, 张同辉, 杨学君, 等. 塔里木盆地库车坳陷克深区块深层致密砂岩气藏气水分布特征与成因机理[J]. 天然气地球科学, 2018, 29(4): 500-509. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201804006.htm

    ZHAO Libin, ZHANG Tonghui, YANG Xuejun, et al. Gas-water distribution characteristics and formation mechanics in deep tight sandstone gas reservoirs of Keshen block, Kuqa Depression, Tarim Basin[J]. Natural Gas Geoscience, 2018, 29(4): 500-509. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201804006.htm
    [15] WANG Rujun, ZHANG Chengze, CHEN Dong, et al. Microscopic seepage mechanism of gas and water in ultra-deep fractured sandstone gas reservoirs of low porosity: a case study of Keshen gas field in Kuqa Depression of Tarim Basin, China[J]. Frontiers in Earth Science, 2022, 10: 893701.
    [16] ZHANG Ronghu, WANG Ke, ZENG Qinglu, et al. Effectiveness and petroleum geological significance of tectonic fractures in the ultra-deep zone of the Kuqa foreland thrust belt: a case study of the Cretaceous Bashijiqike Formation in the Keshen gas field[J]. Petroleum Science, 2021, 18(3): 728-741.
    [17] ZENG Lianbo, WANG Hongjun, GONG Lei, et al. Impacts of the tectonic stress field on natural gas migration and accumulation: a case study of the Kuqa Depression in the Tarim Basin, China[J]. Marine and Petroleum Geology, 2010, 27(7): 1616-1627.
    [18] 曾联波, 谭成轩, 张明利. 塔里木盆地库车坳陷中新生代构造应力场及其油气运聚效应[J]. 中国科学(D辑: 地球科学), 2004, 34(增刊1): 98-106. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK2004S1010.htm

    ZENG Lianbo, TAN Chengxuan, ZHANG Mingli. Cenozoic and Mesozoic tectonic stress field and its effect of oil and gas migration in Kuqa Depression, Tarim Basin[J]. Science in China (SeriesD: Earth Sciences), 2004, 34(S1): 98-106. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK2004S1010.htm
    [19] 巩磊, 高铭泽, 曾联波, 等. 影响致密砂岩储层裂缝分布的主控因素分析: 以库车前陆盆地侏罗系—新近系为例[J]. 天然气地球科学, 2017, 28(2): 199-208. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201702003.htm

    GONG Lei, GAO Mingze, ZENG Lianbo, et al. Controlling factors on fracture development in the tight sandstone reservoirs: a case study of Jurassic-Neogene in the Kuqa Foreland Basin[J]. Natural Gas Geoscience, 2017, 28(2): 199-208. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201702003.htm
    [20] 王珂, 杨海军, 李勇, 等. 库车坳陷克深气田致密砂岩储层构造裂缝形成序列与分布规律[J]. 大地构造与成矿学, 2020, 44(1): 30-46. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK202001003.htm

    WANG Ke, YANG Haijun, LI Yong, et al. Formation sequence and distribution of structural fractures in compact sandstone reservoir of Keshen gas field in Kuqa Depression, Tarim Basin[J]. Geotectonica et Metallogenia, 2020, 44(1): 30-46. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK202001003.htm
    [21] 冯建伟, 赵力彬, 王焰东. 库车坳陷克深气田超深层致密储层产能控制因素[J]. 石油学报, 2020, 41(4): 478-488. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202004012.htm

    FENG Jianwei, ZHAO Libin, WANG Yandong. Controlling factors for productivity of ultra-deep tight reservoirs in Keshen gas field, Kuqa Depression[J]. Acta Petrolei Sinica, 2020, 41(4): 478-488. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202004012.htm
    [22] 冯异勇, 贺胜宁. 裂缝性底水气藏气井水侵动态研究[J]. 天然气工业, 1998, 18(3): 40-44. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG803.008.htm

    FENG Yiyong, HE Shengning. A research on water invasion performance of the gas wells in fractured bottom water reservoir[J]. Natural Gas Industry, 1998, 18(3): 40-44. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG803.008.htm
    [23] 贾爱林, 唐海发, 韩永新, 等. 塔里木盆地库车坳陷深层大气田气水分布与开发对策[J]. 天然气地球科学, 2019, 30(6): 908-918. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201906014.htm

    JIA Ailin, TANG Haifa, HAN Yongxin, et al. The distribution of gas and water and development strategy for deep-buried gasfield in Kuqa Depression, Tarim Basin[J]. Natural Gas Geoscience, 2019, 30(6): 908-918. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201906014.htm
    [24] 韩志锐, 曾联波, 高志勇. 库车前陆盆地秋里塔格构造带东、西段构造变形与储层物性的差异性[J]. 天然气地球科学, 2014, 25(4): 508-515. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201404005.htm

    HAN Zhirui, ZENG Lianbo, GAO Zhiyong. Difference of structural deformation and reservoirs physical property in Qiulitage structural belt of Kuqa Foreland Basin[J]. Natural Gas Geoscience, 2014, 25(4): 508-515. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201404005.htm
    [25] 韩志锐, 曾联波, 巩磊, 等. 库车坳陷不同构造带沉降差异性及其对储层孔隙度的影响[J]. 地质科学, 2014, 49(1): 104-113. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX201401008.htm

    HAN Zhirui, ZENG Lianbo, GONG Lei, et al. Difference of subsi-dence history and its influence on reservoir porosity in Kuqa Depression[J]. Chinese Journal of Geology, 2014, 49(1): 104-113. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX201401008.htm
    [26] 曾联波, 刘国平, 朱如凯, 等. 库车前陆盆地深层致密砂岩储层构造成岩强度定量评价方法[J]. 石油学报, 2020, 41(12): 1601-1609. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202012012.htm

    ZENG Lianbo, LIU Guoping, ZHU Rukai, et al. A quantitative evaluation method of structural diagenetic strength of deep tight sandstone reservoirs in Kuqa Foreland Basin[J]. Acta Petrolei Sinica, 2020, 41(12): 1601-1609. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202012012.htm
    [27] 巩磊, 曾联波, 杜宜静, 等. 构造成岩作用对裂缝有效性的影响: 以库车前陆盆地白垩系致密砂岩储层为例[J]. 中国矿业大学学报, 2015, 44(3): 514-519. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201503017.htm

    GONG Lei, ZENG Lianbo, DU Yijing, et al. Influences of structural diagenesis on fracture effectiveness: a case study of the Cretaceous tight sandstone reservoirs of Kuqa Foreland Basin[J]. Journal of China University of Mining & Technology, 2015, 44(3): 514-519. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201503017.htm
    [28] LIU Guoping, ZENG Lianbo, ZHU Rukai, et al. Effective fractures and their contribution to the reservoirs in deep tight sandstones in the Kuqa Depression, Tarim Basin, China[J]. Marine and Petroleum Geology, 2021, 124: 104824.
    [29] JIA Chengzao, GU Jiayu, ZHANG Guangya. Geological constraints of giant and medium-sized gas fields in Kuqa Depression[J]. Chinese Science Bulletin, 2002, 47(S1): 47-54.
    [30] 曾联波, 王贵文. 塔里木盆地库车山前构造带地应力分布特征[J]. 石油勘探与开发, 2005, 32(3): 59-60. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK200503015.htm

    ZENG Lianbo, WANG Guiwen. Distribution of earth stress in Kuche thrust belt, Tarim Basin[J]. Petroleum Exploration and Development, 2005, 32(3): 59-60. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK200503015.htm
    [31] 魏国齐, 王俊鹏, 曾联波, 等. 克拉苏构造带盐下超深层储层的构造改造作用与油气勘探新发现[J]. 天然气工业, 2020, 40(1): 20-30. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202001006.htm

    WEI Guoqi, WANG Junpeng, ZENG Lianbo, et al. Structural reworking effects and new exploration discoveries of subsalt ultra-deep reservoirs in the Kelasu tectonic zone[J]. Natural Gas Industry, 2020, 40(1): 20-30. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202001006.htm
    [32] 王俊鹏, 曾联波, 周露, 等. 塔里木盆地克拉苏构造带超深层储层裂缝发育模式及开发意义[J]. 地球科学, 2023, 48(7): 2520-2534. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202307007.htm

    WANG Junpeng, ZENG Lianbo, ZHOU Lu, et al. Development model of natural fractures in ultra-deep sandstone reservoirs with low porosity in Kelasu Tectonic Belt, Tarim Basin[J]. Earth Science, 2023, 48(7): 2520-2534. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202307007.htm
    [33] 付晓飞, 宋岩, 吕延防, 等. 塔里木盆地库车坳陷膏盐质盖层特征与天然气保存[J]. 石油实验地质, 2006, 28(1): 25-29. doi: 10.11781/sysydz200601025

    FU Xiaofei, SONG Yan, LÜ Yanfang, et al. Mechanical characteristics of gypsum cover and conservation function to gas in the Kuche depression, the Tarim basin[J]. Petroleum Geology & Experiment, 2006, 28(1): 25-29. doi: 10.11781/sysydz200601025
    [34] ZENG Lianbo, SONG Yichen, LIU Guoping, et al. Natural frack-tures in ultra-deep reservoirs of China: a review[J]. Journal of Structural Geology, 2023, 175, 104954.
    [35] 巩磊, 高铭泽, 曾联波, 等. 影响致密砂岩储层裂缝分布的主控因素分析一以库车前陆盆地侏罗系—新近系为例[J]. 天然气地球科学, 2017, 28(2): 199-208. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201702003.htm

    GONG Li, GAO Mingze, ZENG Lianbo, et al. Controlling factors on fracture development in the tight sandstone reservoirs: a case study of Jurassic-Neogene in the Kuqa foreland basin[J]. Natural Gas Geoscience, 2017, 28(2): 199-208. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201702003.htm
    [36] ZENG Lianbo, GONG Li, ZHANG Yunzhao, et al. A review of the genesis, evolution, and prediction of natural fractures in deep tight sandstones of China[J]. AAPG Bulletin, 2023, 107(10): 1687-1721.
    [37] 李军, 张超谟, 肖承文, 等. 库车地区砂岩裂缝测井定量评价方法及应用[J]. 天然气工业, 2008, 28(10): 25-27. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG200810009.htm

    LI Jun, ZHANG Chaomo, XIAO Chengwen, et al. Quantitative evaluation method of fracturing sandstone reservoir and its application in Kuqa area, the Tarim Basin[J]. Natural Gas Industry, 2008, 28(10): 25-27. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG200810009.htm
    [38] 常宝华, 唐永亮, 朱松柏, 等. 超深层裂缝性致密砂岩气藏试井特征及认识: 以塔里木盆地克深气田为例[J]. 大庆石油地质与开发, 2021, 40(3): 167-174. https://www.cnki.com.cn/Article/CJFDTOTAL-DQSK202103021.htm

    CHANG Baohua, TANG Yongliang, ZHU Songbai, et al. Well test characteristics and understandings of the ultra-deep fractured tight sandstone gas reservoirs: a case study on Keshen gas field in Tarim Basin[J]. Petroleum Geology & Oilfield Development in Daqing, 2021, 40(3): 167-174. https://www.cnki.com.cn/Article/CJFDTOTAL-DQSK202103021.htm
    [39] 周鹏, 朱文慧, 王佐涛, 等. 克拉苏构造带超深气藏地层水特征及水化学相图建立[J]. 长江大学学报(自然科学版), 2019, 16(2): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-CJDL201902001.htm

    ZHOU Peng, ZHU Wenhui, WANG Zuotao, et al. Characteristics of formation water and water chemical phase diagram of the super-deep gas reservoirs in Kelasu Structure Belt[J]. Journal of Yangtze University (Natural Science Edition), 2019, 16(2): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-CJDL201902001.htm
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  123
  • HTML全文浏览量:  77
  • PDF下载量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-08
  • 修回日期:  2024-06-12
  • 刊出日期:  2024-07-28

目录

    /

    返回文章
    返回