留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

塔里木盆地库车坳陷白垩系巴什基奇克组致密砂岩力学性质影响因素及其变化规律

徐珂 鞠玮 张辉 梁艳 尹国庆 王志民 徐浩然 张玮 梁景瑞

徐珂, 鞠玮, 张辉, 梁艳, 尹国庆, 王志民, 徐浩然, 张玮, 梁景瑞. 塔里木盆地库车坳陷白垩系巴什基奇克组致密砂岩力学性质影响因素及其变化规律[J]. 石油实验地质, 2024, 46(4): 823-832. doi: 10.11781/sysydz202404823
引用本文: 徐珂, 鞠玮, 张辉, 梁艳, 尹国庆, 王志民, 徐浩然, 张玮, 梁景瑞. 塔里木盆地库车坳陷白垩系巴什基奇克组致密砂岩力学性质影响因素及其变化规律[J]. 石油实验地质, 2024, 46(4): 823-832. doi: 10.11781/sysydz202404823
XU Ke, JU Wei, ZHANG Hui, LIANG Yan, YIN Guoqing, WANG Zhimin, XU Haoran, ZHANG Wei, LIANG Jingrui. Factors affecting the mechanical properties of tight sandstone and their patterns of variation in Cretaceous Bashijiqike Formation of Kuqa Depression in Tarim Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2024, 46(4): 823-832. doi: 10.11781/sysydz202404823
Citation: XU Ke, JU Wei, ZHANG Hui, LIANG Yan, YIN Guoqing, WANG Zhimin, XU Haoran, ZHANG Wei, LIANG Jingrui. Factors affecting the mechanical properties of tight sandstone and their patterns of variation in Cretaceous Bashijiqike Formation of Kuqa Depression in Tarim Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2024, 46(4): 823-832. doi: 10.11781/sysydz202404823

塔里木盆地库车坳陷白垩系巴什基奇克组致密砂岩力学性质影响因素及其变化规律

doi: 10.11781/sysydz202404823
详细信息
    作者简介:

    徐珂(1991—), 男, 博士, 高级工程师, 主要从事油气田地质力学科研和生产工作。E-mail: xukee0505@163.com

    通讯作者:

    鞠玮(1988—), 男, 博士, 副教授, 本刊青年编委, 主要从事非常规油气储层地质力学教学与研究工作。E-mail: wju@cumt.edu.cn

  • 中图分类号: P554

Factors affecting the mechanical properties of tight sandstone and their patterns of variation in Cretaceous Bashijiqike Formation of Kuqa Depression in Tarim Basin

  • 摘要: 为查明塔里木盆地库车坳陷白垩系巴什基奇克组致密砂岩力学特性,结合深层—超深层油气勘探开发的现场问题,采用三轴压缩实验定量研究了围压、流体和加载速率影响岩石力学性质变化的规律,并初步分析其原因。研究结果表明,砂岩试样最大主应力差、弹性模量均随着围压的增大而显著增大,其微观原因在于围压增大使岩石内部质点彼此之间距离缩短,增强了岩石的内聚力,颗粒之间不易离散;砂岩试样经历低围压脆性→脆—韧性转换→高围压韧性变形破裂演化的过程。与干燥砂岩试样相比,纯净水浸泡样、150 g/L溶液浸泡样、250 g/L溶液浸泡样和350 g/L溶液浸泡样弹性模量降低幅度分别为67.71%、61.45%、64.69%和57.32%,纯净水浸泡造成的降低幅度最大,流体矿化度的升高能够减弱岩石力学参数弱化的趋势;晶体表面结晶和双电层厚度变化是上述变化规律的重要控制因素。在较低的加载速率条件时,砂岩试样的最大主应力差、弹性模量和泊松比的值都较小,但随着加载速率的增大增速较快;当加载速率达到一定关键数值之后(本次实验为0.05 mm/min左右),岩石力学参数值增速变缓。

     

  • 图  1  塔里木盆地库车坳陷构造单元划分与典型地质剖面

    .寒武系, O.奥陶系, S—D.志留系—泥盆系, C.石炭系, P.二叠系, T.三叠系, J.侏罗系, K.白垩系, E1-2Km.库姆格列木群, E2-3s.苏维依组, N1j.吉迪克组, N1-2k.康村组, N2k.库车组, Q1x.西域组。

    Figure  1.  Division of structural units and typical geological sections in Kuqa Depression of Tarim Basin

    图  2  塔里木盆地库车坳陷克拉苏构造带构造特征

    Figure  2.  Structural features of Kelasu structural belt in Kuqa Depression of Tarim Basin

    图  3  塔里木盆地库车坳陷下白垩统巴西改组—巴什基奇克组典型地层柱状图

    Figure  3.  Typical strata section of Lower Cretaceous Baxigai Formation and Bashijiqike Formation in Kuqa Depression, Tarim Basin

    图  4  围压影响岩石力学性质变化规律

    a.主应力差—应变曲线;b.最大主应力差随围压变化规律;c.弹性模量随围压变化规律;d.泊松比随围压变化规律。

    Figure  4.  Variation chart showing the effect of confining pressure on mechanical properties of rock

    图  5  围压影响岩石差异破裂样式照片

    Figure  5.  Differential pattern of rock failure under the effect of confining pressure

    图  6  流体影响岩石力学性质变化规律

    a.主应力差—应变曲线;b.最大主应力差随流体类型变化规律;c.弹性模量随流体类型变化规律;d.泊松比随流体类型变化规律。

    Figure  6.  Variation chart showing the effect of fluid type on mechanical properties of rock

    图  7  加载速率影响岩石力学性质变化规律

    a.主应力差—应变曲线;b.最大主应力差随加载速率变化规律;c.弹性模量随加载速率变化规律;d.泊松比随加载速率变化规律。

    Figure  7.  Variation chart showing the effect of loading rate on mechanical properties of rock

    图  8  塔里木盆地库车坳陷克拉苏构造带巴什基奇克组岩石弹性模量与距山前距离的关系

    Figure  8.  Relationship between elastic modulus of rock of Cretaceous Bashijiqike Formation of Kelasu structural belt of Kuqa Depression of Tarim Basin and mountain front

  • [1] 田军, 杨海军, 吴超, 等. 博孜9井的发现与塔里木盆地超深层天然气勘探潜力[J]. 天然气工业, 2020, 40(1): 11-19. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202001004.htm

    TIAN Jun, YANG Haijun, WU Chao, et al. Discovery of well Bozi 9 and ultra-deep natural gas exploration potential in the Kelasu tectonic zone of the Tarim Basin[J]. Natural Gas Industry, 2020, 40(1): 11-19. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202001004.htm
    [2] 王清华, 杨海军, 汪如军, 等. 塔里木盆地超深层走滑断裂断控大油气田的勘探发现与技术创新[J]. 中国石油勘探, 2021, 26(4): 58-71. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY202104005.htm

    WANG Qinghua, YANG Haijun, WANG Rujun, et al. Discovery and exploration technology of fault-controlled large oil and gas fields of ultra-deep formation in strike slip fault zone in Tarim Basin[J]. China Petroleum Exploration, 2021, 26(4): 58-71. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY202104005.htm
    [3] 张仲培, 徐勤琪, 刘士林, 等. 塔里木盆地巴麦地区东段北东向走滑断裂体系特征及油气地质意义[J]. 石油实验地质, 2023, 45(4): 761-769. doi: 10.11781/sysydz202304761

    ZHANG Zhongpei, XU Qinqi, LIU Shilin, et al. Characteristics of NE strike-slip fault system in the eastern section of Bachu-Maigaiti area, Tarim Basin and its oil-gas geological significance[J]. Petroleum Geology & Experiment, 2023, 45(4): 761-769. doi: 10.11781/sysydz202304761
    [4] 程建, 周小进, 刘超英, 等. 中西部大盆地重点勘探领域战略选区研究[J]. 石油实验地质, 2023, 45(2): 229-237. doi: 10.11781/sysydz202302229

    CHENG Jian, ZHOU Xiaojin, LIU Chaoying, et al. Strategic area selection and key exploration fields in central and western large basins[J]. Petroleum Geology & Experiment, 2023, 45(2): 229-237. doi: 10.11781/sysydz202302229
    [5] 周学文, 林会喜, 郭景祥, 等. 塔里木盆地库车坳陷南斜坡新和地区白垩系亚格列木组沉积模式及油气意义[J]. 石油实验地质, 2023, 45(2): 266-279, 392. doi: 10.11781/sysydz202302266

    ZHOU Xuewen, LIN Huixi, GUO Jingxiang, et al. Depositional model and petroleum significance of the Cretaceous Yageliemu Formation in Xinhe area on the southern slope of Kuqa Depression, Tarim Basin[J]. Petroleum Geology & Experiment, 2023, 45(2): 266-279. doi: 10.11781/sysydz202302266
    [6] 漆立新, 丁勇. 塔里木盆地顺北地区东西部海相油气成藏差异[J]. 石油实验地质, 2023, 45(1): 20-28. doi: 10.11781/sysydz202301020

    QI Lixin, DING Yong. Differences in marine hydrocarbon accumulation between the eastern and western parts of Shunbei area, Tarim Basin[J]. Petroleum Geology & Experiment, 2023, 45(1): 20-28. doi: 10.11781/sysydz202301020
    [7] 吕志凯, 张建业, 张永宾, 等. 超深层裂缝性致密砂岩气藏储层连通性及开发启示: 以塔里木盆地库车坳陷克深2气藏为例[J]. 断块油气田, 2023, 30(1): 31-37, 95. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT202301005.htm

    LÜ Zhikai, ZHANG Jianye, ZHANG Yongbin, et al. Reservoir connectivity of ultra-deep fractured tight sandstone gas reservoir and development enlightenment: taking Keshen 2 gas reservoir in Kuqa Depression of Tarim Basin as an example[J]. Fault-Block Oil and Gas Field, 2023, 30(1): 31-37, 95. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT202301005.htm
    [8] 黄少英, 杨文静, 卢玉红, 等. 塔里木盆地天然气地质条件、资源潜力及勘探方向[J]. 天然气地球科学, 2018, 29(10): 1497-1505. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201810011.htm

    HUANG Shaoying, YANG Wenjing, LU Yuhong, et al. Geolo-gical conditions, resource potential and exploration direction of natural gas in Tarim Basin[J]. Natural Gas Geoscience, 2018, 29(10): 1497-1505. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201810011.htm
    [9] 张坦, 齐育楷, 姚威, 等. 塔里木盆地库车坳陷南斜坡三叠系烃源岩热演化特征及油气地质意义[J]. 石油实验地质, 2022, 44(6): 1018-1027. doi: 10.11781/sysydz2022061018

    ZHANG Tan, QI Yukai, YAO Wei, et al. Thermal evolution characte-ristics of Triassic source rocks and their petroleum geological significance on the southern slope of Kuqa Depression, Tarim Basin[J]. Petroleum Geology & Experiment, 2022, 44(6): 1018-1027. doi: 10.11781/sysydz2022061018
    [10] 徐珂, 张辉, 刘新宇, 等. 库车坳陷深层裂缝性储层现今地应力特征及其对天然气勘探开发的指导意义[J]. 油气地质与采收率, 2022, 29(2): 34-45. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS202202004.htm

    XU Ke, ZHANG Hui, LIU Xinyu, et al. Current in-situ stress characteristics of deep fractured reservoirs in Kuqa Depression and its guiding significance to natural gas exploration and deve-lopment[J]. Petroleum Geology and Recovery Efficiency, 2022, 29(2): 34-45. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS202202004.htm
    [11] 雷刚林, 谢会文, 张敬洲, 等. 库车坳陷克拉苏构造带构造特征及天然气勘探[J]. 石油与天然气地质, 2007, 28(6): 816-820. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT200706018.htm

    LEI Ganglin, XIE Huiwen, ZHANG Jingzhou, et al. Structural features and natural gas exploration in the Kelasu structural belt, Kuqa Depression[J]. Oil & Gas Geology, 2007, 28(6): 816-820. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT200706018.htm
    [12] 王招明, 谢会文, 李勇, 等. 库车前陆冲断带深层盐下大气田的勘探和发现[J]. 中国石油勘探, 2013, 18(3): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201303002.htm

    WANG Zhaoming, XIE Huiwen, LI Yong, et al. Exploration and discovery of large and deep subsalt gas fields in Kuqa foreland thrust belt[J]. China Petroleum Exploration, 2013, 18(3): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201303002.htm
    [13] 鞠玮, 姜波, 秦勇, 等. 多煤层条件下现今地应力特征与煤层气开发[J]. 煤炭学报, 2020, 45(10): 3492-3500. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202010014.htm

    JU Wei, JIANG Bo, QIN Yong, et al. Characteristics of present-day in-situ stress field under multi-seam condtions: implications for coalbed methane development[J]. Journal of China Coal Society, 2020, 45(10): 3492-3500. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202010014.htm
    [14] 刘敬寿, 丁文龙, 杨海盟, 等. 鄂尔多斯盆地华庆地区天然裂缝与岩石力学层演化: 基于数值模拟的定量分析[J]. 地球科学, 2023, 48(7): 2572-2588. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202307010.htm

    LIU Jingshou, DING Wenlong, YANG Haimeng, et al. Natural fractures and rock mechanical stratigraphy evaluation in Huaqing area, Ordos Basin: a quantitative analysis based on numerical simulation[J]. Earth Science, 2023, 48(7): 2572-2588. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202307010.htm
    [15] 刘向君, 罗平亚. 岩石力学与石油工程[M]. 北京: 石油工业出版社, 2004: 195.

    LIU Xiangjun, LUO Pingya. Roch mechanics and petroleum engineering[M]. Beijing: Petroleum Industry Press, 2004: 195.
    [16] 周文, 高雅琴, 单钰铭, 等. 川西新场气田沙二段致密砂岩储层岩石力学性质[J]. 天然气工业, 2008, 28(2): 34-37. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG200802012.htm

    ZHOU Wen, GAO Yaqin, SHAN Yuming, et al. Lithomechanical property of tight sand reservoirs in the second member of Shaximiao Formation in Xinchang gas field, west Sichuan Basin[J]. Natural Gas Industry, 2008, 28(2): 34-37. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG200802012.htm
    [17] ZOBACK M D. Reservoir geomechanics[M]. Cambridge: Cambridge University Press, 2007: 485.
    [18] 郭培峰, 邓虎成, 邓勇, 等. 鄂尔多斯盆地南缘长8储层岩石力学特征及影响因素[J]. 科学技术与工程, 2019, 19(18): 189-198. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201918028.htm

    GUO Peifeng, DENG Hucheng, DENG Yong, et al. Rock mechanics characteristics and influence factors analysis of Chang 8 reservoir in the southern margin of Ordos Basin[J]. Science Technology and Engineering, 2019, 19(18): 189-198. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201918028.htm
    [19] 于少群, 李理. 低渗储层岩石的力学性质及其控制因素: 以牛庄洼陷牛35块沙三中为例[J]. 地质科学, 2021, 56(3): 845-853. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX202103011.htm

    YU Shaoqun, LI Li. Mechanical properties of low permeability reservoir rocks and their controlling factors: take the third member of Shahejie Formation of Niu-35 fault block in Niu Zhuang Sag as an example[J]. Chinese Journal of Geology, 2021, 56(3): 845-853. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX202103011.htm
    [20] 李智武, 罗玉宏, 刘树根, 等. 川东北地区地层条件下致密储层力学性质实验分析[J]. 矿物岩石, 2005, 25(4): 52-60. https://www.cnki.com.cn/Article/CJFDTOTAL-KWYS200504008.htm

    LI Zhiwu, LUO Yuhong, LIU Shugen, et al. The experimental analysis of mechanical properties of compact revervoir rocks under formation conditions, northeast of Sichuan Basin, China[J]. Journal of Mineralogy and Petrology, 2005, 25(4): 52-60. https://www.cnki.com.cn/Article/CJFDTOTAL-KWYS200504008.htm
    [21] 徐珂. 南堡凹陷高尚堡油藏现今地应力研究[D]. 青岛: 中国石油大学(华东), 2019: 196.

    XU Ke. Current in-situ stress of Gaoshangpu reservoir, Nanpu Sag, Bohai Bay Basin, China[D]. Qingdao: China University of Petroleum (East China), 2019: 196.
    [22] 李庆辉, 李少轩. 超深层砂岩储层岩石力学特性实验研究[J]. 岩石力学与工程学报, 2021, 40(5): 948-957. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202105009.htm

    LI Qinghui, LI Shaoxuan. Experimental study on mechanical properties of ultra-deep sandstone[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(5): 948-957. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202105009.htm
    [23] ZHANG Yuliang, SUN Qiang, HE Huan, et al. Pore characteristics and mechanical properties of sandstone under the influence of temperature[J]. Applied Thermal Engineering, 2017, 113: 537-543.
    [24] ERGULER Z A, ULUSAY R. Water-induced variations in mechanical properties of clay-bearing rocks[J]. International Journal of Rock Mechanics and Mining Sciences, 2009, 46(2): 355-370.
    [25] 王云飞, 刘晓, 王立平, 等. 加载速率和饱水对砂岩力学行为和微观损伤特征的影响[J]. 采矿与安全工程学报, 2022, 39(2): 421-428. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL202202022.htm

    WANG Yunfei, LIU Xiao, WANG Liping, et al. Coupling effect of loading rate and saturated water on mechanical behavior and micro damage property of sandstone[J]. Journal of Mining & Safety Engineering, 2022, 39(2): 421-428. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL202202022.htm
    [26] 侯连浪, 刘向君, 梁利喜, 等. 巴什基奇克组地层岩石力学及地应力特征[J]. 科学技术与工程, 2021, 21(10): 3894-3903. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS202110005.htm

    HOU Lianlang, LIU Xiangjun, LIANG Lixi, et al. Investigation of rock mechanics and in-situ stress characteristics of Bashijiqike Formation[J]. Science Technology and Engineering, 2021, 21(10): 3894-3903. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS202110005.htm
    [27] 鞠玮, 侯贵廷, 黄少英, 等. 库车坳陷依南—吐孜地区下侏罗统阿合组砂岩构造裂缝分布预测[J]. 大地构造与成矿学, 2013, 37(4): 592-602. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201304005.htm

    JU Wei, HOU Guiting, HUANG Shaoying, et al. Structural fracture distribution and prediction of the Lower Jurassic Ahe Formation sandstone in the Yinan-Tuzi area, Kuqa Depression[J]. Geotectonica et Metallogenia, 2013, 37(4): 592-602. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201304005.htm
    [28] 王招明. 塔里木盆地库车坳陷克拉苏盐下深层大气田形成机制与富集规律[J]. 天然气地球科学, 2014, 25(2): 153-166. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201402003.htm

    WANG Zhaoming. Formation mechanism and enrichment regularities of Kelasu subsalt deep large gas field in Kuqa Depression, Tarim Basin[J]. Natural Gas Geoscience, 2014, 25(2): 153-166. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201402003.htm
    [29] 徐珂, 田军, 杨海军, 等. 塔里木盆地库车坳陷超深层现今地应力对储层品质的影响及实践应用[J]. 天然气地球科学, 2022, 33(1): 13-23. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202201002.htm

    XU Ke, TIAN Jun, YANG Haijun, et al. Effects and practical applications of present-day in-situ stress on reservoir quality in ultra-deep layers of Kuqa Depression, Tarim Basin[J]. Natural Gas Geoscience, 2022, 33(1): 13-23. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202201002.htm
    [30] 罗世伟. 库车坳陷克拉苏富油气区构造研究[D]. 西安: 西安石油大学, 2019: 73.

    LUO Shiwei. Study on the structure of the oil-gas enrichment area in Kelasu Kuqa Depression[D]. Xi'an: Xi'an Shiyou University, 2019: 73.
    [31] 王升. 致密储层脆性主控因素及可压性分级评价研究[D]. 大庆: 东北石油大学, 2021: 112.

    WANG Sheng. Study on the main controlling factors of brittleness and compressibility classification evaluation for tight reservoirs[D]. Daqing: Northeast Petroleum University, 2021: 112.
    [32] FOSSEN H. Structural geology[M]. Cambridge: Cambridge University Press, 2010: 463.
    [33] 席道瑛, 徐松林. 岩石物理学基础[M]. 合肥: 中国科学技术大学出版社, 2012: 350.

    XI Daoying, XU Songlin. Foudations of rock physics[M]. Hefei: China University of Science and Technology Press, 2012: 350.
    [34] 谢仁海, 渠天祥, 钱光谟. 构造地质学[M]. 2版. 徐州: 中国矿业大学出版社, 2007: 344.

    XIE Renhai, QU Tianxiang, QIAN Guangmo. Structural geology[M]. 2nd ed. Xuzhou: China University of Mining and Technology Press, 2007: 344.
    [35] 吴树仁, 石玲. 断层的脆—韧性转换研究综述[J]. 世界地质, 1993, 12(4): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-SJDZ199304000.htm

    WU Shuren, SHI Ling. Research on fault brittle-ductile transition[J]. World Geology, 1993, 12(4): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-SJDZ199304000.htm
    [36] HADIZADEH J, RUTTER E H. The low temperature brittle-ductile transition in a quartzite and the occurrence of cataclastic flow in nature[J]. Geologische Rundschau, 1983, 72(2): 493-509.
    [37] 李根, 唐春安, 李连崇. 水岩耦合变形破坏过程及机理研究进展[J]. 力学进展, 2012, 42(5): 593-619. https://www.cnki.com.cn/Article/CJFDTOTAL-LXJZ201205008.htm

    LI Gen, TANG Chun'an, LI Lianchong. Advances in rock deformation and failure process under water-rock coupling[J]. Advances in Mechanics, 2012, 42(5): 593-619. https://www.cnki.com.cn/Article/CJFDTOTAL-LXJZ201205008.htm
    [38] 杨圣奇, 许帅博, 刘振. 深部盐水环境下砂岩力学及渗透特性试验研究[J]. 岩石力学与工程学报, 2022, 41(2): 292-304. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202202007.htm

    YANG Shengqi, XU Shuaibo, LIU Zhen. Experimental study on mechanical and permeability behaviors of sandstone under deep saline environments[J]. Chinese Journal of Rock Mechanics and Engineering, 2022, 41(2): 292-304. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202202007.htm
    [39] HUANG Yanhuang, YANG Shengqi, HALL M R, et al. The effects of NaCl concentration and confining pressure on mechanical and acoustic behaviors of brine-saturated sandstone[J]. Energies, 2018, 11(2): 385.
    [40] 杨鑫. 水及化学溶液对岩石力学性质影响的试验研究[D]. 武汉: 湖北工业大学, 2010: 66.

    YANG Xin. Experimental study on effects of water and chemical solution on mechanical properties of rock[D]. Wuhan: Hubei University of Technology, 2010: 66.
    [41] 党亚倩, 王团结, 汪洪菊, 等. 加载速率对岩石材料力学性质与能量演化特征的影响[J]. 金属矿山, 2022(12): 45-51. https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS202212007.htm

    DANG Yaqian, WANG Tuanjie, WANG Hongju, et al. Effect of loading rate on mechanical behavior and energy evolution characteristics of rock materials[J]. Metal Mine, 2022(12): 45-51. https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS202212007.htm
    [42] 杨科, 张寨男, 华心祝, 等. 饱和煤样力学及损伤特征的加载速率微观作用机制研究[J]. 煤炭科学技术, 2023, 51(2): 130-142. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ202302009.htm

    YANG Ke, ZHANG Zhainan, HUA Xinzhu, et al. Microscopic mechanism of loading rate of saturated coal sample mechanics and damage characteristics[J]. Coal Science and Technology, 2023, 51(2): 130-142. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ202302009.htm
  • 加载中
图(8)
计量
  • 文章访问数:  140
  • HTML全文浏览量:  69
  • PDF下载量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-26
  • 修回日期:  2024-04-10
  • 刊出日期:  2024-07-28

目录

    /

    返回文章
    返回