留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

川中地区震旦系灯影组—寒武系龙王庙组储层焦沥青赋存特征与成因机制

牛思琪 柳广弟 王云龙 宋泽章 朱联强 赵文智 田兴旺 杨岱林 李亿殊

牛思琪, 柳广弟, 王云龙, 宋泽章, 朱联强, 赵文智, 田兴旺, 杨岱林, 李亿殊. 川中地区震旦系灯影组—寒武系龙王庙组储层焦沥青赋存特征与成因机制[J]. 石油实验地质, 2024, 46(5): 1039-1049. doi: 10.11781/sysydz2024051039
引用本文: 牛思琪, 柳广弟, 王云龙, 宋泽章, 朱联强, 赵文智, 田兴旺, 杨岱林, 李亿殊. 川中地区震旦系灯影组—寒武系龙王庙组储层焦沥青赋存特征与成因机制[J]. 石油实验地质, 2024, 46(5): 1039-1049. doi: 10.11781/sysydz2024051039
NIU Siqi, LIU Guangdi, WANG Yunlong, SONG Zezhang, ZHU Lianqiang, ZHAO Wenzhi, TIAN Xingwang, YANG Dailin, LI Yishu. Occurrence characteristics and genesis mechanism of pyrobitumen in Sinian Dengying to Cambrian Longwangmiao reservoirs in central Sichuan Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2024, 46(5): 1039-1049. doi: 10.11781/sysydz2024051039
Citation: NIU Siqi, LIU Guangdi, WANG Yunlong, SONG Zezhang, ZHU Lianqiang, ZHAO Wenzhi, TIAN Xingwang, YANG Dailin, LI Yishu. Occurrence characteristics and genesis mechanism of pyrobitumen in Sinian Dengying to Cambrian Longwangmiao reservoirs in central Sichuan Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2024, 46(5): 1039-1049. doi: 10.11781/sysydz2024051039

川中地区震旦系灯影组—寒武系龙王庙组储层焦沥青赋存特征与成因机制

doi: 10.11781/sysydz2024051039
基金项目: 

国家重点研发计划 2017YFC0603106

国家自然科学基金面上项目 42272161

详细信息
    作者简介:

    牛思琪(1998—),女,硕士,从事油气成藏和页岩油研究。E-mail:2450728961@qq.com

    通讯作者:

    柳广弟(1961—),男,教授,博士生导师,从事油气成藏研究。E-mail:guangdiliucupb@gmail.com

  • 中图分类号: TE122.116

Occurrence characteristics and genesis mechanism of pyrobitumen in Sinian Dengying to Cambrian Longwangmiao reservoirs in central Sichuan Basin

  • 摘要: 川中地区震旦系灯影组—下寒武统龙王庙组储层内存在明显的热液活动痕迹,焦沥青也表现出热液蚀变的特征,然而很少有研究去探讨热液活动与天然气成藏演化的关系, 导致现今对灯影组油气成藏演化史的认识还存在明显不足。然而,热液对灯影组油气成藏的影响不可忽略,要正确认识灯影组天然气的成藏演化过程并识别勘探有利区,还需要对热液裂解气聚集成藏方面进行更深入的研究。基于对焦沥青的充填特征、光学纹理及结构特征的详细研究,结合热液矿物捕获的流体包裹体地球化学的研究方法,探讨了灯影组—龙王庙组储层内焦沥青的成因,分析了热液活动与原油裂解之间的关系。川中地区灯影组—龙王庙组焦沥青形成于热液活动期间,具有与中间相相同的光学各向异性特征。焦沥青可以划分为4种类型:细粒镶嵌型、中粒镶嵌型、粗粒镶嵌型及流线型,其形成温度过300 ℃,远超地层最大埋深温度,显示出热液成因的特征。热液活动发生于晚二叠世,与峨眉山地幔柱活动相关,热液流体温度超过300 ℃,导致了灯影组—龙王庙组储层内的原油裂解。研究发现热液活动将灯影组—龙王庙组古油藏内原油裂解的时间提前到了晚二叠世,打破了灯影组—龙王庙组现有的成藏模式,有助于对天然气成藏演化过程的重新认识和聚集有利区的识别。

     

  • 图  1  川中地区研究区位置(a)、震旦系灯影组顶部构造等高线与井位分布(b)及地层柱状图(c)

    据参考文献[13, 28, 33]修改。

    Figure  1.  Location of study area in central Sichuan Basin (a), structural contour map at top of Sinian Dengying Formation and well distribution (b), and stratigraphic column (c)

    图  2  川中地区震旦系灯影组—寒武系龙王庙组储层内焦沥青及热液矿物的充填特征

    a.MX145井,5 585.58 m,灯四段,高角度裂隙块状焦沥青充填;b.MX145井,5 585.58 m,灯四段,溶孔见块状沥青充填;c.MX145井,5 658.84 m,灯四段,裂隙见块状沥青充填;d.MX145井,5 663.36 m,灯四段,溶孔见块状焦沥青充填;e.ZJ2井,6 547.22 m,灯二段,藻格架孔充填白云石和块状焦沥青;f.MX203井,4 777.58 m,龙王庙组,反射光,薄片状焦沥青附着于白云石晶面;g.GS7井,5 290.50 m,灯四段,扫描电镜,球状焦沥青充填于白云石晶间孔;h.GS7井,5 311.57 m,灯四段,扫描电镜,白云石晶间孔被块状焦沥青全充填;i.BD1井,6 405.33 m,扫描电镜,片状焦沥青附着于白云石晶面;j,k.GS20井,5 183.47 m,正交透射光,鞍形白云石具波状消光,晶间孔充填块状焦沥青;l.GS7井,5 293.19 m,灯四段,反射光,溶洞充填闪锌矿、焦沥青和方铅矿,闪锌矿中发育黄铁矿出溶体,方铅矿内见特殊的三角微孔;m.GS7井,5 290.50 m,灯四段,反射光,溶孔充填块状焦沥青,随后被闪锌矿全充填;n.GS7井,5 290.50 m,灯四段,反射光,溶孔边缘充填焦沥青,随后被块状闪锌矿全充填;o.GS7井,5 034.78 m,灯四段,反射光,溶孔充填焦沥青和块状闪锌矿,闪锌矿内发育黄铁矿出溶体。

    Figure  2.  Filling characteristics of pyrobitumen and hydrothermal minerals in reservoirs of Sinian Dengying to Cambrian Longwangmiao formations in central Sichuan Basin

    图  3  川中地区震旦系灯影组—寒武系龙王庙组不同光学纹理焦沥青的反射光及扫描电镜照片

    a-b.GS119井,5 587.47 m,灯四段,反射光,细粒镶嵌型焦沥青;c.MX205井,4 599.9 m,龙王庙组,反射光,中粒镶嵌型焦沥青;d.MX205井,4 642.48 m,龙王庙组,反射光,中粒镶嵌型焦沥青;e.GS129井,5 467.92 m,灯四段,反射光,粗粒镶嵌型焦沥青;f.GS10井,5 079.22 m,灯四段,反射光,粗粒镶嵌型焦沥青;g.MX145井,6 169.77 m,灯二段,反射光,焦沥青内尚未融并和已融并的中间相球体;h.MX9井,灯二段,反射光,流线型焦沥青,发育明暗交替的纹理;i.GS7井,5 274.11 m,反射光,流线型焦沥青,发育明暗交替的纹理;j.GS7井,5 311.57 m,灯四段,扫描电镜,流线型焦沥青内排列有序的芳香片层;k-l.GS7井,灯四段,扫描电镜,流线型焦沥青内排列有序的芳香片层。

    Figure  3.  Reflective light and scanning electron microscope images of pyrobitumen with differing optical textures in Sinian Dengying to Cambrian Longwangmiao formations in central Sichuan Basin

    图  4  川中地区震旦系灯影组流线型焦沥青内亮带及暗带反射率

    图中数值为焦沥青的平均反射率, 单位%。

    Figure  4.  Reflectance values of bright and dark bands in streamlined pyrobitumen in Sinian Dengying Formation, central Sichuan Basin

    图  5  川中地区震旦系灯影组—寒武系龙王庙组热液矿物捕获的流体包裹体照片及均一温度

    a-b.GS20井,5 255.13 m,鞍形白云石捕获的原生含气盐水包裹体,成群分布;c-d.GS20井,5 196.71 m,鞍形白云石捕获的原生含气盐水包裹体,成群分布。

    Figure  5.  Photos and homogenization temperatures of fluid inclusions trapped by hydrothermal minerals in Sinian Dengying to Cambrian Longwangmiao formations, central Sichuan Basin

    图  6  川中地区震旦系灯影组—寒武系龙王庙组焦沥青H/C原子比与软化点交会图

    据参考文献[48, 50-53]修改。

    Figure  6.  Cross plotts of H/C atomic ratio and softening point of pyrobitumen in Sinian Dengying to Cambrian Longwangmiao formations, central Sichuan Basin

  • [1] 魏国齐, 杜金虎, 徐春春, 等. 四川盆地高石梯—磨溪地区震旦系—寒武系大型气藏特征与聚集模式[J]. 石油学报, 2015, 36(1): 1-12.

    WEI Guoqi, DU Jinhu, XU Chunchun, et al. Characteristics and accumulation modes of large gas reservoirs in Sinian-Cambrian of Gaoshiti-Moxi region, Sichuan Basin[J]. Acta Petrolei Sinica, 2015, 36(1): 1-12.
    [2] 徐春春, 沈平, 杨跃明, 等. 乐山—龙女寺古隆起震旦系—下寒武统龙王庙组天然气成藏条件与富集规律[J]. 天然气工业, 2014, 34(3): 1-7.

    XU Chunchun, SHEN Ping, YANG Yueming, et al. Accumulation conditions and enrichment patterns of natural gas in the Lower Cambrian Longwangmiao Fm reservoirs of the Leshan-Longnüsi paleohigh, Sichuan Basin[J]. Natural Gas Industry, 2014, 34(3): 1-7.
    [3] 林潼, 谭聪, 王铜山, 等. 川中地区龙王庙组油气差异聚集演化特征及其对气藏形成的影响[J]. 石油实验地质, 2022, 44(4): 655-665. doi: 10.11781/sysydz202204655

    LIN Tong, TAN Cong, WANG Tongshan, et al. Differential hydrocarbon accumulation and its influence on the formation of gas reservoirs in the Longwangmiao Formation, central Sichuan Basin[J]. Petroleum Geology & Experiment, 2022, 44(4): 655-665. doi: 10.11781/sysydz202204655
    [4] 文龙, 张建勇, 潘立银, 等. 川中蓬莱—中江地区灯二段微生物白云岩储层特征、发育主控因素与勘探领域[J]. 石油实验地质, 2023, 45(5): 982-993. doi: 10.11781/sysydz202305982

    WEN Long, ZHANG Jianyong, PAN Liyin, et al. Characteristics, controlling factors and exploration prospects of microbial dolomite reservoirs in the second member of Dengying Formation, Penglai-Zhongjiang area of central Sichuan Basin[J]. Petroleum Geology & Experiment, 2023, 45(5): 982-993. doi: 10.11781/sysydz202305982
    [5] ZHU Lianqiang, LIU Guangdi, SONG Zezhang, et al. Reservoir solid bitumen-source rock correlation using the trace and rare earth elements: implications for identifying the natural gas source of the Ediacaran-Lower Cambrian reservoirs, central Sichuan Basin[J]. Marine and Petroleum Geology, 2021, 37: 105499.
    [6] 魏国齐, 谢增业, 宋家荣, 等. 四川盆地川中古隆起震旦系—寒武系天然气特征及成因[J]. 石油勘探与开发, 2015, 42(6): 702-711.

    WEI Guoqi, XIE Zengye, SONG Jiarong, et al. Features and origin of natural gas in the Sinian-Cambrian of central Sichuan paleo-uplift, Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2015, 42(6): 702-711.
    [7] 郑平, 施雨华, 邹春艳, 等. 高石梯—磨溪地区灯影组、龙王庙组天然气气源分析[J]. 天然气工业, 2014, 34(3): 50-54.

    ZHENG Ping, SHI Yuhua, ZOU Chunyan, et al. Natural gas sources in the Dengying and Longwangmiao Fms in the Gaoshiti-Maoxi area, Sichuan Basin[J]. Natural Gas Industry, 2014, 34(3): 50-54.
    [8] 赵文智, 谢增业, 王晓梅, 等. 四川盆地震旦系气源特征与原生含气系统有效性[J]. 石油勘探与开发, 2021, 48(6): 1089-1099.

    ZHAO Wenzhi, XIE Zengye, WANG Xiaomei, et al. Sinian gas sources and effectiveness of primary gas-bearing system in Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2021, 48(6): 1089-1099.
    [9] 沈安江, 赵文智, 胡安平, 等. 碳酸盐矿物定年和定温技术及其在川中古隆起油气成藏研究中的应用[J]. 石油勘探与开发, 2021, 48(3): 476-487.

    SHEN Anjiang, ZHAO Wenzhi, HU Anping, et al. The dating and temperature measurement technologies for carbonate minerals and their application in hydrocarbon accumulation research in the paleo-uplift in central Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2021, 48(3): 476-487.
    [10] 王国芝, 刘树根, 刘伟, 等. 川中高石梯构造灯影组油气成藏过程[J]. 成都理工大学学报(自然科学版), 2014, 41(6): 684-693.

    WANG Guozhi, LIU Shugen, LIU Wei, et al. Process of hydrocarbon accumulation of Sinian Dengying Formation in Gaoshiti structure, central Sichuan, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2014, 41(6): 684-693.
    [11] 刘树根, 马永生, 蔡勋育, 等. 四川盆地震旦系—下古生界天然气成藏过程和特征[J]. 成都理工大学学报(自然科学版), 2009, 36(4): 345-354.

    LIU Shugen, MA Yongsheng, CAI Xunyu, et al. Characteristic and accumulation process of the natural gas from Sinian to Lower Paleozoic in Sichuan Basin, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2009, 36(4): 345-354.
    [12] GAO Ping, LIU Guangdi, LASH G G, et al. Occurrences and origin of reservoir solid bitumen in Sinian Dengying Formation dolomites of the Sichuan Basin, SW China[J]. International Journal of Coal Geology, 2018, 200: 135-152.
    [13] YANG Chengyu, NI Zhiyong, LI Meijun, et al. Pyrobitumen in South China: organic petrology, chemical composition and geological significance[J]. International Journal of Coal Geology, 2018, 188: 51-63.
    [14] 张鹏伟. 川中地区震旦—寒武系气藏硫化氢成因机制研究[D]. 北京: 中国石油大学(北京), 2019.

    ZHANG Pengwei. Origin of hydrogen sulfide in the ediacaran and Cambrian in the central Sichuan Basin[D]. Beijing: China University of Petroleum (Beijing), 2019.
    [15] 蒋裕强, 陶艳忠, 谷一凡, 等. 四川盆地高石梯—磨溪地区灯影组热液白云石化作用[J]. 石油勘探与开发, 2016, 43(1): 51-60.

    JIANG Yuqiang, TAO Yanzhong, GU Yifan, et al. Hydrothermal dolomitization in Sinian Dengying Formation, Gaoshiti-Moxi area, Sichuan Basin, SW China[J]. Petroleum Exploration and Deve-lopment, 2016, 43(1): 51-60.
    [16] 冯明友, 强子同, 沈平, 等. 四川盆地高石梯—磨溪地区震旦系灯影组热液白云岩证据[J]. 石油学报, 2016, 37(5): 587-598.

    FENG Mingyou, QIANG Zitong, SHEN Ping, et al. Evidences for hydrothermal dolomite of Sinian Dengying Formation in Gaoshiti-Moxi area, Sichuan Basin[J]. Acta Petrolei Sinica, 2016, 37(5): 587-598.
    [17] SU Ao, CHEN Honghan, FENG Yuexing, et al. Dating and characterizing primary gas accumulation in Precambrian dolomite reservoirs, central Sichuan Basin, China: insights from pyrobitumen Re-Os and dolomite U-Pb geochronology[J]. Precambrian Research, 2020, 350: 105897.
    [18] LIU Yifeng, QIU Nansheng, XIE Zengye, et al. Overpressure compartments in the central paleo-uplift, Sichuan Basin, Southwest China[J]. AAPG Bulletin, 2016, 100(5): 867-888.
    [19] 陈宗清. 四川盆地震旦系灯影组天然气勘探[J]. 中国石油勘探, 2010, 15(4): 1-14.

    CHEN Zongqing. Gas exploration in Sinian Dengying Formation, Sichuan Basin[J]. China Petroleum Exploration, 2010, 15(4): 1-14.
    [20] ZHU Guangyou, WANG Tongshan, XIE Zengye, et al. Giant gas discovery in the Precambrian deeply buried reservoirs in the Sichuan Basin, China: implications for gas exploration in old cratonic basins[J]. Precambrian Research, 2015, 262: 45-66.
    [21] 罗冰, 罗文军, 王文之, 等. 四川盆地乐山—龙女寺古隆起震旦系气藏形成机制[J]. 天然气地球科学, 2015, 26(3): 444-455.

    LUO Bing, LUO Wenjun, WANG Wenzhi, et al. Formation mechanism of the Sinian natural gas reservoir in the Leshan-Longnvsi paleo-uplift, Sichuan Basin[J]. Natural Gas Geoscience, 2015, 26(3): 444-455.
    [22] 周进高, 姚根顺, 杨光, 等. 四川盆地安岳大气田震旦系—寒武系储层的发育机制[J]. 天然气工业, 2015, 35(1): 36-44.

    ZHOU Jingao, YAO Genshun, YANG Guang, et al. Genesis mechanism of the Sinian-Cambrian reservoirs in the Anyue gas field, Sichuan Basin[J]. Natural Gas Industry, 2015, 35(1): 36-44.
    [23] HU Yongjie, CAI Chunfang, PEDERSON C L, et al. Dolomitization history and porosity evolution of a giant, deeply buried Ediacaran gas field (Sichuan Basin, China)[J]. Precambrian Research, 2020, 338: 105595.
    [24] 单秀琴, 张静, 张宝民, 等. 四川盆地震旦系灯影组白云岩岩溶储层特征及溶蚀作用证据[J]. 石油学报, 2016, 37(1): 17-29.

    SHAN Xiuqin, ZHANG Jing, ZHANG Baomin, et al. Dolomite karst reservoir characteristics and dissolution evidences of Sinian Dengying Formation, Sichuan Basin[J]. Acta Petrolei Sinica, 2016, 37(1): 17-29.
    [25] 杜金虎, 汪泽成, 邹才能, 等. 上扬子克拉通内裂陷的发现及对安岳特大型气田形成的控制作用[J]. 石油学报, 2016, 37(1): 1-16.

    DU Jinhu, WANG Zecheng, ZOU Caineng, et al. Discovery of intra-cratonic rift in the Upper Yangtze and its coutrol effect on the formation of Anyue giant gas field[J]. Acta Petrolei Sinica, 2016, 37(1): 1-16.
    [26] ZHANG Pengwei, LIU Guangdi, CAI Chunfang, et al. Alteration of solid bitumen by hydrothermal heating and thermochemical sulfate reduction in the Ediacaran and Cambrian dolomite reservoirs in the central Sichuan Basin, SW China[J]. Precambrian Research, 2019, 321: 277-302.
    [27] SHI Chunhua, CAO Jian, BAO Jianping, et al. Source characterization of highly mature pyrobitumens using trace and rare earth element geochemistry: Sinian-Paleozoic paleo-oil reservoirs in South China[J]. Organic Geochemistry, 2015, 83-84: 77-93.
    [28] 何冰辉. 关于峨眉山大火成岩省一些问题的研究现状[J]. 地球科学进展, 2016, 31(1): 23-42.

    HE Binghui. Research progress on some issues on the Emeishan large igneous province[J]. Advances in Earth Science, 2016, 31(1): 23-42.
    [29] 何斌, 徐义刚, 肖龙, 等. 峨眉山大火成岩省的形成机制及空间展布: 来自沉积地层学的新证据[J]. 地质学报, 2003, 77(2): 194-202.

    HE Bin, XU Yigang, XIAO Long, et al. Generation and spatial distribution of the Emeishan large igneous province: new evidence from stratigraphic records[J]. Acta Geologica Sinica, 2003, 77(2): 194-202.
    [30] ZHONG Yuting, HE Bin, MUNDIL R, et al. CA-TIMS zircon U-Pb dating of felsic ignimbrite from the Binchuan section: implications for the termination age of Emeishan large igneous province[J]. Lithos, 2014, 204: 14-19.
    [31] 袁波, 毛景文, 闫兴虎, 等. 四川大梁子铅锌矿成矿物质来源与成矿机制: 硫、碳、氢、氧、锶同位素及闪锌矿微量元素制约[J]. 岩石学报, 2014, 30(1): 209-220.

    YUAN Bo, MAO Jingwen, YAN Xinghu, et al. Sources of metallogenic materials and metallogenic mechanism of Daliangzi Ore Field in Sichuan Province: constraints from geochemistry of S, C, H, O, Sr isotope and trace element in sphalerite[J]. Acta Petrologica Sinica, 2014, 30(1): 209-220.
    [32] BOVEN A, PASTEELS P, PUNZALAN L E, et al. 40Ar/39Ar geochronological constraints on the age and evolution of the Permo-Triassic Emeishan Volcanic Province, Southwest China[J]. Journal of Asian Earth Sciences, 2002, 20(2): 157-175.
    [33] FENG Mingyou, WU Pengcheng, QIANG Zitong, et al. Hydrothermal dolomite reservoir in the Precambrian Dengying Formation of central Sichuan Basin, Southwestern China[J]. Marine and Petroleum Geology, 2017, 82: 206-219.
    [34] YAMADA Y, IMAMURA T, KAKIYAMA H, et al. Characteristics of meso-carbon microbeads separated from pitch[J]. Carbon, 1974, 12(3): 307-319.
    [35] HEIDENREICH R D, HESS W M, BAN L L. A test object and criteria for high resolution electron microscopy[J]. Journal of Applied Crystallography, 1968, 1: 1-19.
    [36] BROOKS J D, TAYLOR G H. The formation of graphitizing carbons from the liquid phase[J]. Carbon, 1965, 3(2): 185-193.
    [37] MOCHIDA I, ANDO T, MAEDA K, et al. Catalytic carbonization of aromatic hydrocarbons-Ⅸ: carbonization mechanism of heterocyclic sulfur compounds leading to the anisotropic coke[J]. Carbon, 1980, 18(2): 131-136.
    [38] WHITE J L, PRICE R J. The formation of mesophase microstructures during the pyrolysis of selected coker feedstocks[J]. Carbon, 1974, 12(3): 321-333.
    [39] WHITE J L. Mesophase mechanisms in the formation of the microstructure of petroleum coke[M]// DEVINEY M L, O'GRADY T M. Petroleum Derived Carbons. Washington: American Chemical Society, 1976: 282-314.
    [40] RIMMER S M, CRELLING J C, YOKSOULIAN L E. An occurrence of coked bitumen, Raton Formation, Purgatoire River Valley, Colorado, U.S.A. [J]. International Journal of Coal Geology, 2015, 141/142: 63-73.
    [41] 徐昉昊. 川中地区震旦系灯影组和寒武系龙王庙组流体系统与油气成藏[D]. 成都: 成都理工大学, 2017.

    XU Fanghao. Fluid system and hydrocarbon accumulation of Sinian Dengying Formation and Cambrian Longwangmiao Formation in central Sichuan[D]. Chengdu: Chengdu University of Technology, 2017.
    [42] YANG Chengyu, NI Zhiyong, WANG Tieguan, et al. A new genetic mechanism of natural gas accumulation[J]. Scientific Reports, 2018, 8(1): 8336.
    [43] 孙书双, 余华, 徐允良, 等. 高软化点包覆沥青的制备与表征[J]. 应用化工, 2020, 49(10): 2437-2441.

    SUN Shushuang, YU Hua, XU Yunliang, et al. Preparation and characterization of high softening point coating pitch[J]. Applied Chemical Industry, 2020, 49(10): 2437-2441.
    [44] EKSILIOGLU A, GENCAY N, YARDIM M F, et al. Mesophase AR pitch derived carbon foam: effect of temperature, pressure and pressure release time[J]. Journal of Materials Science, 2006, 41(10): 2743-2748.
    [45] WILSON N S F. Organic petrology, chemical composition, and reflectance of pyrobitumen from the El Soldado Cu deposit, Chile[J]. International Journal of Coal Geology, 2000, 43(1/4): 53-82.
    [46] STASIUK L D. The origin of pyrobitumens in Upper Devonian Leduc Formation gas reservoirs, Alberta, Canada: an optical and EDS study of oil to gas transformation[J]. Marine and Petroleum Geology, 1997, 14(7/8): 915-929.
    [47] GOODARZI F, GENTZIS T, JACKSON G, et al. Optical characteristics of heat-affected bitumens from the Nanisivik mine, N.W. Baffin Island, arctic Canada[J]. Energy Sources, 1993, 15(2): 359-376.
    [48] 田誉娇. 中间相小球体源质分离及碳质中间相制备与应用[D]. 徐州: 中国矿业大学, 2013.

    TIAN Yujiao. Source material separation of mesophase spherule and preparation and application of carbonaceous mesophase[D]. Xuzhou: China University of Mining and Technology, 2013.
    [49] ZHU Lianqiang, LIU Guangdi, SONG Zezhang, et al. Hydrothermal activity in ultra-deep strata and its geological significance for deep earth gas exploration: implications from pyrobitumen in the Ediacaran-Lower Cambrian strata, Sichuan Basin[J]. International Journal of Coal Geology, 2022, 259: 104030.
    [50] 樊小华. 煤沥青大分子多环芳烃的结构组成及其抽提分离和热聚合的研究[D]. 长沙: 湖南大学, 2019.

    FAN Xiaohua. Study on large polycyclic aromatic hydrocarbons in coal tar pitch and its extracted fractionations and thermal condensations[D]. Changsha: Hunan University, 2019.
    [51] 李明. 环烷基富芳馏分油有序缩聚与中间相结构形成机制研究[D]. 青岛: 中国石油大学(华东), 2016.

    LI Ming. Study on orderly polycondensation of naphthenic base aromatic-rich components and formation mechanism of mesophase structure[D]. Qingdao: China University of Petroleum (East China), 2016.
    [52] 郭建光. 高性能炭纤维用中间相沥青制备研究[D]. 长沙: 湖南大学, 2020.

    GUO Jianguang. Preparation of mesophase pitches for high-performance carbon fibers[D]. Changsha: Hunan University, 2020.
    [53] 叶崇. 高导热中间相沥青碳纤维的制备及结构调控[D]. 长沙: 湖南大学, 2019.

    YE Chong. Preparation and structural regulation of high thermal conductivity mesophase pitch-based carbon fibers[D]. Changsha: Hunan University, 2019.
    [54] INOUE A. Formation of clay minerals in hydrothermal environments[M]//VELDE B. Origin and Mineralogy of Clays. Berlin: Springer, 1995: 268-329.
    [55] 胡安平, 沈安江, 陈亚娜, 等. 基于U-Pb同位素年龄和团簇同位素(Δ47)温度约束的四川盆地震旦系灯影组构造—埋藏史重建[J]. 石油实验地质, 2021, 43(5): 896-905. doi: 10.11781/sysydz202105896

    HU Anping, SHEN Anjiang, CHEN Yana, et al. Reconstruction of tectonic-burial evolution history of Sinian Dengying Formation in Sichuan Basin based on the constraints of in-situ laser ablation U-Pb date and clumped isotopic thermometer(Δ47)[J]. Petroleum Geology & Experiment, 2021, 43(5): 896-905. doi: 10.11781/sysydz202105896
    [56] CHEN Chengsheng, QIN Shengfei, WANG Yunpeng, et al. High temperature methane emissions from large igneous provinces as contributors to Late Permian mass extinctions[J]. Nature Communications, 2022, 13(1): 6893.
  • 加载中
图(6)
计量
  • 文章访问数:  144
  • HTML全文浏览量:  45
  • PDF下载量:  35
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-07
  • 修回日期:  2024-08-22
  • 刊出日期:  2024-09-28

目录

    /

    返回文章
    返回