Preservation mechanism of pores in middle and deep sandstone reservoirs of Cretaceous Bashijiqike Formation in Yingmaili area, Kuqa Depression, Tarim Basin
-
摘要: 塔里木盆地库车坳陷南部斜坡带英买力地区白垩系巴什基奇克组砂岩储层物性好,油气勘探潜力大,但其非均质性强、油气分布规律不明。综合利用岩心观察、系列薄片(普通、铸体、阴极发光及包裹体)、扫描电镜、物性测试和X射线衍射等分析测试资料和成岩过程重建与物性恢复技术,分析英买力地区中深层巴什基奇克组砂岩储层的岩性与物性,探寻其孔隙特征与保存机制,划分储层类型和明确有利储层分布规律及控制因素。该砂岩主要为长石岩屑砂岩和岩屑长石砂岩,杂基含量较低,其成分和结构成熟度均中等;储层孔隙类型主要为残余原生孔隙,其次为次生孔隙,主要为粒间溶孔和粒内溶孔,为中高孔—中高渗储层。巴什基奇克组中深层砂岩原生孔隙得以保存主要在于其形成的沉积环境与经历的成岩和成储演化:首先砂岩形成于高水动力的辫状河三角洲前缘水下分流河道微相,不断叠置的河道形成了厚度较大且分布稳定的水道复合砂体,强水动力使得砂岩碎屑颗粒含量高、分选较好,为原生孔隙形成提供了物质基础;其次早期长期浅埋和后期快速深埋的埋藏演化方式使砂岩经历了较弱的压实作用改造,同时晚期深层超压作用大大增强了砂体抗压实能力,残余原生孔隙得以保存;最后坳陷不断降低的古地温梯度使得残余原生孔隙得以有效保存。Abstract: The sandstone reservoirs of the Cretaceous Bashijiqike Formation in the Yingmaili area on the southern slope of the Kuqa Depression within the Tarim Basin demonstrate favorable physical properties and considerable potential for oil and gas exploration. However, they are characterized by strong heterogeneity and unclear patterns of oil and gas distribution. In this study, the lithology and physical properties of the middle and deep reservoirs of the Bashijiqike Formation in the Yingmaili area were analyzed using core observation, a series of thin section analyses(standard, casting, cathodoluminescence, and inclusion thin sections), scanning electron microscopy(SEM), physical property testing, X-ray diffraction, and diagenesis reconstruction and physical property recovery techniques. It aims to explore the pore characteristics and preservation mechanisms, classify reservoir types, and clarify the distribution patterns and controlling factors of favorable reservoirs.The results show that the sandstone is mainly composed of feldspathic lithic sandstone and lithic feldspathic sandstone with low matrix content and medium maturity in both composition and structure. The primary pore type of the reservoir is residual primary pores, followed by secondary pores, including intergranular and intragranular dissolution pores, classifying the reservoir as a medium-to-high porosity and permeability type. The preservation of the primary pores in the middle and deep sandstones of the Bashijiqike Formation was mainly attributed to the depositional environment and subsequent diagenetic and reservoir evolution. The sandstone was initially formed in the microfacies of distributary channels at the front edge of a braided river delta with high hydrodynamics. The constantly overlapping channels formed thick and stable composite sand bodies. The strong hydrodynamics in the area led to high concentration and good sorting of sandstone clastic particles, providing the material basis for the formation of primary pores. The burial evolution process involved early long-term shallow burial and late-stage rapid deep burial, resulting in weak compaction transformation of the sandstone. Meanwhile, late-stage deep overpressure greatly enhanced the sand body's resistance to compaction, allowing for the preservation of residual primary pores. The continuously decreasing paleogeothermal gradient in the depression further contributed to the effective preservation of residual primary pores.
-
图 3 塔里木盆地英买力地区白垩系巴什基奇克组岩石类型及显微镜下孔隙特征
a.英买50井, 4 896 m,中、细砂岩,颗粒点接触为主,原生粒间孔; b.英买59井, 4 884.23 m, 颗粒完整,主要为细砂,点接触,原生粒间孔; c.英买32井,4 716.59 m,中粒岩屑长石砂岩,分选好,以中砂为主,少量细砂和粗砂,次棱—次圆状,点接触,不均匀原生粒间孔; d.英买46井, 5 147.1 m, 细粒长石岩屑砂岩,颗粒完整,主要为细砂,分选好,次棱状,点—线接触,泥质充填; e.英买461井, 5 194.38 m,细粒岩屑长石砂岩,分选好,次棱状,点接触,大部分粒间孔隙被褐色的沥青质充填; f.英买462井,5 195.9 m,细粒岩屑长石砂岩,分选好,次棱状,点—线接触,粒间孔隙发育; g.英买36井,4 975.26 m,不均匀粒间孔,局部长石颗粒溶蚀形成粒内溶孔; h.英买46井, 4 888.5 m,中细粒长石岩屑砂岩,不均匀粒间孔,颗粒略微定向排列; i.英买7井,5 109.97 m,粉细砂岩,两条构造缝,泥质微孔。均为单偏光照片。
Figure 3. Rock types and microscopic characteristics of pores in Cretaceous Bashijiqike Formation in Yingmaili area, Tarim Basin
图 6 塔里木盆地英买力地区白垩系巴什基奇克组砂岩胶结物显微特征
a.英买46井, 5 146.05 m, 细砂岩,不均匀方解石胶结物,蓝色为人工铸体,桔红色为染色方解石(下同);b.英买462井, 4 975.1 m,细砂岩,红色为人工铸体;c.英买461井, 5 180.54 m,细砂岩,阴极发光片,方解石胶结物发黄色、橙红色光;d.英买44井,4 981.88 m,填隙物为白云石胶结物与泥质杂基,阴极发光片,泥质不发光,白云石发桔红色光;e.英买23井,4 659.98 m,蜂巢状伊蒙混层,SEM;f.英买23井, 4 655.26 m,粒间蠕虫状高岭石,粒表片状、丝状伊利石,SEM;g.英买462井, 4 978.58 m,中细砂岩,左边方沸石斑块状分布;h.英买468井,4 995.23 m,细砂岩,硬石膏在局部(右边)斑块状聚集,不均匀孔隙;i.英买461井,5 165.86 m,丝片状伊蒙混层,SEM;a-b、g-h为单偏光、铸体薄片。
Figure 6. Microscopic characteristics of cementation in sandstones of Cretaceous Bashijiqike Formation in Yingmaili area, Tarim Basin
图 7 塔里木盆地英买力地区白垩系巴什基奇克组砂岩溶蚀作用显微特征图版
a.英买23井, 4 620.59 m, 细砂岩,长石和部分岩屑溶蚀,溶蚀扩大了原生孔隙;b.英买468井, 4 906.5 m, 细砂岩,长石、岩屑颗粒溶蚀明显,孔隙为溶蚀扩大粒间孔;c.英买461井,5 195.26 m,粒表片状、长条状的高岭石与伊利石和溶蚀孔,SEM;d.英买5井,4 732.5 m,中砂岩,长石溶蚀,SEM。
Figure 7. Microscopic characteristics of dissolution in sandstones of Cretaceous Bashijiqike Formation in Yingmaili area, Tarim Basin
表 1 塔里木盆地英买力地区白垩系巴什基奇克组岩石成分
Table 1. Rock composition of Cretaceous Bashijiqike Formation in Yingmaili area, Tarim Basin
井号 矿物含量/% 岩屑含量/% 石英 长石 沉积岩 变质岩 岩浆岩 英买7 $\frac{41 \sim 45}{42.6(19)}$ $\frac{17 \sim 21}{19.2(19)}$ $\frac{2 \sim 3}{2.5(19)}$ $\frac{18 \sim 22}{19.7(19)}$ $\frac{2 \sim 16}{14(19)}$ 英买9 $\frac{41 \sim 47}{43.8(27)}$ $\frac{21 \sim 25}{22.6(27)}$ $\frac{2 \sim 3}{2.3(25)}$ $\frac{16 \sim 18}{17(27)}$ $\frac{11 \sim 13}{11.8(27)}$ 英买46 $\frac{40 \sim 50}{43.9(16)}$ $\frac{20 \sim 30}{26.1(16)}$ $\frac{5 \sim 7}{6.4(16)}$ $\frac{8 \sim 12}{9.8(16)}$ $\frac{8 \sim 17}{12.4(16)}$ 英买462 $\frac{38 \sim 45}{40.2(16)}$ $\frac{34 \sim 40}{39.2(16)}$ $\frac{2 \sim 12}{4.6(16)}$ $\frac{7 \sim 10}{8.2(16)}$ $\frac{8 \sim 12}{10.0(16)}$ 英买32 $\frac{41 \sim 45}{43.0(25)}$ $\frac{18 \sim 22}{19.4(25)}$ $\frac{2 \sim 4}{3.0(24)}$ $\frac{18 \sim 21}{19.6(24)}$ $\frac{13 \sim 15}{14.1(24)}$ 英买50 $\frac{40 \sim 48}{44.5(20)}$ $\frac{29 \sim 33}{31.2(20)}$ $\frac{2 \sim 4}{3.4(18)}$ $\frac{9 \sim 12}{11.2(18)}$ $\frac{9 \sim 11}{9.8(18)}$ 注:表中分式意义为$\frac{{最小值\sim最大值}}{{平均值(样品数)}}$。 表 2 塔里木盆地英买力地区白垩系巴什基奇克组填隙物成分
Table 2. Composition of interstitial fillings in Cretaceous Bashijiqike Formation in Yingmaili area, Tarim Basin
井位 样品数 杂基/% 胶结物/% 填隙物总量/% 胶结类型 方解石 含铁方解石 白云石 含铁白云石 方沸石 硬石膏 英买7 19 3.5 1.8 1.2 < 1 < 1 7.4 孔隙 英买9 27 2.1 3.1 2.1 < 1 3.5 10.2 孔隙 英买46 16 3.5 6.07 1.1 5.4 14.4 孔隙 英买462 16 4.6 1.6 2.2 3.5 12.0 薄膜—孔隙 英买32 25 2.5 4.2 3.2 < 1 < 1 < 1 1.2 11.0 孔隙 表 3 塔里木盆地英买力地区白垩系巴什基奇克组储层孔隙类型及面孔率平均值统计
Table 3. Pore types and statistical summary of average pore area ratio of reservoirs in Cretaceous Bashijiqike Formation in Yingmaili area, Tarim Basin
井位 样品数/个 储集空间平均面孔率/% 总面孔率/% 孔径/mm 原生粒间孔 粒间溶孔 粒内溶孔 微孔隙 最大/主要孔径区间 英买7 17 6.7 2.5 0.5 0.1 9.8 0.1/0.01~0.06 英买9 25 4.8 1.8 0.3 0.2 7.3 0.1/0.01~0.06 英买32 23 4.3 1.1 0.4 0.6 6.5 0.05/0.01~0.05 英买105 11 4.9 2.0 0.9 < 0.1 7.8 0.1/0.02~0.075 英买462 16 9.0 1.5 0.2 0.5 12.6 0.3/0.05~0.2 表 4 塔里木盆地英买力地区白垩系巴什基奇克组砂岩云母含量与孔隙度、渗透率关系
Table 4. Relationship between mica content and porosity, permeability in sandstones of Cretaceous Bashijiqike Formation in Yingmaili area, Tarim Basin
云母含量/% 样品数 平均孔隙度/% 平均渗透率/10-3μm2 < 1 91 18.11 304.56 1 16 13.66 6.51 2 10 14.61 9.37 3 6 14.54 8.69 >3 1 表 5 塔里木盆地英买力地区白垩系地层压力及地层温度统计
Table 5. Statistics of formation pressure and temperature in Cretaceous of Yingmaili area, Tarim Basin
井号 层位 深度/m 地层压力/MPa 地层温度/℃ 压力系数 英买46 K1bs 5 150.50~5 156.00 55.33 114.8 1.344 英买50 K1bs 4 817.48 48.33 115.0 1.198 英买463 K1bx 5 097.00~5 101.00 53.86 111.5 1.377 英买468 K1bx 4 995.50~4 997.50 54.89 114.7 1.276 -
[1] 贾承造, 庞雄奇. 深层油气地质理论研究进展与主要发展方向[J]. 石油学报, 2015, 36(12): 1457-1469. doi: 10.7623/syxb201512001JIA Chengzao, PANG Xiongqi. Research processes and main development directions of deep hydrocarbon geological theories[J]. Acta Petrolei Sinica, 2015, 36(12): 1457-1469. doi: 10.7623/syxb201512001 [2] 张光亚, 马锋, 梁英波, 等. 全球深层油气勘探领域及理论技术进展[J]. 石油学报, 2015, 36(9): 1156-1166.ZHANG Guangya, MA Feng, LIANG Yingbo, et al. Domain and theory-technology progress of global deep oil & gas exploration[J]. Acta Petrolei Sinica, 2015, 36(9): 1156-1166. [3] 吕志凯, 张建业, 张永宾, 等. 超深层裂缝性致密砂岩气藏储层连通性及开发启示: 以塔里木盆地库车坳陷克深2气藏为例[J]. 断块油气田, 2023, 30(1): 31-37, 95.LYU Zhikai, ZHANG Jianye, ZHANG Yongbin, et al. Reservoir connectivity of ultra-deep fractured tight sandstone gas reservoir and development enlightenment: taking Keshen 2 gas reservoir in Kuqa Depression of Tarim Basin as an example[J]. Fault-Block Oil and Gas Field, 2023, 30(1): 31-37, 95. [4] LAI Jin, WANG Guiwen, CHAI Yu, et al. Deep burial diagenesis and reservoir quality evolution of high-temperature, high-pressure sandstones: examples from Lower Cretaceous Bashijiqike Formation in Keshen area, Kuqa Depression, Tarim Basin of China[J]. AAPG Bulletin, 2017, 101(6): 829-862. doi: 10.1306/08231614008 [5] 张荣虎, 张惠良, 马玉杰, 等. 特低孔特低渗高产储层成因机制: 以库车坳陷大北1气田巴什基奇克组储层为例[J]. 天然气地球科学, 2008, 19(1): 75-82.ZHANG Ronghu, ZHANG Huiliang, MA Yujie, et al. Origin of extra low porosity and permeability high production reseroirs: a case from Bashijiqike reservoir of Dabei 1 oil field, Kuqa Depression[J]. Natural Gas Geoscience, 2008, 19(1): 75-82. [6] 顾家裕, 方辉, 贾进华. 塔里木盆地库车坳陷白垩系辫状三角洲砂体成岩作用和储层特征[J]. 沉积学报, 2001, 19(4): 517-523. doi: 10.3969/j.issn.1000-0550.2001.04.007GU Jiayu, FANG Hui, JIA Jinhua. Diagenesis and reservoir characteristics of Cretaceous braided delta sandbody in Kuqa Depression, Tarim Basin[J]. Acta Sedimentologica Sinica, 2001, 19(4): 517-523. doi: 10.3969/j.issn.1000-0550.2001.04.007 [7] 王俊鹏, 张荣虎, 赵继龙, 等. 超深层致密砂岩储层裂缝定量评价及预测研究: 以塔里木盆地克深气田为例[J]. 天然气地球科学, 2014, 25(11): 1735-1745. doi: 10.11764/j.issn.1672-1926.2014.11.1735WANG Junpeng, ZHANG Ronghu, ZHAO Jilong, et al. Characteristics and evaluation of fractures in ultra-deep tight sandstone reservoir: taking Keshen Gasfield in Tarim Basin, NW China as an example[J]. Natural Gas Geoscience, 2014, 25(11): 1735-1745. doi: 10.11764/j.issn.1672-1926.2014.11.1735 [8] 金凤鸣, 张凯逊, 王权, 等. 断陷盆地深层优质碎屑岩储集层发育机理: 以渤海湾盆地饶阳凹陷为例[J]. 石油勘探与开发, 2018, 45(2): 247-256.JIN Fengming, ZHANG Kaisen, WANG Quan, et al. Formation mechanisms of good-quality clastic reservoirs in deep formations in rifted basins: a case study of Raoyang Sag in Bohai Bay Basin, East China[J]. Petroleum Exploration and Development, 2018, 45(2): 247-256. [9] 王杰青, 许淑梅, 任新成, 等. 准噶尔盆地腹部西侧侏罗系三工河组储层成岩作用及控制因素[J]. 石油学报, 2021, 42(3): 319-331.WANG Jieqing, XU Shumei, REN Xincheng, et al. Diageneses and controlling factors of Jurassic Sangonghe Formation reservoirs on the west side of the hinterland of Junggar Basin[J]. Acta Petrolei Sinica, 2021, 42(3): 319-331. [10] 张荣虎, 邹伟宏, 陈戈, 等. 塔里木盆地北部下白垩统大型湖相砂坝特征及油气勘探意义[J]. 石油学报, 2018, 39(8): 845-857.ZHANG Ronghu, ZOU Weihong, CHEN Ge, et al. Characteristics and hydrocarbon exploration significance of the huge Lower Cretaceous lacustrine sand bar in the northern Tarim Basin[J]. Acta Petrolei Sinica, 2018, 39(8): 845-857. [11] 马玉杰, 张荣虎, 唐雁刚, 等. 塔里木盆地库车坳陷白垩系巴什基奇克组岩相古地理[J]. 新疆石油地质, 2016, 37(3): 249-256.MA Yujie, ZHANG Ronghu, TANG Yangang, et al. Lithofacies paleogeography of Cretaceous Bashijiqike Formation in Kuqa Depression, Tarim Basin[J]. Xinjiang Petroleum Geology, 2016, 37(3): 249-256. [12] 杨海军, 刘永福, 苏洲, 等. 塔北隆起深层碎屑岩优质储层形成主控因素[J]. 地质论评, 2020, 66(1): 169-179.YANG Haijun, LIU Yongfu, SU Zhou, et al. The main controlling factors for the formation of high quality clastic reservoirs in deeply buried strata of Tabei Uplift[J]. Geological Review, 2020, 66(1): 169-179. [13] 操应长, 杨田, 王健, 等. 东营凹陷南坡沙四上亚段滩坝砂岩有效储层成因[J]. 中国石油大学学报(自然科学版), 2013, 37(6): 1-9.CAO Yingchang, YANG Tian, WANG Jian, et al. Genesis of effective reservoirs of beach-bar sandstone in upper part of the fourth member of Shahejie Formation in the southern slope of Dongying Sag[J]. Journal of China University of Petroleum, 2013, 37(6): 1-9. [14] 高志勇, 马建英, 崔京钢, 等. 埋藏(机械)压实—侧向挤压地质过程下深层储层孔隙演化与预测模型[J]. 沉积学报, 2018, 36(1): 176 187.GAO Zhiyong, MA Jianying, CUI Jinggang, et al. Deep reservoir pore evolution model of a geological process from burial compaction to lateral extrusion[J]. Acta Sedimentologica Sinica, 2018, 36(1): 176-187. [15] 操应长, 远光辉, 杨海军, 等. 含油气盆地深层—超深层碎屑岩油气勘探现状与优质储层成因研究进展[J]. 石油学报, 2022, 43(1): 112-140.CAO Yingchang, YUAN Guanghui, YANG Haijun, et al. Current situation of oil and gas exploration and research progress of the origin of high-quality reservoirs in deep-ultra-deep clastic reservoirs of petroliferous basins[J]. Acta Petrolei Sinica, 2022, 43(1): 112-140. [16] 胡作维, 李云, 黄思静, 等. 砂岩储层中原生孔隙的破坏与保存机制研究进展[J]. 地球科学进展, 2012, 27(1): 14-25.HU Zuowei, LI Yun, HUANG Sijing, et al. Reviews of the destruction and preservation of primary porosity in the sandstone reservoirs[J]. Advances in Earth Science, 2012, 27(1): 14-25. [17] 周学文, 林会喜, 郭景祥, 等. 塔里木盆地库车坳陷南斜坡新和地区白垩系亚格列木组沉积模式及油气意义[J]. 石油实验地质, 2023, 45(2): 266-279. doi: 10.11781/sysydz202302266ZHOU Xuewen, LIN Huixi, GUO Jingxiang, et al. Depositional model and petroleum significance of the Cretaceous Yageliemu Formation in Xinhe area on the southern slope of Kuqa Depression, Tarim Basin[J]. Petroleum Geology & Experiment, 2019, 45(2): 266-279. doi: 10.11781/sysydz202302266 [18] 何登发, 周新源, 杨海军, 等. 库车坳陷的地质结构及其对大油气田的控制作用[J]. 大地构造与成矿学, 2009, 33(1): 19-32.HE Dengfa, ZHOU Xinyuan, YANG Haijun, et al. Geological structure and its controls on giant oil and gas fields in Kuqa Depression, Tarim Basin: a clue from new shot seismic data[J]. Geotectonica et Metallogenia, 2009, 33(1): 19-32. [19] 贾承造, 魏国齐, 李本亮, 等. 中国中西部两期前陆盆地的形成及其控气作用[J]. 石油学报, 2003, 24(2): 13-17.JIA Chengzao, WEI Guoqi, LI Benliang, et al. Tectonic evolution of two-epoch foreland basins and its control for natural gas accumulation in China's mid-western areas[J]. Acta Petrolei Sinica, 2003, 24(2): 13-17. [20] 张坦, 齐育楷, 姚威, 等. 塔里木盆地库车坳陷南斜坡三叠系烃源岩热演化特征及油气地质意义[J]. 石油实验地质, 2022, 44(6): 1018-1027. doi: 10.11781/sysydz2022061018ZHANG Tan, QI Yukai, YAO Wei, et al. Thermal evolution characte-ristics of Triassic source rocks and their petroleum geological significance on the southern slope of Kuqa Depression, Tarim Basin[J]. Petroleum Geology & Experiment, 2022, 44(6): 1018-1027. doi: 10.11781/sysydz2022061018 [21] 贾承造, 魏国齐, 姚慧君, 等. 塔里木盆地油气勘探从书: 盆地构造演化与区域构造地质[M]. 北京: 石油工业出版社, 1995.JIA Chengzao, WEI Guoqi, YAO Huijun, et al. Book series on petroleum exploration in the Tarim Basin: tectonic evolution and regional structural geology[M]. Beijing: Petroleum Industry Press, 1995. [22] 李曰俊, 杨海军, 张光亚, 等. 重新划分塔里木盆地塔北隆起的次级构造单元[J]. 岩石学报, 2012, 28(8): 2466-2478.LI Yuejun, YANG Haijun, ZHANG Guangya, et al. Redivision of the tectonic units of Tabei Rise in Tarim Basin, NW China[J]. Acta Petrologica Sinica, 2012, 28(8): 2466-2478. [23] 徐珂, 张辉, 刘新宇, 等. 库车坳陷深层裂缝性储层现今地应力特征及其对天然气勘探开发的指导意义[J]. 油气地质与采收率, 2022, 29(2): 34-45.XU Ke, ZHANG Hui, LIU Xinyu, et al. Current in-situ stress characteristics of deep fractured reservoirs in Kuqa Depression and its guiding significance to natural gas exploration and deve-lopment[J]. Petroleum Geology and Recovery Efficiency, 2022, 29(2): 34-45. [24] 贾承造. 塔里木盆地构造特征与油气聚集规律[J]. 新疆石油地质, 1999, 20(3): 177-183.JIA Chengzao. Structural characteristics and oil/gas accumulative regularity in Tarim Basin[J]. Xinjiang Petroleum Geology, 1999, 20(3): 177-183. [25] 田作基, 宋建国. 塔里木库车新生代前陆盆地构造特征及形成演化[J]. 石油学报, 1999, 20(4): 7-13.TIAN Zuoji, SONG Jianguo. Tertiary structure characteristics and evolution of Kuche Foreland Basin[J]. Acta Petrolei Sinica, 1999, 20(4): 7-13. [26] 张亮, 曾昌民, 黄智斌, 等. 塔里木盆地西南坳陷柯东1号构造白垩系原油特征[J]. 新疆地质, 2013, 31(2): 199-201.ZHANG Liang, ZENG Changmin, HUANG Zhibin, et al. The characteristics of crude oil from Cretaceous in No. 1 Kedong structure of southwest depression in the Tarim Basin[J]. Xinjiang Geology, 2013, 31(2): 199-201. [27] 寿建峰, 张惠良, 斯春松, 等. 砂岩动力成岩作用[M]. 北京: 石油工业出版社, 2005.SHOU Jianfeng, ZHANG Huiliang, SI Chunsong, et al. Dynamic diagenesis of sandstone[M]. Beijing: Petroleum Industry Press, 2005. [28] 朱毅秀, 杨程宇, 陈明鑫, 等. 安塞油田杏河区长6储层成岩作用及对孔隙的影响[J]. 特种油气藏, 2013, 20(3): 51-55.ZHU Yixiu, YANG Chengyu, CHEN Mingxin, et al. Diagenesis of Chang 6 reservoirs of Xinghe area in Ansai Oilfield and its influence on reservoir pores[J]. Special Oil and Gas Reservoirs, 2013, 20(3): 51-55. [29] HOUSEKNECHT D W. Assessing the relative importance of compaction processes and cementation to reduction of porosity in sandstones[J]. AAPG Bulletin, 1987, 71(6): 633-642. [30] 朱毅秀. 储层实验测试分析简明教程[M]. 北京: 石油工业出版社, 2022.ZHU Yixiu. Brief course of reservoir experimental test analysis[M]. Beijing: Petroleum Industry Press, 2022. [31] SCHMIDT V, MCDONALD D A. The role of secondary porosity in the course of sandstone diagenesis[M]. SCHOLLE P A, SCHLUGER P R. Aspects of diagenesis. Tulsa: SEPM, 1979: 175-207. [32] SURDAM R C, CROSSEY L J, HAGEN E S, et al. Organic-inorganic interactions and sandstone diagenesis[J]. AAPG Bulletin, 1989, 73(1): 1-23. [33] 袁静, 成荣红, 朱忠谦, 等. 库车坳陷DB气田白垩系巴什基奇克组砂岩的多期溶蚀[J]. 石油与天然气地质, 2016, 37(4): 546-555.YUAN Jing, CHENG Ronghong, ZHU Zhongqian, et al. Multi-staged dissolution of sandstone in Cretaceous Bashijiqike Formation in DB gas field of Kuqa Depression, Tarim Basin[J]. Oil & Gas Geology, 2016, 37(4): 546-555. [34] 李易隆, 贾爱林, 何东博. 致密砂岩有效储层形成的控制因素[J]. 石油学报, 2013, 34(1): 71-82.LI Yilong, JIA Ailin, HE Dongbo. Control factors on the formation of effective reservoirs in tight sands: examples from Guang'an and Sulige gasfields[J]. Acta Petrolei Sinica, 2013, 34(1): 71-82. [35] 张鹏辉, Lee Ⅱ Y, 张金亮, 等. 砂岩储集层粒间孔隙保存机制[J]. 天然气工业, 2019, 39(7): 31-40.ZHANG Penghui, LEE Ⅱ Y, ZHANG Jingliang, et al. Preservation mechanisms of intergranular pores in sandstone reservoirs[J]. Natural Gas Industry, 2019, 39(7): 31-40. [36] TAYLOR T R, GILES M R, HATHON L A, et al. Sandstone diagenesis and reservoir quality prediction: models, myths, and reality[J]. AAPG Bulletin, 2010, 94(8): 1093-1132. [37] 黄思静, 黄培培, 王庆东, 等. 胶结作用在深埋藏砂岩孔隙保存中的意义[J]. 岩性油气藏, 2007, 19(3): 7-13.HUANG Sijing, HUANG Peipei, WANG Qingdong, et al. The significance of cementation in porosity preservation in deep-buried sandstones[J]. Lithologic Reservoirs, 2007, 19(3): 7-13. [38] BLOCH S, LANDER R H, BONNELL L. Anomalously high porosity and permeability in deeply buried sandstone reservoirs: origin and predictability[J]. AAPG Bulletin, 2002, 86(2): 301-328. [39] AJDUKIEWICZ J M, LANDER R H. Sandstone reservoir quality prediction: the state of the art[J]. AAPG Bulletin, 2010, 94(8): 1083-1091. [40] 孙东权, 李文浩, 卢双舫, 等. 塔北隆起英买力地区舒善河组储层特征与控制因素[J]. 东北石油大学学报, 2020, 44(6): 82-93.SUN Dongquan, LI Wenhao, LU Shuangfang, et al. Reservoir characteristics and controlling factors of Shushanhe Formation in Yingmaili area of Tabei Uplift[J]. Journal of Northeast Petroleum University, 2020, 44(6): 82-93. [41] 曾庆鲁, 莫涛, 赵继龙, 等. 7 000 m以深优质砂岩储层的特征、成因机制及油气勘探意义: 以库车坳陷下白垩统巴什基奇克组为例[J]. 天然气工业, 2020, 40(1): 38-47.ZENG Qinglu, MO Tao, ZHAO Jilong, et al. Characteristics, genetic mechanism and oil & gas exploration significance of high-quality sandstone reservoirs deeper than 7 000 m: a case study of the Bashijiqike Formation of Lower Cretaceous in the Kuqa Depression[J]. Natural Gas Industry, 2020, 40(1): 38-47. [42] MORAD S, AL-RAMADAN K, KETZER J M, et al. The impact of diagenesis on the heterogeneity of sandstone reservoirs: a review of the role of depositional facies and sequence stratigraphy[J]. AAPG Bulletin, 2010, 94(8): 1267-1309. [43] 高志勇, 崔京钢, 冯佳睿, 等. 埋藏压实—构造抬升地质过程下储层孔隙回弹的演化过程模型[J]. 地质科学, 2018, 53(2): 531-546.GAO Zhiyong, CUI Jinggang, FENG Jiarui, et al. Sandstone pore rebounding evolution model of a geological process from burial compaction to tectonic uplift[J]. Chinese Journal of Geology, 2018, 53(2): 531-546. [44] 寿建峰, 朱国华. 砂岩储层孔隙保存的定量预测研究[J]. 地质科学, 1998(2): 118-124.SHOU Jianfeng, ZHU Guohua. Study on quantitative prediction of porosity preservation in sandstone reservoirs[J]. Chinese Journal of Geology, 1998(2): 118-124. [45] 顾家裕, 贾进华, 方辉. 塔里木盆地储层特征与高孔隙度、高渗透率储层成因[J]. 科学通报, 2002, 47(S1): 9-15.GU Jiayu, JIA Jinhua, FANG Hui. Reservoir characteristics and genesis of high-porosity and high-permeability reservoirs in Tarim Basin[J]. Chinese Science Bulletin, 2002, 47(S1): 12-19.