留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

分子印迹聚合物微球制备及其对5α胆甾烷吸附性能研究

原陇苗 马荣 陈建珍 邵媛媛 吴应琴

原陇苗, 马荣, 陈建珍, 邵媛媛, 吴应琴. 分子印迹聚合物微球制备及其对5α胆甾烷吸附性能研究[J]. 石油实验地质, 2024, 46(5): 1098-1109. doi: 10.11781/sysydz2024051098
引用本文: 原陇苗, 马荣, 陈建珍, 邵媛媛, 吴应琴. 分子印迹聚合物微球制备及其对5α胆甾烷吸附性能研究[J]. 石油实验地质, 2024, 46(5): 1098-1109. doi: 10.11781/sysydz2024051098
YUAN Longmiao, MA Rong, CHEN Jianzhen, SHAO Yuanyuan, WU Yingqin. Preparation of molecularly imprinted polymer microspheres and their adsorption performance for 5α-cholestane[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2024, 46(5): 1098-1109. doi: 10.11781/sysydz2024051098
Citation: YUAN Longmiao, MA Rong, CHEN Jianzhen, SHAO Yuanyuan, WU Yingqin. Preparation of molecularly imprinted polymer microspheres and their adsorption performance for 5α-cholestane[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2024, 46(5): 1098-1109. doi: 10.11781/sysydz2024051098

分子印迹聚合物微球制备及其对5α胆甾烷吸附性能研究

doi: 10.11781/sysydz2024051098
基金项目: 

国家自然科学基金 42072180

国家自然科学基金 41772147

国家自然科学基金 41272147

中国科学院仪器设备功能开发技术创新项目 E0280101

详细信息
    作者简介:

    原陇苗(1994—), 女, 博士生, 从事油气地球化学研究。E-mail: ylm7321@163.com

    通讯作者:

    吴应琴(1971—), 女, 教授级高级工程师, 博士生导师, 从事油气地球化学、环境地球化学研究。E-mail: yingqinwu@lzb.ac.cn

  • 中图分类号: TE135

Preparation of molecularly imprinted polymer microspheres and their adsorption performance for 5α-cholestane

  • 摘要: 采用沉淀聚合法,以胆固醇、去氧胆酸、β-谷固醇为虚拟模板,丙烯酸(AA)为功能单体,偶氮二异丁腈(AIBN)为引发剂,乙二醇二甲基丙烯酸酯(EGDMA)为交联剂,制备甾烷类分子印迹聚合物(MIPs)和空白分子印迹聚合物(NIP)。采用扫描电子显微镜(SEM)、X射线光谱(XRD)、傅里叶变换红外光谱(FT-IR)和比表面积(BET)表征聚合物形貌和结构,并考察其对甾烷类物质的吸附性能。分析结果表明,甾烷类分子印迹聚合物尺寸均一、分散性好,是表面密布孔穴的球形纳米颗粒。吸附性能研究结果表明,MIPs对5α-胆甾烷的吸附能力明显强于NIP,且三种MIPs相比,去氧胆酸、β-谷固醇分子印迹聚合物对5α-胆甾烷的吸附强于胆固醇分子印迹聚合物。通过吸附动力学研究发现,MIPs对5α-胆甾烷的吸附过程符合准二级动力学模型,主要受化学吸附控制;MIPs和NIP的等温吸附符合Langmuir等温吸附模型和Scatchard模型,表明MIPs对5α-胆甾烷具有特异选择性吸附能力,且吸附过程属于单分子层吸附,最大吸附量为0.735 mg/g。表明胆固醇、去氧胆酸、β-谷固醇三种虚拟分子印迹聚合物均对5α-胆甾烷具有较高的分子识别能力及选择性。

     

  • 图  1  分子印迹聚合物的聚合方案

    Figure  1.  Polymerization scheme for MIPs

    图  2  分子印迹聚合物对甾烷类物质的分离及纯化

    Figure  2.  Isolation and purification of steroidal compounds by MIPs

    图  3  温度(a)和交联剂用量(b)对聚合物吸附性能的影响

    Figure  3.  Effects of temperatures (a) and cross-linking agent dosage (b) on adsorption performance of polymers

    图  4  MIPs和NIP的氮气吸附

    Figure  4.  Nitrogen adsorption of MIPs and NIP

    图  5  MIPs与NIP的SEM图像

    Figure  5.  SEM images of MIPs and NIP

    a.MIP1;b.MIP2;c.MIP3;d.NIP。

    图  6  吸附前分子印迹聚合物的红外光谱(a)及XRD衍射图(b)

    Figure  6.  Infrared spectra (a) and XRD diffraction patterns (b) of pre-adsorption MIPs

    图  7  MIPs和NIP的吸附动力学曲线(a)和准二级动力学模型(b)

    Figure  7.  Adsorption kinetics curves (a) and pseudo-second-order kinetic models (b) of MIPs and NIP

    图  8  MIPs和NIP吸附前后分子印迹聚合物的红外光谱

    Figure  8.  Infrared spectra of MIPs before and after MIPs and NIP adsorption

    图  9  MIPs和NIP的等温吸附曲线(a)及Langmuir模型(b)

    Figure  9.  Isothermal adsorption curves (a) and Langmuir models (b) of MIPs and NIP

    图  10  MIPs和NIP的Scatchard模型拟合(a)及吸附前后XRD分析(b)

    Figure  10.  Scatchard model fitting of MIPs and NIP (a) and XRD analysis before and after adsorption (b)

    图  11  MIP1洗脱甾烷前后GC-MS色谱

    Figure  11.  GC-MS chromatograms of MIP1 before and after elution of steroids

    表  1  实验试剂

    Table  1.   Experimental reagents

    表  2  实验仪器

    Table  2.   Experimental apparatus

    实验仪器 型号 生产厂家
    紫外可见光度计 UV-2600 谱质分析检测技术(上海)有限公司
    电热恒温干燥箱 XMA-2000 泰科施普(北京)技术有限公司
    恒温培养振荡器 HNY-100β 天津市欧诺仪器仪表有限公司
    超声波清洗器 KQ5200 E 昆山市超声仪器有限公司
    傅里叶红外光谱仪 Bruker Alpha 泰科施普(北京)技术有限公司
    场发射扫描电子显微镜 Merlin Compact 德国蔡司
    GC-MS HP Agilent 6890/5737 美国安捷伦科技有限公司
    下载: 导出CSV

    表  3  MIPs和NIP的比表面积、孔径及孔体积

    Table  3.   BET specific surface area, pore size and pore volume of MIPs and NIP

    性能 MIP1 MIP2 MIP3 NIP
    比表面积/(m2/g) 4.612 3.422 2.649 2.408
    平均孔径/nm 11.008 6.014 5.704 5.714
    总孔体积/(cm3/g) 0.013 0.005 0.004 0.003
    下载: 导出CSV

    表  4  MIPs和NIP的吸附量、印迹因子及分配系数

    Table  4.   Adsorption capacity, imprinting factors, and partition coefficients of MIPs and NIP

    分子印迹聚合物 模板分子类型 Q/(mg/g) IF KD/(g/mL)
    MIP1 胆固醇 0.602 2 2.278 5 0.155 7
    MIP2 去氧胆酸 0.718 3 2.717 7 0.191 0
    MIP3 β-谷固醇 0.734 7 2.779 8 0.208 1
    NIP 0.264 3 0.056 5
    下载: 导出CSV

    表  5  MIPs和NIP的准一级和准二级动力学参数

    Table  5.   Pseudo-first-order and pseudo-second-order kinetics parameters of MIPs and NIP

    分子印迹聚合物 方程 R2 K Qf/(mg/g)
    MIP1 准一级动力学方程 0.892 0.104 0.617
    准二级动力学方程 0.999 0.301 0.645
    MIP2 准一级动力学方程 0.933 0.157 0.697
    准二级动力学方程 0.998 0.366 0.689
    MIP3 准一级动力学方程 0.967 0.169 0.707
    准二级动力学方程 0.999 0.426 0.717
    NIP 准一级动力学方程 0.303 0.269 0.339
    准二级动力学方程 0.998 0.588 0.358
    下载: 导出CSV

    表  6  MIPs和NIP的Scatchard、Freundlich、Langmuir模型方程

    Table  6.   Scatchard, Freundlich, and Langmuir models for MIPs and NIP

    模型 参数 MIP1 MIP2 MIP3 NIP
    Freundlich等温模型 R2 0.831 0.822 0.864 0.938
    nF 2.309 2.558 2.859 3.233
    Kf 0.256 0.334 0.378 0.152
    Langmuir等温模型 R2 0.922 0.930 0.929 0.986
    Qm/(mg/g) 0.840 0.941 0.933 0.338
    KL/(L/mg) 0.368 0.475 0.605 0.709
    Scatchard等温模型 R2 MI 0.712 0.999 0.998 0.972
    MII 0.967 0.926 0.953
    Ks/(L/mg) MI 29.851 5.858 11.616 1.483
    MII 0.347 0.074 0.272
    Qm/(mg/g) MI 5.054 1.957 2.918 0.343
    MII 0.636 0.750 0.744
    下载: 导出CSV

    表  7  MIPs和NIP关于Langmuir方程的RL

    Table  7.   RL values of MIPs and NIP in Langmuir equations

    C0/(mg/L) RL
    MIP1 MIP2 MIP3 NIP
    1 0.731 0.623 0.678 0.585
    3 0.475 0.355 0.413 0.319
    5 0.352 0.249 0.297 0.219
    7 0.279 0.191 0.231 0.168
    9 0.232 0.155 0.189 0.135
    11 0.198 0.131 0.161 0.114
    下载: 导出CSV
  • [1] HAO Fang. Enrichment mechanism and prospects of deep oil and gas[J]. Acta Geologica Sinica, 2022, 96(3): 742-756. doi: 10.1111/1755-6724.14961
    [2] 贾承造, 张水昌. 中国海相超深层油气形成[J]. 地质学报, 2023, 97(9): 2775-2801.

    JIA Chengzao, ZHANG Shuichang. The formation of marine ultra-deep petroleum in China[J]. Journal of Geology, 2023, 97(9): 2775-2801.
    [3] 陈代钊, 钱一雄. 深层—超深层白云岩储集层: 机遇与挑战[J]. 古地理学报, 2017, 19(2): 187-196.

    CHEN Daizhao, QIAN Yixiong. Deep or super-deep dolostone reservoirs: opportunities and challenges[J]. Journal of Paleogeography, 2017, 19(2): 187-196.
    [4] KASHIRTSEV V A, DOLZHENKO K V, FOMIN A N, et al. Hydrocarbon composition of bitumen from deeply buried terrestrial organic matter (zone of apocatagenesis)[J]. Russian Geology and Geophysics, 2017, 58(6): 702-710. doi: 10.1016/j.rgg.2016.03.018
    [5] 关晓东, 郭磊. 深层—超深层油气成藏研究新进展及展望[J]. 石油实验地质, 2023, 45(2): 203-209. doi: 10.11781/sysydz202302203

    GUAN Xiaodong, GUO Lei. New progress and prospect of oil and gas accumulation research in deep to ultra-deep strata[J]. Petroleum Geology & Experiment, 2023, 45(2): 203-209. doi: 10.11781/sysydz202302203
    [6] HASINGER M, SCHERR K E, LUNDAA T, et al. Changes in iso- and n-alkane distribution during biodegradation of crude oil under nitrate and sulphate reducing conditions[J]. Journal of Biotechnology, 2012, 157(4): 490-498. doi: 10.1016/j.jbiotec.2011.09.027
    [7] EKBERG B, MOSBACH K. Molecular imprinting: a technique for producing specific separation materials[J]. Trends in Biotechnology, 1989, 7(4): 92-96. doi: 10.1016/0167-7799(89)90006-1
    [8] 华松杰. 新型碳基表面分子印迹聚合物的制备及脱硫性能的研究[D]. 北京: 中国石油大学(北京), 2019.

    HUA Songjie. Preparation and adsorption performance investigation of novel surface molecularly imprinted polymer on the carbon material[D]. Beijing: China University of Petroleum (Beijing), 2019.
    [9] 张杰, 王永健, 于奡. 分子印迹技术在甾类物质识别和分析中的应用[J]. 化学试剂, 2005, 27(6): 331-335, 351. doi: 10.3969/j.issn.0258-3283.2005.06.005

    ZHANG Jie, WANG Yongjian, YU Ao. The application of molecular imprinting technique in steroid recognition and analysis[J]. Chemical Reagents, 2005, 27(6): 331-335, 351. doi: 10.3969/j.issn.0258-3283.2005.06.005
    [10] LI Aimin, HUANG Xiaolan, YAN Ling, et al. Pseudo-template molecularly imprinted polymeric fiber solid-phase microextraction coupled to gas chromatography for ultrasensitive determination of 2, 4, 6-trihalophenol disinfection by-products[J]. Journal of Chromatography A, 2022, 1678: 463322. doi: 10.1016/j.chroma.2022.463322
    [11] RAMANAVICIUS S, SAMUKAITE-BUBNIENE U, RATAUTAITE V, et al. Electrochemical molecularly imprinted polymer based sensors for pharmaceutical and biomedical applications (review)[J]. Journal of Pharmaceutical and Biomedical Analysis, 2022, 215: 114739. doi: 10.1016/j.jpba.2022.114739
    [12] WANG Xingguo, LIU Zhixiang, LU Jian, et al. Highly selective membrane for efficient separation of environmental determinands: enhanced molecular imprinting in polydopamine-embedded porous sleeve[J]. Chemical Engineering Journal, 2022, 449: 137825. doi: 10.1016/j.cej.2022.137825
    [13] WANG Xuemei, HUANG Pengfei, MA Xiaomin, et al. Enhanced in-out-tube solid-phase microextraction by molecularly imprinted polymers-coated capillary followed by HPLC for Endocrine Disrupting Chemicals analysis[J]. Talanta, 2019, 194: 7-13. doi: 10.1016/j.talanta.2018.10.027
    [14] WANG Rui, LI Si, CHEN Dawei, et al. Selective extraction and enhanced-sensitivity detection of fluoroquinolones in swine body fluids by liquid chromatography-high resolution mass spectrometry: application in long-term monitoring in livestock[J]. Food Chemistry, 2021, 341: 128269. doi: 10.1016/j.foodchem.2020.128269
    [15] KUNATH S, MARCHYK N, HAUPT K, et al. Multi-objective optimization and design of experiments as tools to tailor molecularly imprinted polymers specific for glucuronic acid[J]. Talanta, 2013, 105: 211-218. doi: 10.1016/j.talanta.2012.11.029
    [16] ASHLEY J, SHAHBAZI M A, KANT K, et al. Molecularly imprinted polymers for sample preparation and biosensing in food analysis: progress and perspectives[J]. Biosensors and Bioelectronics, 2017, 91: 606-615. doi: 10.1016/j.bios.2017.01.018
    [17] 马荣, 原陇苗, 刘艳红, 等. 甾烷类化合物分子印迹聚合物功能单体的筛选及MIPs制备[J]. 石油实验地质, 2023, 45(3): 537-548. doi: 10.11781/sysydz202303537

    MA Rong, YUAN Longmiao, LIU Yanhong, et al. Screening of functional monomers and preparation of molecularly imprinted polymers (MIPs) in molecularly imprinted polymers of steranes[J]. Petroleum Geology & Experiment, 2023, 45(3): 537-548. doi: 10.11781/sysydz202303537
    [18] VLATAKIS G, ANDERSSON L I, MVLLER R, et al. Drug assay using antibody mimics made by molecular imprinting[J]. Nature, 1993, 361(6413): 645-647. doi: 10.1038/361645a0
    [19] WHITCOMBE M J, VULFSON E N. Imprinted polymers[J]. Advanced Materials, 2001, 13(7): 467-478. doi: 10.1002/1521-4095(200104)13:7<467::AID-ADMA467>3.0.CO;2-T
    [20] CHEN Lingxin, XU Shoufang, LI Jihua. Recent advances in molecular imprinting technology: current status, challenges and highlighted applications[J]. Chemical Society Reviews, 2011, 40(5): 2922-2942. doi: 10.1039/c0cs00084a
    [21] SHIRNESHAN G, BAKHTIARI A R, MEMARIANI M. Distribution and origins of n-alkanes, hopanes, and steranes in rivers and marine sediments from southwest Caspian coast, Iran: implications for identifying petroleum hydrocarbon inputs[J]. Environmental Science and Pollution Research, 2016, 23(17): 17484-17495. doi: 10.1007/s11356-016-6825-8
    [22] 张圣祖, 郑敏, 邓帆, 等. 胆固醇分子印迹聚合有机凝胶的制备及其选择性吸附研究[J]. 高分子学报, 2011(4): 390-394.

    ZHANG Shengzu, ZHENG Min, DENG Fan, et al. Preparation of cholesterol imprinted polymerized organogel and selectivity adsorption ability[J]. Acta Polymerica Sinica, 2011(4): 390-394.
    [23] ZHANG Xiaotao, SHEN Bin, YANG Jiajia, et al. Evolution characteristics of maturity-related sterane and terpane biomarker parameters during hydrothermal experiments in a semi-open system under geological constraint[J]. Journal of Petroleum Science and Engineering, 2021, 201: 108412. doi: 10.1016/j.petrol.2021.108412
    [24] LIU Shiju, GAO Gang, JIN Jun, et al. Source rock with high abundance of C28 regular sterane in typical brackish-saline lacustrine sediments: biogenic source, depositional environment and hydrocarbon generation potential in Junggar Basin, China[J]. Journal of Petroleum Science and Engineering, 2022, 208: 109670. doi: 10.1016/j.petrol.2021.109670
    [25] ZHANG Luxuan, YU Hua, CHEN Haifang, et al. Application of molecular imprinting polymers in separation of active compounds from plants[J]. Fitoterapia, 2023, 164: 105383. doi: 10.1016/j.fitote.2022.105383
    [26] HE Jinxian, ZHANG Xiaoli, WU Caifang. Geochemical characteristics and their geological significance of the sterane in the crude oil of Chang 2 oil group in Yanchang Formation in Xifeng area, Ordos Basin[J]. Acta Geologica Sinica, 2019, 93(S2): 68-70. doi: 10.1111/1755-6724.14198
    [27] SUN Xiaoli, WANG Jincheng, LI Yun, et al. Novel dummy molecularly imprinted polymers for matrix solid-phase dispersion extraction of eight fluoroquinolones from fish samples[J]. Journal of Chromatography A, 2014, 1359: 1-7. doi: 10.1016/j.chroma.2014.07.007
    [28] MIRZAJANI R, KESHAVARZ A. The core-shell nanosized magnetic molecularly imprinted polymers for selective preconcentration and determination of ciprofloxacin in human fluid samples using a vortex-assisted dispersive micro-solid-phase extraction and high-performance liquid chromatography[J]. Journal of the Iranian Chemical Society, 2019, 16(11): 2291-2306. doi: 10.1007/s13738-019-01701-7
    [29] SONG Yiping, ZHANG Lei, WANG Gengnan, et al. Dual-dummy-template molecularly imprinted polymer combining ultra performance liquid chromatography for determination of fluoroquino-lones and sulfonamides in pork and chicken muscle[J]. Food Control, 2017, 82: 233-242. doi: 10.1016/j.foodcont.2017.07.002
    [30] SURAPONG N, SANTALADCHAIYAKIT Y, BURAKHAM R. A water-compatible magnetic dual-template molecularly imprinted polymer fabricated from a ternary biobased deep eutectic solvent for the selective enrichment of organophosphorus in fruits and vegetables[J]. Food Chemistry, 2022, 384: 132475. doi: 10.1016/j.foodchem.2022.132475
    [31] FLAM F. Molecular imprints make a mark[J]. Science, 1994, 263(5151): 1221-1222. doi: 10.1126/science.8122101
    [32] KOMIYAMA M, MORI T, ARIGA K. Molecular imprinting: materials nanoarchitectonics with molecular information[J]. Bulletin of the Chemical Society of Japan, 2018, 91(7): 1075-1111. doi: 10.1246/bcsj.20180084
    [33] AN Lijuan, PANG Zhiyuan, GUO Yanling. Synthesis of magnetic molecular imprinted silica spheres for recognition of ciprofloxacin by metal-coordinate interaction[J]. Journal of Sol-Gel Science and Technology, 2015, 76(1): 36-42. doi: 10.1007/s10971-015-3747-8
    [34] BHOGAL S, KAUR K, MOHIUDDIN I, et al. Hollow porous molecularly imprinted polymers as emerging adsorbents[J]. Environmental Pollution, 2021, 288: 117775. doi: 10.1016/j.envpol.2021.117775
    [35] QIN Lei, LIU Weifeng, LIU Xuguang, et al. A review of nano-carbon based molecularly imprinted polymer adsorbents and their adsorption mechanism[J]. New Carbon Materials, 2020, 35(5): 459-485. doi: 10.1016/S1872-5805(20)60503-0
    [36] BAI Qingyan, HUANG Chao, MA Shujuan, et al. Rapid adsorption and detection of copper ions in water by dual-functional ion-imprinted polymers doping with carbon dots[J]. Separation and Purification Technology, 2023, 315: 123666. doi: 10.1016/j.seppur.2023.123666
    [37] 高雯璐, 周文, 徐浩, 等. 高演化富有机质页岩地层条件下吸附气量计算新方法[J]. 特种油气藏, 2023, 30(2): 71-77. doi: 10.3969/j.issn.1006-6535.2023.02.010

    GAO Wenlu, ZHOU Wen, XU Hao, et al. A new method for calculating adsorbed gas amount in highly evolved shale formations with rich organic matters[J]. Special Oil & Gas Reservoirs, 2023, 30(2): 71-77. doi: 10.3969/j.issn.1006-6535.2023.02.010
    [38] 张城玮, 程时清, 周文, 等. 考虑修正BET吸附的异常高压页岩气藏物质平衡计算方法[J]. 特种油气藏, 2022, 29(2): 77-82. doi: 10.3969/j.issn.1006-6535.2022.02.011

    ZHANG Chengwei, CHENG Shiqing, ZHOU Wen, et al. A calculation method for material balance of shale gas reservoirs under abnormally high pressure considering modified BET adsorption[J]. Special Oil & Gas Reservoirs, 2022, 29(2): 77-82. doi: 10.3969/j.issn.1006-6535.2022.02.011
    [39] YU Dan, HU Xiaolei, WEI Shoutai, et al. Dummy molecularly imprinted mesoporous silica prepared by hybrid imprinting method for solid-phase extraction of bisphenol A[J]. Journal of Chromatography A, 2015, 1396: 17-24. doi: 10.1016/j.chroma.2015.04.006
    [40] CHEN Meijun, YANG Hailin, SI Yamin, et al. A hollow visible-light-responsive surface molecularly imprinted polymer for the detection of chlorpyrifos in vegetables and fruits[J]. Food Chemistry, 2021, 355: 129656. doi: 10.1016/j.foodchem.2021.129656
    [41] YANG Jiajia, LI Yun, WANG Jincheng, et al. Novel sponge-like molecularly imprinted mesoporous silica material for selective isolation of bisphenol A and its analogues from sediment extracts[J]. Analytica Chimica Acta, 2015, 853: 311-319. doi: 10.1016/j.aca.2014.09.051
    [42] 刘媛, 刘江, 李迎春, 等. 基于改性硅胶"接枝"聚合法制备高特异性红霉素固相萃取材料及其评价[J]. 沈阳药科大学学报, 2014, 31(7): 505-512.

    LIU Yuan, LIU Jiang, LI Yingchun, et al. Preparation and evaluation of erythromycin solid-phase extraction materials based on modified silica gel "grafting" polymerization[J]. Journal of Shenyang Pharmaceutical University, 2014, 31(7): 505-512.
    [43] SHIOMI T, MATSUI M, MIZUKAMI F, et al. A method for the molecular imprinting of hemoglobin on silica surfaces using silanes[J]. Biomaterials, 2005, 26(27): 5564-5571. doi: 10.1016/j.biomaterials.2005.02.007
  • 加载中
图(11) / 表(7)
计量
  • 文章访问数:  104
  • HTML全文浏览量:  42
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-15
  • 修回日期:  2024-06-29
  • 刊出日期:  2024-09-28

目录

    /

    返回文章
    返回