留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

渤海湾盆地沾化凹陷BYP5导眼井古近系沙河街组三段下亚段岩心富氢气逸散气特征及其地质意义

李志明 刘惠民 刘鹏 钱门辉 曹婷婷 杜振京 李政 包友书 蒋启贵 徐二社 孙中良 刘雅慧

李志明, 刘惠民, 刘鹏, 钱门辉, 曹婷婷, 杜振京, 李政, 包友书, 蒋启贵, 徐二社, 孙中良, 刘雅慧. 渤海湾盆地沾化凹陷BYP5导眼井古近系沙河街组三段下亚段岩心富氢气逸散气特征及其地质意义[J]. 石油实验地质, 2024, 46(5): 979-988. doi: 10.11781/sysydz202405979
引用本文: 李志明, 刘惠民, 刘鹏, 钱门辉, 曹婷婷, 杜振京, 李政, 包友书, 蒋启贵, 徐二社, 孙中良, 刘雅慧. 渤海湾盆地沾化凹陷BYP5导眼井古近系沙河街组三段下亚段岩心富氢气逸散气特征及其地质意义[J]. 石油实验地质, 2024, 46(5): 979-988. doi: 10.11781/sysydz202405979
LI Zhiming, LIU Huimin, LIU Peng, QIAN Menhui, CAO Tingting, DU Zhenjing, LI Zheng, BAO Youshu, JIANG Qigui, XU Ershe, SUN Zhongliang, LIU Yahui. Characteristics and geological significance of escaping gas rich in natural hydrogen from pilot well BYP5 cores of lower sub-member of third member of Shahejie Formation in Zhanhua Sag, Bohai Bay Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2024, 46(5): 979-988. doi: 10.11781/sysydz202405979
Citation: LI Zhiming, LIU Huimin, LIU Peng, QIAN Menhui, CAO Tingting, DU Zhenjing, LI Zheng, BAO Youshu, JIANG Qigui, XU Ershe, SUN Zhongliang, LIU Yahui. Characteristics and geological significance of escaping gas rich in natural hydrogen from pilot well BYP5 cores of lower sub-member of third member of Shahejie Formation in Zhanhua Sag, Bohai Bay Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2024, 46(5): 979-988. doi: 10.11781/sysydz202405979

渤海湾盆地沾化凹陷BYP5导眼井古近系沙河街组三段下亚段岩心富氢气逸散气特征及其地质意义

doi: 10.11781/sysydz202405979
基金项目: 

国家自然科学基金项目 42090022

中国石化科技部项目 P23229

详细信息
    作者简介:

    李志明(1968—), 男, 博士, 研究员, 从事油气地球化学、页岩油气地质研究。E-mail: lizm.syky@sinopec.com

  • 中图分类号: TE122.1

Characteristics and geological significance of escaping gas rich in natural hydrogen from pilot well BYP5 cores of lower sub-member of third member of Shahejie Formation in Zhanhua Sag, Bohai Bay Basin

  • 摘要: BYP5导眼井是为探索渤海湾盆地沾化凹陷渤南深洼带较高热演化区古近系沙河街组三段下亚段(沙三下亚段)含油气性而部署的一口取心井,取心段深度介于4 267.0~4 338.1 m。为揭示取心段含油气性特征,开展了典型样品冷冻密闭碎样热解和岩心逸散气的收集定量与组分分析。研究结果认为:取心段总体是一套富有机质、富碳酸盐矿物的优质烃源岩,成熟度(Ro)约1.2%,热演化过程中应曾发生了高效生排烃作用,导致其现今游离烃(S1)和氢指数(IH)均较低;岩心逸散烃气含量总体不高,主要介于0.001~0.01 cm3/g,均值为0.005 cm3/g,逸散烃气相对高值段与热解游离烃(S1)相对高值段基本一致;逸散气组分主要由CH4、CO2、H2、C2H6组成,其中H2摩尔百分数介于1.08%~19.23%,平均7.09%,具有富氢气特征。H2与CO2具有明显正相关性,与CH4具有明显负相关性;逸散气应属原位滞留的气体,氢气的形成可能与有机质热解过程中异质键的裂解和去甲基化作用有关,建议加强有机质热裂解成因天然氢气的形成机制、地质勘查与评价研究,为该类型天然氢气的勘探部署决策提供依据。

     

  • 图  1  渤海湾盆地沾化凹陷(a)和BYP5导眼井(b)构造位置

    据参考文献[37]修改。

    Figure  1.  Tectonic location of Zhanhua Sag (a) and pilot well BYP5 (b), Bohai Bay Basin

    图  2  渤海湾盆地沾化凹陷BYP5导眼井沙三下亚段取心段综合柱状图

    Figure  2.  Comprehensive histogram of cored interval from pilot well BYP5 in lower sub-member of third member of Shahejie Formation, Zhanhua Sag, Bohai Bay Basin

    图  3  渤海湾盆地沾化凹陷BYP5导眼井沙三下亚段取心段总有机碳与游离烃含量关系

    Figure  3.  Relationship between total organic carbon (TOC) and free hydrocarbon (S1) contents in cored interval from pilot well BYP5 in lower sub-member of third member of Shahejie Formation, Zhanhua Sag, Bohai Bay Basin

    图  4  渤海湾盆地沾化凹陷BYP5导眼井沙三下亚段取心段有机质类型图版

    Figure  4.  Organic matter types of cored interval from pilot well BYP5 in lower sub-member of third member of Shahejie Formation, Zhanhua Sag, Bohai Bay Basin

    图  5  渤海湾盆地沾化凹陷BYP5导眼井沙三下亚段取心段逸散气组分间相关性

    Figure  5.  Correlation between components of escaping gas in cored interval from pilot well BYP5 in lower sub-member of third member of Shahejie Formation, Zhanhua Sag, Bohai Bay Basin

    图  6  富有机质泥页岩热演化过程中氢气形成的潜在机制

    据参考文献[27, 29]修改。

    Figure  6.  Potential mechanism of H2 formation during thermal evolution of organic-matter-rich mudstone and shale

    表  1  渤海湾盆地沾化凹陷BYP5导眼井沙三下亚段取心段逸散气组分特征

    Table  1.   Compositional characteristics of escaping gas in cored interval from pilot well BYP5 in lower sub-member of third member of Shahejie Formation, Zhanhua Sag, Bohai Bay Basin

    样品编号 岩性 井深/m 组分含量(摩尔百分数)/%
    H2 CO2 CH4 C2H6 C3H8
    byp5-1-1-1 层状泥质灰岩 4 273.65 1.54 16.67 75.90 5.13 0.77
    byp5-1-5-1 层状灰质泥岩 4 268.72 4.17 22.50 66.67 5.83 0.83
    byp5-2-1-1 层状泥质灰岩 4 278.07 1.08 13.36 76.90 7.58 1.08
    byp5-2-3-1 层状灰质泥岩 4 278.91 19.15 29.79 46.82 4.26 0.00
    byp5-3-2-1 层状泥质灰岩 4 286.31 3.08 15.42 74.89 5.73 0.88
    byp5-3-4-1 层状泥质灰岩 4 288.57 1.67 12.78 78.89 6.11 0.56
    byp5-4-1-1 层状泥质灰岩 4 296.12 3.37 23.60 67.41 4.49 1.12
    byp5-4-4-1 层状灰质泥岩 4 300.35 8.20 27.87 57.37 4.92 1.64
    byp5-5-1-1 层状灰质泥岩 4 309.50 19.23 34.61 42.30 3.85 0.00
    byp5-5-2-1 层状含泥灰岩 4 309.75 1.64 21.31 71.31 4.92 0.82
    byp5-5-4-1 层状灰质泥岩 4 312.61 17.50 22.50 57.51 2.50 0.00
    byp5-5-6-1 层状含泥灰岩 4 316.12 4.63 18.52 71.30 4.63 0.93
    byp5-5-7-1 层状灰质泥岩 4 317.79 13.33 46.65 26.66 6.66 6.69
    byp5-6-1-1 层状泥质灰岩 4 323.78 2.97 10.41 82.53 3.72 0.37
    byp5-6-2-1 层状灰质泥岩 4 325.30 8.96 23.88 61.19 4.48 1.49
    byp5-6-7-1 层状灰质泥岩 4 332.12 5.56 18.52 69.45 5.56 0.93
    byp5-6-9-1 层状灰质泥岩 4 335.26 4.46 14.29 75.00 5.36 0.89
    下载: 导出CSV
  • [1] 田黔宁, 付刚, 刘延明, 等. 天然氢: 不可忽视的无碳新型能源宝藏[J]. 自然资源科普与文化, 2024(1): 4-11.

    TIAN Qianning, FU Gang, LIU Yanming, et al. Natural hydrogen: non-negligible new carbon-free energy treasures[J]. Natural Resources Popular Science & Culture, 2024(1): 4-11.
    [2] 田黔宁, 张炜, 王海华, 等. 能源转型背景下不可忽视的新能源: 天然氢[J]. 中国地质调查, 2022, 9(1): 1-15.

    TIAN Qianning, ZHANG Wei, WANG Haihua, et al. Non-negligible new energy in the energy transition context: natural hydrogen[J]. Geological Survey of China, 2022, 9(1): 1-15.
    [3] 魏琪钊, 朱如凯, 杨智, 等. 天然氢气藏地质特征、形成分布与资源前景[J]. 天然气地球科学, 2024, 35(6): 1113-1122.

    WEI Qizhao, ZHU Rukai, YANG Zhi, et al. Geological characteristics, formation distribution and resource prospects of natural hydrogen reservoir[J]. Natural Gas Geoscience, 2024, 35(6): 1113-1122.
    [4] SMITH N J P. It's time for explorationists to take hydrogen more seriously[J]. First Break, 2002, 20(4): 246-253.
    [5] NIVIN V A. Free hydrogen-hydrocarbon gases from the Lovozero loparite deposit (Kola Peninsula, NW Russia)[J]. Applied Geochemistry, 2016, 74: 44-55. doi: 10.1016/j.apgeochem.2016.09.003
    [6] PRINZHOFER A, CISSÉ C S T, DIALLO A B. Discovery of a large accumulation of natural hydrogen in Bourakebougou (Mali)[J]. International Journal of Hydrogen Energy, 2018, 43(42): 19315- 19326. doi: 10.1016/j.ijhydene.2018.08.193
    [7] 王林. "天然氢"悄然走红全球[N]. 中国能源报, 2023-11-20(05).

    WANG Lin. "Natural hydrogen" is quietly becoming a global phenomenon[N]. China Energy News, 2023-11-20(05).
    [8] 苏宇通, 金之钧, 刘润超, 等. 非洲马里气田天然氢气勘探案例介绍及全球天然氢气勘探进展[J/OL]. 石油与天然气地质. (2024-03-05). https://link.cnki.net/urlid/11.4820.TE.20240301.1546.002.

    SU Yutong, JIN Zhijun, LIU Runchao, et al. Natural hydrogen exploration: a case from Mali gas field in Africa and global progress[J/OL]. Oil & Gas Geology. (2024-03-05). https://link.cnki.net/urlid/11.4820.TE.20240301.1546.002.
    [9] 万燕鸣. 全球天然氢的勘探、应用与发展[J]. 中国能源, 2020, 42(9): 33-37. doi: 10.3969/j.issn.1003-2355.2020.09.007

    WAN Yanming. Global exploration, application and prospect of natural hydrogen[J]. Energy of China, 2020, 42(9): 33-37. doi: 10.3969/j.issn.1003-2355.2020.09.007
    [10] ZGONNIK V. The occurrence and geoscience of natural hydrogen: a comprehensive review[J]. Earth-Science Reviews, 2020, 203: 103140. doi: 10.1016/j.earscirev.2020.103140
    [11] 韩双彪, 唐致远, 杨春龙, 等. 天然气中氢气成因及能源意义[J]. 天然气地球科学, 2021, 32(9): 1270-1284.

    HAN Shuangbiao, TANG Zhiyuan, YANG Chunlong, et al. Genesis and energy significance of hydrogen in natural gas[J]. Natural Gas Geoscience, 2021, 32(9): 1270-1284.
    [12] 窦立荣, 刘化清, 李博, 等. 全球天然氢气勘探开发利用进展及中国的勘探前景[J]. 岩性油气藏, 2024, 36(2): 1-14.

    DOU Lirong, LIU Huaqing, LI Bo, et al. Global natural hydrogen exploration and development situation and prospects in China[J]. Lithologic Reservoirs, 2024, 36(2): 1-14.
    [13] HAN Shuangbiao, TANG Zhiyuan, WANG Chengshan, et al. Hydrogen-rich gas discovery in continental scientific drilling project of Songliao Basin, Northeast China: new insights into deep earth exploration[J]. Science Bulletin, 2022, 67(10): 1003-1006. doi: 10.1016/j.scib.2022.02.008
    [14] 孟庆强. 地质体中天然氢气成因识别方法初探[J]. 石油实验地质, 2022, 44(3): 552-558. doi: 10.11781/sysydz202203552

    MENG Qingqiang. Identification method for the origin of natural hydrogen gas in geological bodies[J]. Petroleum Geology & Experiment, 2022, 44(3): 552-558. doi: 10.11781/sysydz202203552
    [15] VACQUAND C, DEVILLE E, BEAUMONT V, et al. Reduced gas seepages in ophiolitic complexes: evidences for multiple origins of the H2-CH4-N2 gas mixtures[J]. Geochimica et Cosmochimica Acta, 2018, 223: 437-461. doi: 10.1016/j.gca.2017.12.018
    [16] WORMAN S L, PRATSON L F, KARSON J A, et al. Global rate and distribution of H2 gas produced by serpentinization within oceanic lithosphere[J]. Geophysical Research Letters, 2016, 43(12): 6435-6443. doi: 10.1002/2016GL069066
    [17] 黄瑞芳, 孙卫东, 丁兴, 等. 橄榄岩蛇纹石化过程中氢气和烷烃的形成[J]. 岩石学报, 2015, 31(7): 1901-1907.

    HUANG Ruifang, SUN Weidong, DING Xing, et al. Formation of hydrogen gas and alkane during peridotite serpentinization[J]. Acta Petrologica Sinica, 2015, 31(7): 1901-1907.
    [18] MCCOLLOM T M, BACH W. Thermodynamic constraints on hydrogen generation during serpentinization of ultramafic rocks[J]. Geochimica et Cosmochimica Acta, 2009, 73(3): 856-875. doi: 10.1016/j.gca.2008.10.032
    [19] MURRAY J, CLÉMENT A, FRITZ B, et al. Abiotic hydrogen generation from biotite-rich granite: a case study of the Soultz-sous-Forets geothermal site, France[J]. Applied Geochemistry, 2020, 119: 104631. doi: 10.1016/j.apgeochem.2020.104631
    [20] DONZÉ F V, TRUCHE L, NAMIN P S, et al. Migration of natural hydrogen from deep-seated sources in the Sao Francisco Basin, Brazil[J]. Geosciences, 2020, 10(9): 364. doi: 10.3390/geosciences10090364
    [21] WANG W Q, LIU C Y, ZHANG D D, et al. Radioactive genesis of hydrogen gas under geological conditions: an experimental study[J]. Acta Geologica Sinica: English Edition, 2019, 93(4): 1125-1134. doi: 10.1111/1755-6724.14298
    [22] NANDI R, SENGUPTA S. Microbial production of hydrogen: an overview[J]. Critical Reviews in Microbiology, 1998, 24(1): 61-84. doi: 10.1080/10408419891294181
    [23] HALLENBECK P C, BENEMANN J R. Biological hydrogen production; fundamentals and limiting processes[J]. International Journal of Hydrogen Energy, 2002, 27(11/12): 1185-1193.
    [24] 樊耀亭, 李晨林, 侯红卫, 等. 天然厌氧微生物氢发酵生产生物氢气的研究[J]. 中国环境科学, 2002, 22(4): 370-374. doi: 10.3321/j.issn:1000-6923.2002.04.020

    FAN Yaoting, LI Chenlin, HOU Hongwei, et al. Studies on biohydrogen production by biohydrogen fermentation of natural anaerobic microorganism[J]. China Environmental Science, 2002, 22(4): 370-374. doi: 10.3321/j.issn:1000-6923.2002.04.020
    [25] HANSON J, HANSON H. Hydrogen's organic genesis[J]. Unconventional Resources, 2024, 4: 100057. doi: 10.1016/j.uncres.2023.07.003
    [26] BOREHAM C J, EDWARDS D S, CZADO K, et al. Hydrogen in Australian natural gas: occurrences, sources and resources[J]. The APPEA Journal, 2021, 61(1): 163-191. doi: 10.1071/AJ20044
    [27] LI Xiaoqiang, KROOSS B M, WENIGER P, et al. Liberation of mole-cular hydrogen (H2) and methane (CH4) during non-isothermal pyrolysis of shales and coals: systematics and quantification[J]. International Journal of Coal Geology, 2015, 137: 152-164. doi: 10.1016/j.coal.2014.11.011
    [28] LI Xiaoqiang, KROOSS B M, WENIGER P, et al. Molecular hydrogen (H2) and light hydrocarbon gases generation from marine and lacustrine source rocks during closed-system laboratory pyrolysis experiments[J]. Journal of Analytical and Applied Pyrolysis, 2017, 126: 275-287. doi: 10.1016/j.jaap.2017.05.019
    [29] SUZUKI N, SAITO H, HOSHINO T. Hydrogen gas of organic origin in shales and metapelites[J]. International Journal of Coal Geo-logy, 2017, 173: 227-236. doi: 10.1016/j.coal.2017.02.014
    [30] WANG Lu, JIN Zhijun, LIU Quanyou, et al. The occurrence pattern of natural hydrogen in the Songliao Basin, P.R. China: insights on natural hydrogen exploration[J]. International Journal of Hydrogen Energy, 2024, 50: 261-275.
    [31] 金之钧, 杨雷, 曾溅辉, 等. 东营凹陷深部流体活动及其生烃效应初探[J]. 石油勘探与开发, 2002, 29(2): 42-44. doi: 10.3321/j.issn:1000-0747.2002.02.010

    JIN Zhijun, YANG Lei, ZENG Jianhui, et al. Deep fluid activities and their effects on generation of hydrocarbon in Dongying Depression[J]. Petroleum Exploration and Development, 2002, 29(2): 42-44. doi: 10.3321/j.issn:1000-0747.2002.02.010
    [32] LIU Quanyou, ZHU Dongya, JIN Zhijun, et al. Effects of deep CO2 on petroleum and thermal alteration: the case of the Huangqiao oil and gas field[J]. Chemical Geology, 2017, 469: 214-229. doi: 10.1016/j.chemgeo.2017.06.031
    [33] 刘培, 蒋有录, 刘华, 等. 渤海湾盆地沾化凹陷断层活动与新近系油气成藏关系[J]. 天然气地球科学, 2013, 24(3): 541-547.

    LIU Pei, JIANG Youlu, LIU Hua, et al. The relationship between fault-activity and hydrocarbon accumulation of Neogene in Zhanhua Depression, Bohai Bay Basin[J]. Natural Gas Geoscience, 2013, 24(3): 541-547.
    [34] 张凡芹, 王伟锋, 戴俊生. 沾化凹陷断层活动性及其对层序发育的控制作用[J]. 石油与天然气地质, 2003, 24(3): 253-259. doi: 10.3321/j.issn:0253-9985.2003.03.013

    ZHANG Fanqin, WANG Weifeng, DAI Junsheng. Fault activities and their controls on the development of lithologic sequences in Zhanhua Sag[J]. Oil & Gas Geology, 2003, 24(3): 253-259. doi: 10.3321/j.issn:0253-9985.2003.03.013
    [35] 张学才, 刘华, 张芷晴, 等. 济阳坳陷埕岛东部地区断层特征及其与新近系油气富集关系[J]. 油气地质与采收率, 2022, 29(3): 1-10.

    ZHANG Xuecai, LIU Hua, ZHANG Zhiqing, et al. Fault characteristics and their relationships with hydrocarbon accumulation in Neogene in eastern Chengdao area, Jiyang Depression[J]. Petroleum Geology and Recovery Efficiency, 2022, 29(3): 1-10.
    [36] 池英柳, 杨池银, 周建生. 渤海湾盆地新生代断裂活动与含油气系统形成[J]. 勘探家, 2000, 5(3): 41-48.

    CHI Yingliu, YANG Chiyin, ZHOU Jiansheng. Cenozoic faulting and its influence on the formation of petroleum systems in Bohai Bay Basin[J]. Petroleum Explorationist, 2000, 5(3): 41-48.
    [37] 李志明, 张鑫璐, 蒋宏, 等. 渤海湾盆地沾化凹陷罗63井沙一段碎裂岩方解石胶结物中流体包裹体特征[J]. 矿物岩石地球化学通报, 2018, 37(3): 513-522.

    LI Zhiming, ZHANG Xinlu, JIANG Hong, et al. Characteristics of fluid inclusion in calcite cement of cataclasite from the first sub-member of the Shahejie Formation of well Luo 63, Zhanhua Depression, Bohai Bay Basin[J]. Bulletin of Mineralogy, Petro-logy and Geochemistry, 2018, 37(3): 513-522.
    [38] 刘惠民, 李政, 包友书, 等. 渤海湾盆地济阳坳陷高产页岩油井BYP5页岩地质特征[J]. 石油与天然气地质, 2023, 44(6): 1405-1417.

    LIU Huimin, LI Zheng, BAO Youshu, et al. Geology of shales in prolific shale-oil well BYP5 in the Jiyang Depression, Bohai Bay Basin[J]. Oil & Gas Geology, 2023, 44(6): 1405-1417.
    [39] 蒋云箭, 刘惠民, 柴春艳, 等. 济阳坳陷页岩油测井评价[J]. 油气地质与采收率, 2023, 30(1): 21-34.

    JIANG Yunjian, LIU Huimin, CHAI Chunyan, et al. Logging evaluation of shale oil in Jiyang Depression[J]. Petroleum Geology and Recovery Efficiency, 2023, 30(1): 21-34.
    [40] 李志明, 刘雅慧, 何晋译, 等. 陆相页岩油"甜点"段评价关键参数界限探讨[J]. 石油与天然气地质, 2023, 44(6): 1453-1467.

    LI Zhiming, LIU Yahui, HE Jinyi, et al. Limits of critical parameters for sweet-spot interval evaluation of lacustrine shale oil[J]. Oil & Gas Geology, 2023, 44(6): 1453-1467.
    [41] 包友书, 张林晔, 张金功, 等. 渤海湾盆地东营凹陷古近系页岩油可动性影响因素[J]. 石油与天然气地质, 2016, 37(3): 408-414.

    BAO Youshu, ZHANG Linye, ZHANG Jingong, et al. Factors influencing mobility of Paleogene shale oil in Dongying Sag, Bohai Bay Basin[J]. Oil & Gas Geology, 2016, 37(3): 408-414.
    [42] 鲍云杰, 李志明, 黎茂稳, 等. 岩心分段密封及逸散轻烃采集测定技术与初步应用[J]. 石油实验地质, 2020, 42(3): 422-427. doi: 10.11781/sysydz202003422

    BAO Yunjie, LI Zhiming, LI Maowen, et al. Segmented sealing of cores and collection and test of escaped light hydrocarbons and its preliminary application[J]. Petroleum Geology & Experiment, 2020, 42(3): 422-427. doi: 10.11781/sysydz202003422
    [43] 贾梦瑶, 鲍云杰, 李志明, 等. 陆相页岩层系岩心中气态烃井场测定技术初步应用及展望[J]. 石油实验地质, 2024, 46(1): 183-190. doi: 10.11781/sysydz202401183

    JIA Mengyao, BAO Yunjie, LI Zhiming, et al. Preliminary application and prospect of well site determination technology of gaseous hydrocarbon in continental shale cores[J]. Petroleum Geology & Experiment, 2024, 46(1): 183-190. doi: 10.11781/sysydz202401183
    [44] 贾承造, 庞雄奇, 宋岩. 论非常规油气成藏机理: 油气自封闭作用与分子间作用力[J]. 石油勘探与开发, 2021, 48(3): 437-452.

    JIA Chengzao, PANG Xiongqi, SONG Yan. The mechanism of unconventional hydrocarbon formation: hydrocarbon self-containment and intermolecular forces[J]. Petroleum Exploration and Development, 2021, 48(3): 437-452.
    [45] ALLARA D L, SHAW R. A compilation of kinetic parameters for the thermal degradation of n-alkane molecules[J]. Journal of Physical and Chemical Reference Data, 1980, 9(3): 523-560. doi: 10.1063/1.555623
    [46] TISSOT B, CALIFET-DEBYSER Y, DEROO G, et al. Origin and evolution of hydrocarbons in early Toarcian shales, Paris Basin, France[J]. AAPG Bulletin, 1971, 55(12): 2177-2193.
    [47] LORANT F, BEHAR F. Late generation of methane from mature kerogens[J]. Energy Fuels, 2002, 16(2): 412-427. doi: 10.1021/ef010126x
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  193
  • HTML全文浏览量:  90
  • PDF下载量:  35
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-14
  • 修回日期:  2024-07-06
  • 刊出日期:  2024-09-28

目录

    /

    返回文章
    返回