留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

深部煤岩地质特征及煤层气富集主控地质因素——以鄂尔多斯盆地东部M区为例

郭晓娇 王雷 姚仙洲 李旭 张林科 王晓双

郭晓娇, 王雷, 姚仙洲, 李旭, 张林科, 王晓双. 深部煤岩地质特征及煤层气富集主控地质因素——以鄂尔多斯盆地东部M区为例[J]. 石油实验地质, 2025, 47(1): 17-26. doi: 10.11781/sysydz2025010017
引用本文: 郭晓娇, 王雷, 姚仙洲, 李旭, 张林科, 王晓双. 深部煤岩地质特征及煤层气富集主控地质因素——以鄂尔多斯盆地东部M区为例[J]. 石油实验地质, 2025, 47(1): 17-26. doi: 10.11781/sysydz2025010017
GUO Xiaojiao, WANG Lei, YAO Xianzhou, LI Xu, ZHANG Linke, WANG Xiaoshuang. Geological characteristics of deep coal rock and main geological factors controlling coalbed methane enrichment: a case study of the M area in the eastern Ordos Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2025, 47(1): 17-26. doi: 10.11781/sysydz2025010017
Citation: GUO Xiaojiao, WANG Lei, YAO Xianzhou, LI Xu, ZHANG Linke, WANG Xiaoshuang. Geological characteristics of deep coal rock and main geological factors controlling coalbed methane enrichment: a case study of the M area in the eastern Ordos Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2025, 47(1): 17-26. doi: 10.11781/sysydz2025010017

深部煤岩地质特征及煤层气富集主控地质因素——以鄂尔多斯盆地东部M区为例

doi: 10.11781/sysydz2025010017
基金项目: 

中国石油“十四五”前瞻性基础性重大科技项目 2021DJ2101

西安石油大学硕士研究生创新与实践能力培养计划 YCS23113044

详细信息
    作者简介:

    郭晓娇(1998—),女,硕士,主要从事油气地质勘探工作。E-mail: 1185307231@qq.com

    通讯作者:

    王雷(1988—),男,高级工程师,主要从事地震资料解释及地质综合研究工作。E-mail: wanglei2015@cnpc.com.cn

  • 中图分类号: TE122.3

Geological characteristics of deep coal rock and main geological factors controlling coalbed methane enrichment: a case study of the M area in the eastern Ordos Basin

  • 摘要: 鄂尔多斯盆地M区上石炭统本溪组顶部8#厚煤层分布广泛,有机质热成熟度高。该区煤层埋深大、横向变化快、非均质性强,且煤岩基础地质特征及深部煤层气富集规律尚不明确、有利目标优选标准尚未建立,这严重制约了深部煤层气的高效勘探。为了促进深部煤层气的增储和高效产出,进一步发展鄂尔多斯盆地东部深部煤层气富集理论,基于研究区76口井的岩心观察、实验分析测试、扫描电镜、测—录井资料,结合三维地震资料,开展了深部煤层地质特征及煤层气富集主控因素两方面的研究工作,初步明确了该区深部煤层气的勘探潜力。鄂尔多斯盆地M区上石炭统本溪组顶部8#煤以焦煤—瘦煤为主,为中高阶煤;亮煤和半亮煤厚度为2~6 m;有机组分以镜质组为主,占比79.8%;工业组分表现为中高挥发分及灰分、固定碳丰富、低水分;煤岩储层孔缝发育,以原生孔隙为主,其孔隙主要由微孔和大孔组成;含气量介于16~25 m3/t之间。鄂尔多斯盆地东缘深部煤层气富集情况主要受煤储层、构造2个因素控制。以6 m以上的厚煤层发育区、远离断裂带(断距小于5 m)的裂缝发育区、微构造高点作为深部煤层气有利勘探区优选原则,优选出8#煤有利勘探面积共207 km2,其中Ⅰ类区97 km2,Ⅱ类区110 km2

     

  • 图  1  鄂尔多斯盆地研究区位置(a)及其石炭系本溪组8#煤层顶部微构造(b)

    Figure  1.  Location (a) and microstructure at the top of 8# coal seam of Carboniferous Benxi Formation (b) of study area, Ordos Basin

    图  2  鄂尔多斯盆地研究区石炭系本溪组8#煤显微组分及工业成分

    割理线密度中,红色点对应的煤用于显微组分和工业组分测试;b图为邻区本溪组8#煤组分特征图。

    Figure  2.  Microscopic and industrial components of 8# coal seam of Carboniferous Benxi Formation in study area, Ordos Basin

    图  3  鄂尔多斯盆地东部石炭系本溪组8#煤扫描电镜下孔隙特征

    Figure  3.  Pore characteristics of 8# coal seam of Carboniferous Benxi Formation in eastern Ordos Basin under scanning electron microscope

    图  4  鄂尔多斯盆地东部研究区石炭系本溪组8#煤含气量分布

    Figure  4.  Distribution of gas content in 8# coal seam of Carboniferous Benxi Formation in study area, eastern Ordos Basin

    图  5  鄂尔多斯盆地东部研究区石炭系本溪组8#煤厚度

    Figure  5.  Thickness of 8# coal seam of Carboniferous Benxi Formation in study area, eastern Ordos Basin

    图  6  鄂尔多斯盆地东部研究区石炭系本溪组8#煤层厚度与含气量交会图

    Figure  6.  Cross plots of thickness and gas content of 8# coal seam of Carboniferous Benxi Formation in study area, eastern Ordos Basin

    图  7  鄂尔多斯盆地东部研究区石炭系本溪组8#煤裂缝发育程度

    Figure  7.  Fracture development degree of 8# coal seam of Carboniferous Benxi Formation in study area, eastern Ordos Basin

    图  8  鄂尔多斯盆地东部研究区局部构造剖面特征

    虚线所在位置为黑色煤层;剖面位置见图 1b

    图  9  鄂尔多斯盆地东部研究区太原组沉积前古地貌(a)及石炭系本溪组8#煤层顶板岩性分布(b)

    Figure  9.  Paleogeography before the deposition of the Taiyuan Formation (a) and roof lithology distribution of 8# coal seam of Carboniferous Benxi Formation (b) in study area, eastern Ordos Basin

    图  10  鄂尔多斯盆地东部研究区石炭系本溪组8#煤层有利区分布

    Figure  10.  Distribution of favorable areas in 8# coal seam of Carboniferous Benxi Formation in study area, eastern Ordos Basin

  • [1] 张懿, 朱光辉, 郑求根, 等. 中国煤层气资源分布特征及勘探研究建议[J]. 非常规油气, 2022, 9(4): 1-8.

    ZHANG Yi, ZHU Guanghui, ZHENG Qiugen, et al. Distribution characteristics of coalbed methane resources in China and recommendations for exploration research[J]. Unconventional Oil & Gas, 2022, 9(4): 1-8.
    [2] 徐凤银, 王成旺, 熊先钺, 等. 深部(层)煤层气成藏模式与关键技术对策: 以鄂尔多斯盆地东缘为例[J]. 中国海上油气, 2022, 34(4): 30-42.

    XU Fengyin, WANG Chengwang, XIONG Xianyue, et al. Deep (layer) coalbed methane reservoir forming modes and key technical countermeasures: taking the eastern margin of Ordos Basin as an example[J]. China Offshore Oil and Gas, 2022, 34(4): 30-42.
    [3] 李国永, 姚艳斌, 王辉, 等. 鄂尔多斯盆地神木—佳县区块深部煤层气地质特征及勘探开发潜力[J]. 煤田地质与勘探, 2024, 52(2): 70-80.

    LI Guoyong, YAO Yanbin, WANG Hui, et al. Deep coalbed methane resources in the Shenmu-Jiaxian block, Ordos Basin, China: geological characteristics and potential for exploration and exploitation[J]. Coal Geology & Exploration, 2024, 52(2): 70-80.
    [4] 顾娇杨, 张兵, 郭明强. 临兴区块深部煤层气富集规律与勘探开发前景[J]. 煤炭学报, 2016, 41(1): 72-79.

    GU Jiaoyang, ZHANG Bing, GUO Mingqiang. Deep coalbed methane enrichment rules and its exploration and development prospect in Linxing block[J]. Journal of China Coal Society, 2016, 41(1): 72-79.
    [5] 闫霞, 徐凤银, 聂志宏, 等. 深部微构造特征及其对煤层气高产"甜点区"的控制: 以鄂尔多斯盆地东缘大吉地区为例[J]. 煤炭学报, 2021, 46(8): 2426-2439.

    YAN Xia, XU Fengyin, NIE Zhihong, et al. Microstructure characteristics of Daji area in east Ordos Basin and its control over the high yield dessert of CBM[J]. Journal of China Coal Society, 2021, 46(8): 2426-2439.
    [6] 施雷庭, 赵启明, 任镇宇, 等. 煤岩裂隙形态对渗流能力影响数值模拟研究[J]. 油气藏评价与开发, 2023, 13(4): 424-432.

    SHI Leiting, ZHAO Qiming, REN Zhenyu, et al. Numerical simulation study on the influence of coal rock fracture morphology on seepage capacity[J]. Petroleum Reservoir Evaluation and Development, 2023, 13(4): 424-432.
    [7] 牛小兵, 赵伟波, 史云鹤, 等. 鄂尔多斯盆地本溪组天然气成藏条件及勘探潜力[J]. 石油学报, 2023, 44(8): 1240-1257.

    NIU Xiaobing, ZHAO Weibo, SHI Yunhe, et al. Natural gas accumulation conditions and exploration potential of Benxi Formation in Ordos Basin[J]. Acta Petrolei Sinica, 2023, 44(8): 1240-1257.
    [8] 王恒. 吴堡矿区上古生界煤层气成藏地质条件研究及甜点区预测[D]. 西安: 西北大学, 2022.

    WANG Heng. Study on geological conditions of coalbed methane accumulation and prediction of the sweet zones in Upper Paleozoic coal of Wubu mining area[D]. Xi'an: Northwest University, 2022.
    [9] 胡建波, 刘之的, 段玉顺, 等. 小尺度断裂沿层曲率敏感性研究[J]. 地质与勘探, 2023, 59(4): 891-900.

    HU Jianbo, LIU Zhidi, DUAN Yushun, et al. Sensitivity of small-scale faults curvature along the layer[J]. Geology and Exploration, 2023, 59(4): 891-900.
    [10] 石婧, 何登发, 包洪平, 等. 鄂尔多斯盆地东部边界的构造学分析: 以石楼北地区为例[J]. 古地理学报, 2024, 26(1): 150-164.

    SHI Jing, HE Dengfa, BAO Hongping, et al. Tectonic analysis of the eastern boundary of Ordos Basin: a case study of northern region of Shilou area[J]. Journal of Palaeogeography (Chinese Edition), 2024, 26(1): 150-164.
    [11] 赵振宇, 郭彦如, 王艳, 等. 鄂尔多斯盆地构造演化及古地理特征研究进展[J]. 特种油气藏, 2012, 19(5): 15-20.

    ZHAO Zhenyu, GUO Yanru, WANG Yan, et al. Study progress in tectonic evolution and paleogeography of Ordos basin[J]. Special Oil & Gas Reservoirs, 2012, 19(5): 15-20.
    [12] 田瀚, 冯周, 王金锋, 等. 陕西省煤岩焦油产率测井评价方法研究[J/OL]. 地球物理学进展: 1-13[2024-02-17]. http://kns.cnki.net/kcms/detail/11.2982.P.20231109.1731.014.html.

    TIAN Han, FENG Zhou, WANG Jinfeng, et al. Study on logging evaluation method of coal tar yield in Shaanxi Province[J/OL]. Progress in Geophysics: 1-13[2024-02-17]. http://kns.cnki.net/kcms/detail/11.2982.P.20231109.1731.014.html.
    [13] 郭晓娇, 王雷. 深部煤层演化过程中储层结构变化特征分析: 以鄂尔多斯盆地东部为例[J]. 中国煤层气, 2023, 20(5): 24-27.

    GUO Xiaojiao, WANG Lei. Analysis on characteristics of reservoir structure changes during evolution process of deep coal seams: taking the eastern Ordos Basin as an example[J]. China Coalbed Methane, 2023, 20(5): 24-27.
    [14] 赵方钰, 邓泽, 王海超, 等. 煤体结构与宏观煤岩类型对煤体吸附/解吸瓦斯的影响[J]. 煤炭科学技术, 2022, 50(12): 170-184.

    ZHAO Fangyu, DENG Ze, WANG Haichao, et al. Influence of coal structure and macrolithotype of coal on coal adsorption and desorption of gas[J]. Coal Science and Technology, 2022, 50(12): 170-184.
    [15] 郭广山, 徐凤银, 刘丽芳, 等. 鄂尔多斯盆地府谷地区深部煤层气富集成藏规律及有利区评价[J]. 煤田地质与勘探, 2024, 52(2): 81-91.

    GUO Guangshan, XU Fengyin, LIU Lifang, et al. Enrichment and accumulation patterns and favorable area evaluation of deep coalbed methane in the Fugu area, Ordos Basin[J]. Coal Geology & Exploration, 2024, 52(2): 81-91.
    [16] 王勃. 沁水盆地煤层气富集高产规律及有利区块预测评价[D]. 徐州: 中国矿业大学, 2013.

    WANG Bo. Coalbed methane enrichment and high-production rule & prospective area prediction in Qinshui Basin[D]. Xuzhou: China University of Mining and Technology, 2013.
    [17] 李景明, 巢海燕, 李小军, 等. 中国煤层气资源特点及开发对策[J]. 天然气工业, 2009, 29(4): 9-13.

    LI Jingming, CAO Haiyan, LI Xiaojun, et al. Characteristics of coalbed methane resource and the development strategies[J]. Natural Gas Industry, 2009, 29(4): 9-13.
    [18] 贾小宝. 大宁—吉县地区深部煤储层物性特征研究[D]. 太原: 太原理工大学, 2018.

    JIA Xiaobao. The physical characteristics of deep coal reservoir in Daning-Jixian area[D]. Taiyuan: Taiyuan University of Technology, 2018.
    [19] IUPAC (International Union of Pure and Applied chemistry). Physical chemistry division commission on colloid and surface chemistry, subcommittee on characterization of porous solids: recommendations for the characterization of porous solids (technical report)[J]. Pure and Applied Chemistry, 1994, 66(8): 1739-1758. doi: 10.1351/pac199466081739
    [20] 朱正平, 雷克辉, 潘仁芳. 沁水盆地和顺区块基于地震多属性分析的煤层含气量预测[J]. 石油物探, 2015, 54(2): 226-233.

    ZHU Zhengping, LEI Kehui, PAN Renfang. Coal seam gas content prediction based on seismic multi-attributes analysis in Heshun block, Qinshui Basin[J]. Geophysical Prospecting for Petroleum, 2015, 54(2): 226-233.
    [21] 陈刚, 秦勇, 胡宗全, 等. 不同煤阶深煤层含气量差异及其变化规律[J]. 高校地质学报, 2015, 21(2): 274-279.

    CHEN Gang, QIN Yong, HU Zongquan. Variations of gas content in deep coalbeds of different coal ranks[J]. Geological Journal of China Universities, 2015, 21(2): 274-279.
    [22] 刘道理, 李坤, 杨登锋, 等. 基于频变AVO反演的深层储层含气性识别方法[J]. 天然气工业, 2020, 40(1): 48-54.

    LIU Daoli, LI Kun, YANG Dengfeng, et al. A gas-bearing property identification method for deep reservoirs based on frequency-dependent AVO inversion[J]. Natural Gas Industry, 2020, 40(1): 48-54.
    [23] 李曙光, 王成旺, 王红娜, 等. 大宁—吉县区块深层煤层气成藏特征及有利区评价[J]. 煤田地质与勘探, 2022, 50(9): 59-67.

    LI Shuguang, WANG Chengwang, WANG Hongna, et al. Reservoir forming characteristics and favorable area evaluation of deep coalbed methane in Daning-Jixian block[J]. Coal Geology & Exploration, 2022, 50(9): 59-67.
    [24] 高玉巧, 李鑫, 何希鹏, 等. 延川南深部煤层气高产主控地质因素研究[J]. 煤田地质与勘探, 2021, 49(2): 21-27.

    GAO Yuqiao, LI Xin, HE Xipeng, et al. Study on the main controlling geological factors of high yield deep CBM in southern Yanchuan block[J]. Coal Geology & Exploration, 2021, 49(2): 21-27.
    [25] 闫霞, 徐凤银, 张雷, 等. 微构造对煤层气的控藏机理与控产模式[J]. 煤炭学报, 2022, 47(2): 893-905.

    YAN Xia, XU Fengyin, ZHANG Lei, et al. Reservoir-controlling mechanism and production-controlling patterns of microstructure to coalbed methane[J]. Journal of China Coal Society, 2022, 47(2): 893-905.
    [26] 李勇. 鄂尔多斯盆地东缘煤层气富集成藏规律研究[D]. 北京: 中国地质大学(北京), 2015.

    LI Yong. Coalbed methane accumulation and reservoring in east margin of Ordos Basin, China[D]. Beijing: China University of Geosciences (Beijing), 2015.
  • 加载中
图(10)
计量
  • 文章访问数:  107
  • HTML全文浏览量:  39
  • PDF下载量:  36
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-20
  • 修回日期:  2024-12-03
  • 刊出日期:  2025-01-28

目录

    /

    返回文章
    返回