留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

鄂尔多斯盆地东北缘神府区块南部8+9号煤层地应力评价方法与应用

吴嘉伟 汤韦 祝彦贺 王存武 田永净 訾敬玉 杨江浩 时贤

吴嘉伟, 汤韦, 祝彦贺, 王存武, 田永净, 訾敬玉, 杨江浩, 时贤. 鄂尔多斯盆地东北缘神府区块南部8+9号煤层地应力评价方法与应用[J]. 石油实验地质, 2025, 47(1): 27-42. doi: 10.11781/sysydz2025010027
引用本文: 吴嘉伟, 汤韦, 祝彦贺, 王存武, 田永净, 訾敬玉, 杨江浩, 时贤. 鄂尔多斯盆地东北缘神府区块南部8+9号煤层地应力评价方法与应用[J]. 石油实验地质, 2025, 47(1): 27-42. doi: 10.11781/sysydz2025010027
WU Jiawei, TANG Wei, ZHU Yanhe, WANG Cunwu, TIAN Yongjing, ZI Jingyu, YANG Jianghao, SHI Xian. Evaluation method and application for in-situ stress in No. 8+9 coal seam, southern Shenfu block, northeastern margin of Ordos Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2025, 47(1): 27-42. doi: 10.11781/sysydz2025010027
Citation: WU Jiawei, TANG Wei, ZHU Yanhe, WANG Cunwu, TIAN Yongjing, ZI Jingyu, YANG Jianghao, SHI Xian. Evaluation method and application for in-situ stress in No. 8+9 coal seam, southern Shenfu block, northeastern margin of Ordos Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2025, 47(1): 27-42. doi: 10.11781/sysydz2025010027

鄂尔多斯盆地东北缘神府区块南部8+9号煤层地应力评价方法与应用

doi: 10.11781/sysydz2025010027
基金项目: 

中国海洋石油有限公司重大项目课题“煤层气地质工程关键参数表征及甜点区评价技术” KJGG2022-1001

中海油研究总院自立课题“临兴—神府深层煤储层含气性及主控因素研究” 2023-ZXZL-FCG-02

详细信息
    作者简介:

    吴嘉伟(1996—),男,博士,工程师,从事构造地质学和煤层气地质工程一体化研究工作。E-mail: wujw13@cnooc.com.cn

  • 中图分类号: TE132.2

Evaluation method and application for in-situ stress in No. 8+9 coal seam, southern Shenfu block, northeastern margin of Ordos Basin

  • 摘要: 现今地应力方向和大小影响着煤层水力压裂缝的延伸,是煤层气井网部署、压裂设计的重要地质参数。合理评价煤层现今地应力方向和大小,对煤层气勘探开发具有重要意义。以鄂尔多斯盆地东北缘神府区块南部8+9号煤层现今地应力方向和大小为研究内容,基于阵列声波测井、微地震监测和成像测井,评价煤层及顶底板现今最大水平主应力方向;在注入—压降实测地应力参数约束下,确定煤层组合弹簧模型参数,并计算煤层现今地应力大小。结果显示,研究区东部8+9号煤层及顶底板现今最大水平主应力方向整体近NNE向,西部最大水平主应力方向可能受大量的压裂改造和不活动断层周围应力场扰动,发生不同方向偏转;20口井地应力测井计算结果显示,垂深1 902~2 181 m的8+9号煤层垂向主应力范围47~54 MPa,最小水平主应力范围35~44 MPa;最大水平主应力范围42~50 MPa,侧压系数小于1,表现为正断层地应力状态。研究区东部NNE向最大水平主应力方向是经历中新生代印支期SN向挤压、燕山期NNW向挤压和喜马拉雅期NNE向挤压的继承。考虑东部裂缝预测区叠加不同构造阶段平均NNW走向的天然裂缝的分布和NNE最大水平主应力方向正断层地应力状态下NNE向竖直压裂缝的延伸模式,以提高水平井大规模极限体积压裂产量为目标,建议在垂直现今NNE向最大水平主应力方向和垂直NNW向平均天然裂缝走向的水平井方位区间内,综合利用天然裂缝产能和人工压裂缝产能进行水平丛式井布井,并进一步对地应力方向和天然裂缝参数进行精细化表征,以指导施工压裂设计,提高煤层气产量。

     

  • 图  1  鄂尔多斯盆地东北缘神府区块南部位置及周缘构造纲要图(a)和地层综合柱状图(b)

    Figure  1.  Location map and surrounding tectonic outline (a) and comprehensive stratigraphic column (b) of southern Shenfu block, northeastern margin of Ordos Basin

    图  2  鄂尔多斯盆地神府区块8+9号煤层顶板砂岩和煤岩岩心特征

    a.顶板砂岩结构均质,裂缝相对不发育;b.8+9号煤层煤岩裂缝和割理(面割理和端割理)发育特征。

    Figure  2.  Core characteristics of No. 8+9 coal seam and its roof sandstone in Shenfu block, Ordos Basin

    图  3  应用阵列声波测井、微地震监测、成像测井揭示鄂尔多斯盆地神府区块8+9号煤层及顶板现今最大水平主应力方向

    a.阵列声波测井快横波方位指示煤层顶板现今NNE向最大水平主应力方向;b.微地震监测水力裂缝延伸方向指示煤层顶板(太原组)现今NEE向最大水平主应力方向(SF-4井);c.成像测井中高角度诱导缝倾向NW(走向NE),指示煤层段现今NE向最大水平主应力方向(SF-49井)。

    Figure  3.  Direction of present maximum horizontal principal stress of No. 8+9 coal seam and its roof in Shenfu block, Ordos Basin, as revealed by array acoustic logging, microseismic monitoring, and imaging logging

    图  4  鄂尔多斯盆地神府区块8+9号煤层及顶底板附近断裂分布背景下的地应力方向

    a.近南北向不活动断裂分布背景下现今最大水平主应力方向;b.过SF-50井地震剖面显示近南北向高角度左行走滑断裂系统发育。

    Figure  4.  In-situ stress direction near faults around No. 8+9 coal seam and its roof and floor in Shenfu block, Ordos Basin

    图  5  鄂尔多斯盆地神府区块SF-50井8+9号煤层测井计算现今垂向主应力和最大、最小水平主应力大小

    Figure  5.  Logging calculation of present vertical principal stress and maximum and minimum horizontal principal stress for No. 8+9 coal seam in well SF-50, Shenfu block, Ordos Basin

    图  6  鄂尔多斯盆地神府区块SF-63井闭合应力(Pc)G函数分析

    Figure  6.  G function analysis of closure stress (Pc) for well SF-63 in Shenfu block, Ordos Basin

    图  7  鄂尔多斯盆地神府区块南部20口井8+9号煤层段测井计算现今地应力大小和侧压系数与深度的关系

    a.现今垂向主应力、最大水平主应力、最小水平主应力大小与深度的关系;b.对应8+9号煤层段侧压系数与深度的关系。具体井位见图 4a

    Figure  7.  Relationship between depth and logging calculated present in-situ stress magnitude and lateral pressure coefficient in No. 8+9 coal seam across 20 wells in southern Shenfu block, Ordos Basin

    图  8  鄂尔多斯盆地东北缘印支期、燕山期、喜马拉雅期最大水平主应力迹线(红色虚线)和最小水平主应力迹线(绿色虚线)

    据参考文献[7]修改。a.印支期神府区块南部最大水平主应力方向近南北向;b.燕山期神府区块南部最大水平主应力走向NNW—SSE向;c.喜马拉雅期神府区块南部最大水平主应力走向NNE—SSW向,神府区块南部东区现今最大水平主应力方向玫瑰花图走向与喜马拉雅期最大水平主应力迹线在该区的走向一致。

    Figure  8.  Trajectories of maximum (red dashed lines) and minimum (green dashed lines) horizontal principal stress during the Indosinian, Yanshanian, and Himalayan stages on northeastern margin of Ordos Basin

    图  9  鄂尔多斯盆地神府区块南部断层体系分布样式、活动强度、发育模型及研究区东部裂缝叠前预测分布、走向和现今应力方向

    a.神府区块南部周缘断层分布特征(据参考文献[48]修改);b.离石断裂不同地质时代的断层活动强度(据参考文献[47]修改);c.离石断裂左旋力偶应变椭球体控制的断层样式(据参考文献[47]修改);d.研究区东部8+9号煤层叠前裂缝预测揭示的天然裂缝分布和走向特征,最大水平主应力方向叠加其上,具体井号见图 4a;e.天然裂缝走向玫瑰花图;f.裂缝预测区现今最大水平主应力方向玫瑰花图。

    Figure  9.  Fault system distribution pattern, activity intensity, development model, and pre-stack predicted fracture distribution, orientation, and present in-situ stress direction of eastern study area in southern Shenfu block, Ordos Basin

    图  10  考虑现今最大水平主应力方向和天然裂缝分布的鄂尔多斯盆地神府南区水平井方位设计

    a.考虑现今NNE向平均最大水平主应力方向、NNW向天然裂缝平均走向、NNE向压裂缝平均走向的研究区东部水平丛式井方位区间设计;b.天然裂缝不发育时,垂直于NNE最大水平主应力方向布井,压裂形成平行最大水平主应力方向的压裂缝;c天然裂缝发育时,水平井垂直于天然裂缝走向布井,压裂形成沿天然裂缝方向延伸的压裂缝;d.天然裂缝部分发育时,水平井方位区间内压裂缝处于最大水平主应力方向和天然裂缝之间。

    Figure  10.  Design of horizontal well orientation considering present maximum horizontal principal stress direction and natural fracture distribution in southern Shenfu block, Ordos Basin

    表  1  鄂尔多斯盆地神府区块8+9号煤层注入压降测试实测应力值与主应力计算结果

    Table  1.   In-situ stress values and principal stress results measured from injection/fall off tests for No. 8+9 coal seam in Shenfu block, Ordos Basin

    井号 垂深/m 应力/MPa
    Pp Pb Pc σH σh σv
    SF-A 1 828 19.72 30.74 29.48 37.98 29.48 43.93
    SF-B 2 202 20.26 36.54 35.22 48.86 35.22 53.55
    SF-C 2 077 19.11 33.77 31.21 40.75 31.21 46.79
    下载: 导出CSV

    表  2  鄂尔多斯盆地神府区块南部20口井8+9号煤层计算最小水平主应力与实测闭合应力对比及相关应力参数

    Table  2.   Comparison of calculated minimum horizontal principal stress, measured closure stress, and relevant stress parameters for No. 8+9 coal seam from 20 wells in southern Shenfu block, Ordos Basin

    编号 井号 平均垂深/ m σh /MPa σH /MPa σH-σh/ MPa σv /MPa 侧压系数 Pc/ MPa |Pc-σh|/ MPa 误差/ %
    1 SF-1 1 939 37.39 43.01 5.62 47.29 0.85 36.68 0.43 1.10
    2 SF-25 2 180 41.46 47.79 6.33 54.01 0.83 41.07 3.63 7.61
    3 SF-50 1 955 37.98 43.38 5.40 47.89 0.85 38.40 0.03 0.07
    4 SF-51 2 180 42.13 48.16 6.03 53.64 0.84 42.10 2.63 7.90
    5 SF-52 2 181 40.15 46.14 5.99 51.12 0.84 41.10 2.64 6.69
    6 SF-53 1 915 36.85 42.62 5.77 46.38 0.86 39.49 0.81 2.34
    7 SF-54 1 922 36.33 42.67 6.34 47.05 0.84 36.19 2.94 8.79
    8 SF-55 1 947 38.02 43.47 5.45 47.98 0.85 38.40 0.28 0.69
    9 SF-56 1 945 37.36 43.20 5.84 47.74 0.84 38.40 0.39 0.95
    10 SF-57 2 062 40.41 46.22 5.81 50.65 0.86 40.69 0.37 0.88
    11 SF-58 2 180 41.47 47.79 6.32 53.33 0.84 41.84 0.71 1.94
    12 SF-59 2 165 44.06 50.43 6.37 54.06 0.87 47.69 0.86 2.14
    13 SF-60 2 163 41.09 48.43 7.34 53.36 0.84 40.23 1.80 4.29
    14 SF-61 2 027 36.78 42.88 6.10 49.65 0.80 36.65 0.95 2.31
    15 SF-62 2 021 39.47 45.37 5.90 51.06 0.83 39.04 0.49 1.22
    16 SF-63 2 115 40.11 45.56 5.45 50.50 0.85 42.14 2.03 4.82
    17 SF-64 2 160 40.81 46.55 5.74 51.90 0.84 40.32 0.03 0.07
    18 SF-65 1 985 35.93 42.32 6.39 48.62 0.80 33.30 0.14 0.39
    19 SF-66 1 902 35.36 42.70 7.34 46.74 0.84 34.55 0.38 0.99
    20 SF-67 1 953 36.38 42.69 6.31 47.56 0.83 33.44 1.04 2.71
    平均值 2 045 38.98 45.07 6.09 50.03 0.84 39.07 1.13 2.90
    下载: 导出CSV
  • [1] 朱光辉, 季洪泉, 米洪刚, 等. 神府深部煤层气大气田的发现与启示[J]. 煤田地质与勘探, 2024, 52(8): 12-21.

    ZHU Guanghui, JI Hongquan, MI Honggang, et al. Discovery of a large gas field of deep coalbed methane in the Shenfu block and its implications[J]. Coal Geology & Exploration, 2024, 52(8): 12-21.
    [2] 赵志刚, 朱学申, 王存武, 等. 基于资源性与可压性的深部煤层气"甜点"预测[J]. 煤田地质与勘探, 2024, 52(8): 22-31.

    ZHAO Zhigang, ZHU Xueshen, WANG Cunwu, et al. Predicting the "sweet spot" of deep coalbed methane based on resource conditions and fracability[J]. Coal Geology & Exploration, 2024, 52(8): 22-31.
    [3] WARPINSKI N R, TEUFEL L W. In-situ stresses in low-permeability, nonmarine rocks[J]. Journal of Petroleum Technology, 1989, 41(4): 405-414. doi: 10.2118/16402-PA
    [4] 谢正龙, 刘之的, 韩鸿来, 等. 大吉区块深部(层)煤层气储层地应力测井预测研究[J]. 物探与化探, 2024, 48(2): 356-365.

    XIE Zhenglong, LIU Zhidi, HAN Honglai, et al. Log-based in-situ stress prediction of deep coalbed methane reservoirs in the Daji block[J]. Geophysical and Geochemical Exploration, 2024, 48(2): 356-365.
    [5] WANG Ziwei, LI Yong, QU Jianhong, et al. Detailed in situ stress characterization combining well logging and improved magnitude calculation model of Nos. 8+9 coal seam in northeastern Ordos Basin[J]. Energy & Fuels, 2024, 38(6): 5137-5148. doi: 10.1021/acs.energyfuels.3c05062
    [6] 祝彦贺, 赵志刚, 张道旻, 等. 鄂尔多斯盆地神府地区致密气成藏条件及成藏规律[J]. 中国海上油气, 2022, 34(4): 55-64. doi: 10.11935/j.issn.1673-1506.2022.04.005

    ZHU Yanhe, ZHAO Zhigang, ZHANG Daomin, et al. Accumulation conditions and accumulation laws of tight gas in Shenfu area, northeast of Ordos Basin[J]. China Offshore Oil and Gas, 2022, 34(4): 55-64. doi: 10.11935/j.issn.1673-1506.2022.04.005
    [7] 徐黎明, 周立发, 张义楷, 等. 鄂尔多斯盆地构造应力场特征及其构造背景[J]. 大地构造与成矿学, 2006, 30(4): 455-462. doi: 10.3969/j.issn.1001-1552.2006.04.007

    XU Liming, ZHOU Lifa, ZHANG Yikai, et al. Characteristics and tectonic setting of tectono-stress field of Ordos Basin[J]. Geotectonica et Metallogenia, 2006, 30(4): 455-462. doi: 10.3969/j.issn.1001-1552.2006.04.007
    [8] 赵振宇, 郭彦如, 王艳, 等. 鄂尔多斯盆地构造演化及古地理特征研究进展[J]. 特种油气藏, 2012, 19(5): 15-20. doi: 10.3969/j.issn.1006-6535.2012.05.004

    ZHAO Zhenyu, GUO Yanru, WANG Yan, et al. Study progress in tectonic evolution and paleogeography of Ordos Basin[J]. Special Oil and Gas Reservoirs, 2012, 19(5): 15-20. doi: 10.3969/j.issn.1006-6535.2012.05.004
    [9] 刘畅, 张道旻, 李超, 等. 鄂尔多斯盆地临兴区块上古生界致密砂岩气藏成藏条件及主控因素[J]. 石油与天然气地质, 2021, 42(5): 1146-1158.

    LIU Chang, ZHANG Daomin, LI Chao, et al. Upper Paleozoic tight gas sandstone reservoirs and main controls, Linxing block, Ordos Basin[J]. Oil & Gas Geology, 42(5): 1146-1158.
    [10] 程建, 周小进, 刘超英, 等. 中西部大盆地重点勘探领域战略选区研究[J]. 石油实验地质, 2023, 45(2): 229-237. doi: 10.11781/sysydz202302229

    CHENG Jian, ZHOU Xiaojin, LIU Chaoying, et al. Strategic area selection and key exploration fields in central and western large basins[J]. Petroleum Geology & Experiment, 2023, 45(2): 229-237. doi: 10.11781/sysydz202302229
    [11] 郭广山, 徐凤银, 刘丽芳, 等. 鄂尔多斯盆地府谷地区深部煤层气富集成藏规律及有利区评价[J]. 煤田地质与勘探, 2024, 52(2): 81-91.

    GUO Guangshan, XU Fengyin, LIU Lifang, et al. Enrichment and accumulation patterns and favorable area evaluation of deep coalbed methane in the Fugu area, Ordos Basin[J]. Coal Geology & Exploration, 2024, 52(2): 81-91.
    [12] 安琦, 杨帆, 杨睿月, 等. 鄂尔多斯盆地神府区块深部煤层气体积压裂实践与认识[J]. 煤炭学报, 2024, 49(5): 2376-2393.

    AN Qi, YANG Fan, YANG Ruiyue, et al. Practice and understanding of deep coalbed methane massive hydraulic fracturing in Shenfu block, Ordos Basin[J]. Journal of China Coal Society, 2024, 49(5): 2376-2393.
    [13] 刘建忠, 朱光辉, 刘彦成, 等. 鄂尔多斯盆地东缘深部煤层气勘探突破及未来面临的挑战与对策: 以临兴—神府区块为例[J]. 石油学报, 2023, 44(11): 1827-1839. doi: 10.7623/syxb202311006

    LIU Jianzhong, ZHU Guanghui, LIU Yancheng, et al. Breakthrough, future challenges and countermeasures of deep coalbed methane in the eastern margin of Ordos Basin: a case study of Linxing-Shenfu block[J]. Acta Petrolei Sinica, 2023, 44(11): 1827-1839. doi: 10.7623/syxb202311006
    [14] 吴晓光, 季凤玲, 李德才. 偶极声波测井技术应用现状及研究进展[J]. 地球物理学进展, 2016, 31(1): 380-389.

    WU Xiaoguang, JI Fengling, LI Decai. Application status and research progress of dipole acoustic well logging[J]. Progress in Geophysics, 2016, 31(1): 380-389.
    [15] 高秋菊, 宋亮, 刘显太, 等. 致密油藏储层地应力预测及微地震监测[M]. 青岛: 中国海洋大学出版社, 2020.

    GAO Qiuju, SONG Liang, LIU Xiantai, et al. Prediction of in-situ stress and microseismic monitoring in tight oil reservoirs[M]. Qingdao: Ocean University of China Press, 2020.
    [16] 张金才, 尹尚先. 页岩油气与煤层气开发的岩石力学与压裂关键技术[J]. 煤炭学报, 2014, 39(8): 1691-1699.

    ZHANG Jincai, YIN Shangxian. Some technologies of rock mechanics applications and hydraulic fracturing in shale oil, shale gas and coalbed methane[J]. Journal of China Coal Society, 2014, 39(8): 1691-1699.
    [17] 郭小锋. 含煤系产层组煤层多分支水平井井眼轨迹优化设计[D]. 北京: 中国石油大学, 2018.

    GUO Xiaofeng. Composite coal seam multi-branch horizontal well trajectory optimization design[D]. Beijing: China University of Petroleum, 2018.
    [18] 刘绍军, 刘勇, 赵圣贤, 等. 泸州北区深层页岩现今地应力场分布特征及扰动规律[J]. 地球科学进展, 2023, 38(12): 1271-1284.

    LIU Shaojun, LIU Yong, ZHAO Shengxian, et al. Distribution characteristics and pattern of deep shale present geostress field in northern Luzhou[J]. Advances in Earth Science, 2023, 38(12): 1271-1284.
    [19] 綦敦科, 刘建中. 利用水平井分段压裂微地震裂缝方位监测确定最大水平主应力方位[J]. 地震学报, 2017, 39(5): 814-817.

    QI Dunke, LIU Jianzhong. Determination of maximum horizontal principal stress orientation by monitoring the extending direction of micro-seismic multiple staged fractures in horizontal wells[J]. Acta Seismologica Sinica, 2017, 39(5): 814-817.
    [20] BROWN J, DAVIS B, GAWANKAR K, et al. Imaging: getting the picture downhole[J]. Oilfield Review, 2015, 27(2): 4-21. http://69.18.148.120/~/media/Files/resources/oilfield_review/ors15/sept15/01_imaging.pdf
    [21] BAGDELI M, MANSHAD A K, SHADIZADEH S R, et al. Natural fracture characterization and wellbore stability analysis of a highly fractured southwestern Iranian oilfield[J]. International Journal of Rock Mechanics and Mining Sciences, 2019, 123: 104101. doi: 10.1016/j.ijrmms.2019.104101
    [22] 王兆生, 曾联波, 李晶, 等. 地应力测井解释方法及其可靠性对比[J]. 西南石油大学学报(自然科学版), 2022, 44(6): 1-9.

    WANG Zhaosheng, ZENG Lianbo, LI Jing, et al. In-situ stress logging interpretation methods and reliability analysis[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2022, 44(6): 1-9.
    [23] 赖锦, 王贵文, 孙思勉, 等. 致密砂岩储层裂缝测井识别评价方法研究进展[J]. 地球物理学进展, 2015, 30(4): 1712-1724.

    LAI Jin, WANG Guiwen, SUN Simian, et al. Research advances in logging recognition and evaluation method of fractures in tight sandstone reservoirs[J]. Progress in Geophysics, 2015, 30(4): 1712-1724.
    [24] 王学潮, 郭启良, 张辉, 等. 青藏高原东北缘水压致裂地应力测量[J]. 地质力学学报, 2000, 6(2): 64-70. doi: 10.3969/j.issn.1006-6616.2000.02.010

    WANG Xuechao, GUO Qiliang, ZHANG Hui, et al. Crustal stress measurement in northeastern Qingzang plateau by hydrofracturing[J]. Journal of Geomechanics, 2000, 6(2): 64-70. doi: 10.3969/j.issn.1006-6616.2000.02.010
    [25] 吴嘉伟, 张长好, 司丹, 等. 柴达木盆地狮子沟构造下干柴沟组上段有效裂缝与地应力关系及其意义[J]. 地球科学(中国地质大学学报), 2023, 48(7): 2557-2571.

    WU Jiawei, ZHANG Changhao, SI Dan, et al. Relation between effective fractures and in-situ stress as well as its significance in upper Xiaganchaigou Formation in Shizigou Structure, Qaidam Basin[J]. Earth Science(Journal of China University of Geosciences), 2023, 48(7): 2557-2571.
    [26] 张兵, 冯兴强, 米洪刚, 等. 鄂尔多斯盆地临兴地区致密砂岩储层岩石力学参数和地应力分析[J]. 中国海上油气, 2023, 35(6): 51-59.

    ZHANG Bing, FENG Xingqiang, MI Honggang, et al. Analysis on in-situ stress and rock mechanics parameters of tight sandstone reservoirs in Linxing block, Ordos Basin[J]. China Offshore Oil and Gas, 2023, 35(6): 51-59.
    [27] HAIMSON B C, CORNET F H. ISRM suggested methods for rock stress estimation—part 3: hydraulic fracturing (HF) and/or hydraulic testing of pre-existing fractures (HTPF)[J]. International Journal of Rock Mechanics and Mining Sciences, 2003, 40(7/8): 1011-1020.
    [28] 陈峥嵘, 刘书杰, 张滨海, 等. 沁水盆地北缘煤层气井地应力模型研究[J]. 煤炭科学技术, 2018, 46(10): 136-142.

    CHEN Zhengrong, LIU Shujie, ZHANG Binhai, et al. Study on geostress model of coalbed methane wells in north edge of Qinshui Basin[J]. Coal Science and Technology, 2018, 46(10): 136-142.
    [29] 张健, 敬季昀, 王杏尊. 利用小型压裂短时间压降数据快速获取储层参数的新方法[J]. 岩性油气藏, 2018, 30(4): 133-139.

    ZHANG Jian, JING Jiyun, WANG Xingzun. New method for obtaining reservoir parameters with a short time of pressure drop after mini-fracturing[J]. Lithologic Reservoirs, 2018, 30(4): 133-139.
    [30] 张重远, 吴满路, 陈群策, 等. 地应力测量方法综述[J]. 河南理工大学学报(自然科学版), 2012, 31(3): 305-310. doi: 10.3969/j.issn.1673-9787.2012.03.011

    ZHANG Chongyuan, WU Manlu, CHEN Qunce, et al. Review of in-situ stress measurement methods[J]. Journal of Henan Polytechnic University (Natural Science), 2012, 31(3): 305-310. doi: 10.3969/j.issn.1673-9787.2012.03.011
    [31] 范翔宇, 康海涛, 龚明, 等. 川东北山前高陡构造地应力精细计算方法[J]. 西南石油大学学报(自然科学版), 2012, 34(3): 41-46. doi: 10.3863/j.issn.1674-5086.2012.03.006

    FAN Xiangyu, KANG Haitao, GONG Ming, et al. Fine calculation method study of crustal stress of high-steep conformation in northeast Sichuan[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2012, 34(3): 41-46. doi: 10.3863/j.issn.1674-5086.2012.03.006
    [32] 闫萍, 孙建孟, 苏远大, 等. 利用测井资料计算新疆迪那气田地应力[J]. 新疆石油地质, 2006, 27(5): 611-614. doi: 10.3969/j.issn.1001-3873.2006.05.030

    YAN Ping, SUN Jianmeng, SU Yuanda, et al. The earth stress calculation using well logging data in Dina gas field of Xinjiang[J]. Xinjiang Petroleum Geology, 2006, 27(5): 611-614. doi: 10.3969/j.issn.1001-3873.2006.05.030
    [33] 刘军, 黄超, 周磊, 等. 基于阵列声波测井估算碳酸盐岩储层岩石力学和地应力参数: 以顺北4号带为例[J]. 地质力学学报, 2024, 30(3): 394-407.

    LIU Jun, HUANG Chao, ZHOU Lei, et al. Estimation of the rock mechanics and in-situ stress parameters of carbonate reservoirs using array sonic logging: a case study of Shunbei No. 4 block[J]. Journal of Geomechanics, 2024, 30(3): 394-407.
    [34] 张东涛, 童亨茂, 赵海涛, 等. 砂泥岩地层地应力纵向分布特征与规律[J]. 地质力学学报, 2014, 20(4): 352-362. doi: 10.3969/j.issn.1006-6616.2014.04.003

    ZHANG Dongtao, TONG Hengmao, ZHAO Haitao, et al. Characteristics and regularity of longitudinal geostress distribution in sand-mudstone strata[J]. Journal of Geomechanics, 2014, 20(4): 352-362. doi: 10.3969/j.issn.1006-6616.2014.04.003
    [35] 伊丙鼎. 煤矿井下地应力数据库及地应力影响因素研究[D]. 北京: 煤炭科学研究总院, 2017.

    YI Bingding. Construction of in-situ stress database and study on factors influencing in-situ stress distribution in coal mine[D]. Beijing: China Coal Research Institute, 2017.
    [36] 孙石明. 鄂尔多斯盆地东部上古生界裂缝发育特征及构造应力场分析[D]. 西安: 长安大学, 2018.

    SUN Shiming. Characteristics of fracture development and analysis of tectonic stress field of Upper Palaeozoic in the eastern of Ordos Basin[D]. Xi'an: Chang'an University, 2018.
    [37] 张俊. 神东保德矿地应力特征及其对底板采动破坏控制机理研究[D]. 淮南: 安徽理工大学, 2022.

    ZHANG Jun. Study on in-situ stress characteristics and its control mechanism on mining failure of floor in Baode coal mine, Shendong mining area[D]. Huainan: Anhui University of Science and Technology, 2022.
    [38] 常闯, 李松, 汤达祯, 等. 基于测井参数的煤储层地应力计算方法研究: 以延川南区块为例[J]. 煤田地质与勘探, 2023, 51(5): 23-32.

    CHANG Chuang, LI Song, TANG Dazhen, et al. In-situ stress calculation for coal reservoirs based on log parameters: a case study of the southern Yanchuan block[J]. Coal Geology & Exploration, 2023, 51(5): 23-32.
    [39] 吴群. 延川南煤储层地应力条件及其对煤层气产能的影响[D]. 西安: 西北大学, 2012.

    WU Qun. Study on in-situ stress condition of coal reservoir and effects on CBM well production in Yanchuannan block, Ordos Basin[D]. Xi'an: Northwest University, 2012.
    [40] KING HUBBERT M, WILLIS D G. Mechanics of hydraulic fracturing[J]. Transactions of the AIME, 1957, 210(1): 153-168. doi: 10.2118/686-G
    [41] 李勇, 汤达祯, 孟尚志, 等. 鄂尔多斯盆地东缘煤储层地应力状态及其对煤层气勘探开发的影响[J]. 矿业科学学报, 2017, 2(5): 416-424.

    LI Yong, TANG Dazhen, MENG Shangzhi, et al. The in-situ stress of coal reservoirs in east margin of Ordos Basin and its influence on coalbed methane development[J]. Journal of Mining Science and Technology, 2017, 2(5): 416-424.
    [42] 张和伟, 申建, 李可心, 等. 鄂尔多斯盆地临兴西区深煤层地应力场特征及应力变化分析[J]. 地质与勘探, 2020, 56(4): 809-818.

    ZHANG Hewei, SHEN Jian, LI Kexin, et al. Characteristics of the in-situ stress field and stress change of deep coal seams in the western Linxing area, Ordos Basin[J]. Geology and Exploration, 2020, 56(4): 809-818.
    [43] 房茂军, 杜旭林, 白玉湖, 等. 多薄层致密砂岩储层大型水力压裂三维物理模拟实验[J]. 石油实验地质, 2024, 46(4): 786-798。

    FANG Maojun, DU Xulin, BAI Yuhu, et al. Three-dimensional physical simulation experiments on large-scale hydraulic fracturing in multi-thin interbedded tight sandstone reservoirs[J]. Petroleum Geology & Experiment, 2024, 46(4): 786-798
    [44] TINGAY M R P, HILLIS R R, MORLEY C K, et al. Present-day stress and neotectonics of Brunei: implications for petroleum exploration and production[J]. AAPG Bulletin, 2009, 93(1): 75-100. doi: 10.1306/08080808031
    [45] 张义楷, 周立发, 党犇, 等. 鄂尔多斯盆地中新生代构造应力场与油气聚集[J]. 石油实验地质, 2006, 28(3): 215-219. doi: 10.3969/j.issn.1001-6112.2006.03.004

    ZHANG Yikai, ZHOU Lifa, DANG Ben, et al. Relationship between the Mesozoic and Cenozoic tectonic stress fields and the hydrocarbon accumulation in the Ordos Basin[J]. Petroleum Geology & Experiment, 2006, 28(3): 215-219. doi: 10.3969/j.issn.1001-6112.2006.03.004
    [46] 王锡勇, 张庆龙, 王良书, 等. 鄂尔多斯盆地东缘中—新生代构造特征及构造应力场分析[J]. 地质通报, 2010, 29(8): 1168-1176. doi: 10.3969/j.issn.1671-2552.2010.08.009

    WANG Xiyong, ZHANG Qinglong, WANG Liangshu, et al. Structural features and tectonic stress fields of the Mesozoic and Cenozoic in the eastern margin of the Ordos Basin, China[J]. Geological Bulletin of China, 2010, 29(8): 1168-1176. doi: 10.3969/j.issn.1671-2552.2010.08.009
    [47] 张璐, 祝彦贺, 李林涛, 等. A区块断层成因机制及其对致密气成藏的影响[J]. 海洋地质前沿, 2020, 36(3): 57-64.

    ZHANG Lu, ZHU Yanhe, LI Lintao, et al. The genetic mechanism of faults and its influence on tight gas accumulation in block A, northeast Ordos Basin[J]. Marine Geology Frontiers, 2020, 36(3): 57-64.
    [48] 米立军, 朱光辉. 鄂尔多斯盆地东北缘临兴—神府致密气田成藏地质特征及勘探突破[J]. 中国石油勘探, 2021, 26(3): 53-67.

    MI Lijun, ZHU Guanghui. Geological characteristics and exploration breakthrough in Linxing-Shenfu tight gas field, northeastern Ordos Basin[J]. China Petroleum Exploration, 2021, 26(3): 53-67.
    [49] 贾维花. 离石断裂中生代活动特征及其对鄂尔多斯盆地的控制作用[D]. 青岛: 山东科技大学, 2005.

    JIA Weihua. Lishi fault activity characteristic and its control action to Ordos Basin in Mesozonic era[D]. Qingdao: Shandong University of Science and Technology, 2005.
    [50] FERRILL D A, SMART K J, CAWOOD A J, et al. The fold-thrust belt stress cycle: superposition of normal, strike-slip, and thrust faulting deformation regimes[J]. Journal of Structural Geology, 2021, 148: 104362. doi: 10.1016/j.jsg.2021.104362
    [51] WU Jiawei, WANG Qiqi, CHENG Xiang, et al. Formation of multi-stage and clustered fractures at 3.6-4.9 km in the Shizigou structure, SW Qaidam Basin[J]. Journal of Structural Geology, 2023, 169: 104845. doi: 10.1016/j.jsg.2023.104845
    [52] LAUBACH S E, MARRETT R A, OLSON J E, et al. Characteristics and origins of coal cleat: a review[J]. International Journal of Coal Geology, 1998, 35(1/4): 175-207. http://pdfs.semanticscholar.org/e53d/30e8fcf4e1b3d6cd23ec8903856afb0cb15a.pdf
    [53] 王成旺, 徐凤银, 甄怀宾, 等. 鄂尔多斯盆地东缘本溪组8#煤层方解石脉体成因[J]. 特种油气藏, 2022, 29(4): 62-68. doi: 10.3969/j.issn.1006-6535.2022.04.008

    WANG Chengwang, XU Fengyin, ZHEN Huaibin, et al. Genesis of calcite veins in 8# coal bed of Benxi Formation on eastern margin of Ordos Basin[J]. Special Oil & Gas Reservoirs, 2022, 29(4): 62-68. doi: 10.3969/j.issn.1006-6535.2022.04.008
    [54] 帅伟. 保德地区太原组裂隙特征及成因分析[D]. 徐州: 中国矿业大学, 2014.

    SHUAI Wei. Fracture characteristics and genetic analysis of Taiyuan group in Baode area[D]. Xuzhou: China University of Mining and Technology, 2014.
    [55] 翁剑桥, 曾联波, 吕文雅, 等. 断层附近地应力扰动带宽度及其影响因素[J]. 地质力学学报, 2020, 26(1): 39-47.

    WENG Jianqiao, ZENG Lianbo, LV Wenya, et al. Width of stress disturbed zone near fault and its influencing factors[J]. Journal of Geomechanics, 2020, 26(1): 39-47.
    [56] 李勇, 何建华, 曹峰, 等. 深层页岩储层现今地应力方向评价及其扰动力学机制: 以川南永川区块五峰组—龙马溪组一段为例[J/OL]. 中国地质, 2024: 1-23[2024-05-16]. http://kns.cnki.net/kcms/detail/11.1167.p.20240221.1452.011.html.

    LI Yong, HE Jianhua, CAO Feng, et al. In-situ stress orientations evaluation method of deep shale reservoir and its rotation mechanical mechanisms: a case study of the first member of Longmaxi Formation and Wufeng Formation in Yongchuan shale gas field of south Sichuan Basin[J/OL]. Geology in China, 2024: 1-23[2024- 05-16]. http://kns.cnki.net/kcms/detail/11.1167.p.20240221.1452.011.html.
    [57] 郑玲丽, 王思慧, 肖文联, 等. 四川盆地南部地区须家河组致密砂岩应力敏感性特征[J/OL]. 油气地质与采收率, 2024: 1-10[2024-11-10]. https://doi.org/10.13673/j.pgre.202407015.

    ZHENG Lingli, WANG Sihui, XIAO Wenlian, et al. Stress sensitivity characteristics of tight sandstone of Xujiahe Formation in southern part of Sichuan Basin[J]. Petroleum Geology and Recovery Efficiency, 2024: 1-10[2024-11-10]. https://doi.org/10.13673/j.pgre.202407015.
    [58] 王斌, 张景臣, 董景锋, 等. 巨厚砾岩油藏水力压裂三维诱导应力数值模拟[J]. 断块油气田, 2024, 31(5): 836-842.

    WANG Bin, ZHANG Jingchen, DONG Jingfeng, et al. Numerical simulation of three-dimensional induced stress in hydraulic fracturing of giant thick conglomerate oil reservoirs[J]. Fault-Block Oil & Gas Fields, 2024, 31(5): 836-842.
    [59] 刘晓. 不同压裂规模下煤储层缝网形态对比研究: 以延川南煤层气田为例[J]. 油气藏评价与开发, 2024, 14(3): 510-518.

    LIU Xiao. Comparison of seam network morphology in coal reservoirs under different fracturing scales: a case of Yanchuannan CBM Gas Field[J]. Reservoir Evaluation and Development, 2024, 14(3): 510-518.
    [60] 李骞, 李相方, 尹邦堂, 等. 低渗裂缝性气藏水平井参数设计[J]. 石油天然气学报, 2011, 33(8): 151-154. doi: 10.3969/j.issn.1000-9752.2011.08.035

    LI Qian, LI Xiangfang, YIN Bangtang, et al. Design of horizontal well parameter in low permeability gas reservoirs[J]. Journal of Oil and Gas Technology, 2011, 33(8): 151-154. doi: 10.3969/j.issn.1000-9752.2011.08.035
    [61] 姚红生, 陈贞龙, 郭涛, 等. 延川南深部煤层气地质工程一体化压裂增产实践[J]. 油气藏评价与开发, 2021, 11(3): 291-296.

    YAO Hongsheng, CHEN Zhenlong, GUO Tao, et al. Stimulation practice of geology-engineering integration fracturing for deep CBM in Yanchuannan Field[J]. Petroleum Reservoir Evaluation and Development, 2021, 11(3): 291-296.
    [62] 徐凤银, 王成旺, 熊先钺, 等. 深部(层)煤层气成藏模式与关键技术对策: 以鄂尔多斯盆地东缘为例[J]. 中国海上油气, 2022, 34(4): 30-42. doi: 10.11935/j.issn.1673-1506.2022.04.003

    XU Fengyin, WANG Chengwang, XIONG Xianyue, et al. Deep (layer) coalbed methane reservoir forming modes and key technical countermeasures: taking the eastern margin of Ordos Basin as an example[J]. China Offshore Oil and Gas, 2022, 34(4): 30-42. doi: 10.11935/j.issn.1673-1506.2022.04.003
    [63] 徐凤银, 聂志宏, 孙伟, 等. 鄂尔多斯盆地东缘深部煤层气高效开发理论技术体系[J]. 煤炭学报, 2024, 49(1): 528-544.

    XU Fengyin, NIE Zhihong, SUN Wei, et al. Theoretical and technological system for highly efficient development of deep coalbed methane in the eastern edge of Erdos Basin[J]. Journal of China Coal Society, 2024, 49(1): 528-544.
    [64] 杨帆, 李斌, 王昆剑, 等. 深部煤层气水平井大规模极限体积压裂技术: 以鄂尔多斯盆地东缘临兴区块为例[J]. 石油勘探与开发, 2024, 51(2): 389-398.

    YANG Fan, LI Bin, WANG Kunjian, et al. Extreme massive hydraulic fracturing in deep coalbed methane horizontal wells: a case study of the Linxing block, eastern Ordos Basin, NW China[J]. Petroleum Exploration and Development, 2024, 51(2): 389-398.
    [65] 王红岩, 段瑶瑶, 刘洪林, 等. 煤层气水平井开发的理论技术初探: 兼论煤层气和页岩气开发条件对比[J]. 煤田地质与勘探, 2024, 52(4): 47-59.

    WANG Hongyan, DUAN Yaoyao, LIU Honglin, et al. Preliminarily exploring the theories and technologies for coalbed methane production using horizontal wells: comparison of conditions for coalbed methane and shale gas exploitation[J]. Coal Geology & Exploration, 2024, 52(4): 47-59.
    [66] 吕帅锋, 王生维, 刘洪太, 等. 煤储层天然裂隙系统对水力压裂裂缝扩展形态的影响分析[J]. 煤炭学报, 2020, 45(7): 2590-2601.

    LV Shuaifeng, WANG Shengwei, LIU Hongtai, et al. Analysis of the influence of natural fracture system on hydraulic fracture propagation morphology in coal reservoir[J]. Journal of China Coal Society, 2020, 45(7): 2590-2601.
    [67] 傅雪海, 秦勇, 李贵中. 沁水盆地中—南部煤储层渗透率主控因素分析[J]. 煤田地质与勘探, 2001, 29(3): 16-19. doi: 10.3969/j.issn.1001-1986.2001.03.006

    FU Xuehai, QIN Yong, LI Guizhong. An analysis on the principal control factor of coal reservoir permeability in central and southern Qinshui Basin[J]. Coal Geology & Exploration, 2001, 29(3): 16-19. doi: 10.3969/j.issn.1001-1986.2001.03.006
    [68] 陶树, 王延斌, 汤达祯, 等. 沁水盆地南部煤层孔隙—裂隙系统及其对渗透率的贡献[J]. 高校地质学报, 2012, 18(3): 522-527.

    TAO Shu, WANG Yanbin, TANG Dazhen, et al. Pore and fracture systems and their contribution to the permeability of coal reservoirs in southern Qinshui Basin[J]. Geological Journal of China Universities, 2012, 18(3): 522-527.
    [69] MCCULLOCH C M, DEUL M, JERAN P W. Cleat in bituminous coalbeds[R]. Pittsburgh: Bureau of Mines Report of Investigation, 1974.
    [70] 施雷庭, 赵启明, 任镇宇, 等. 煤岩裂隙形态对渗流能力影响数值模拟研究[J]. 油气藏评价与开发, 2023, 13(4): 424-432.

    SHI Leiting, ZHAO Qiming, REN Zhenyu, et al. Numerical simulation study on the influence of coal rock fracture morphology on seepage capacity[J]. Petroleum Reservoir Evaluation and Development, 2023, 13(4): 424-432.
    [71] 申鹏磊, 吕帅锋, 李贵山, 等. 深部煤层气水平井水力压裂技术: 以沁水盆地长治北地区为例[J]. 煤炭学报, 2021, 46(8): 2488-2500.

    SHEN Penglei, LV Shuaifeng, LI Guishan, et al. Hydraulic fracturing technology for deep coalbed methane horizontal wells: a case study in north Changzhi area of Qinshui Basin[J]. Journal of China Coal Society, 2021, 46(8): 2488-2500.
    [72] ZHENG Peng, XIA Yucheng, YAO Tingwei, et al. Formation mechanisms of hydraulic fracture network based on fracture interaction[J]. Energy, 2022, 243: 123057. doi: 10.1016/j.energy.2021.123057
    [73] XIE Zixiao, WU Xiaoguang, LONG Tengda, et al. Visualization of hydraulic fracture interacting with pre-existing fracture[J]. Petroleum Science, 2023, 20(6): 3723-3735. doi: 10.1016/j.petsci.2023.07.014
    [74] 易良平, 杨长鑫, 杨兆中, 等. 天然裂缝带对深层页岩压裂裂缝扩展的影响规律[J]. 天然气工业, 2022, 42(10): 84-97. doi: 10.3787/j.issn.1000-0976.2022.10.008

    YI Liangping, YANG Changxin, YANG Zhaozhong, et al. Influence of natural fracture zones on the propagation of hydraulic fractures in deep shale[J]. Natural Gas Industry, 2022, 42(10): 84-97. doi: 10.3787/j.issn.1000-0976.2022.10.008
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  89
  • HTML全文浏览量:  24
  • PDF下载量:  34
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-27
  • 修回日期:  2024-11-11
  • 刊出日期:  2025-01-28

目录

    /

    返回文章
    返回