留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

鄂尔多斯盆地神府区块深部煤层气井产量主控因素及合理压裂规模优化

孙立春 刘佳 李娜 李新泽 文恒

孙立春, 刘佳, 李娜, 李新泽, 文恒. 鄂尔多斯盆地神府区块深部煤层气井产量主控因素及合理压裂规模优化[J]. 石油实验地质, 2025, 47(1): 43-53. doi: 10.11781/sysydz2025010043
引用本文: 孙立春, 刘佳, 李娜, 李新泽, 文恒. 鄂尔多斯盆地神府区块深部煤层气井产量主控因素及合理压裂规模优化[J]. 石油实验地质, 2025, 47(1): 43-53. doi: 10.11781/sysydz2025010043
SUN Lichun, LIU Jia, LI Na, LI Xinze, WEN Heng. Main controlling factors of production and reasonable fracturing scale optimization of deep coalbed methane wells in Shenfu block, Ordos Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2025, 47(1): 43-53. doi: 10.11781/sysydz2025010043
Citation: SUN Lichun, LIU Jia, LI Na, LI Xinze, WEN Heng. Main controlling factors of production and reasonable fracturing scale optimization of deep coalbed methane wells in Shenfu block, Ordos Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2025, 47(1): 43-53. doi: 10.11781/sysydz2025010043

鄂尔多斯盆地神府区块深部煤层气井产量主控因素及合理压裂规模优化

doi: 10.11781/sysydz2025010043
基金项目: 

中海石油(中国)有限公司“十四五”重大科技项目课题7“临兴神府深层煤层气赋存机理及与致密气协同开发关键技术研究” KJGG-2024-1007

详细信息
    作者简介:

    孙立春(1969—),男,博士,教授级高级工程师,从事油气田开发、煤层气开发工程等研究。E-mail: sunlch@cnooc.com.cn

    通讯作者:

    刘佳(1988—),男,博士,高级工程师,从事油气田开发工程研究。E-mail: liujia33@cnooc.com.cn

  • 中图分类号: TE132.2

Main controlling factors of production and reasonable fracturing scale optimization of deep coalbed methane wells in Shenfu block, Ordos Basin

  • 摘要: 鄂尔多斯盆地神府区块深层煤层气井产量差异大,主控因素认识不清。为进一步揭示神府区块深层煤层气井生产规律,查明气井产能关键影响因素,指导深层煤层气高效开发,基于神府区块基础地质资料、生产数据和前人研究成果,剖析了区内典型煤层气井生产动态特征,从单井对比、整体规律上认识神府区块深层煤层气井产量主控因素,其中含气量和压裂规模对产量影响较大。利用皮尔逊多元相关系数回归技术对各产能影响因素进行了定量评价,确定深层煤层气压后产能的影响因素,按相关性排序依次为:含气量>压裂砂量>施工排量>压裂液量>构造深度>厚度。明确地质条件一定时,合理的压裂规模是深部煤层气井高效开发的关键。并综合不同专业形成了“地质气藏—压裂—经济评价”多专业一体化研究方法,以经济效益为目标,利用数值模拟方法进行深层煤层气井井距和压裂规模耦合优化研究,确定神府区块最优井距为300 m、最优簇间距20 m、最优裂缝半长120 m,为神府区块深层煤层气资源高效开发提供技术支撑。

     

  • 图  1  鄂尔多斯盆地神府区块位置与地层综合柱状图据参考文献[6]修改。

    Figure  1.  Location and comprehensive stratigraphic histogram of Shenfu block, Ordos Basin

    图  2  鄂尔多斯盆地神府区块8+9号煤层厚度频数据参考文献[6]修改。

    Figure  2.  Thickness frequency of coal seams No. 8+9 in Shenfu block, Ordos Basin

    图  3  鄂尔多斯盆地神府区块8+9号煤层含气量频数据参考文献[6]修改。

    Figure  3.  Gas content frequency of coal seams No. 8+9 in Shenfu block, Ordos Basin

    图  4  鄂尔多斯盆地神府区块煤层气井产量与含气量的关系

    Figure  4.  Relationship between production and gas content of coalbed methane wells in Shenfu block, Ordos Basin

    图  5  鄂尔多斯盆地神府区块深层煤层气井厚度与产量交互关系

    Figure  5.  Interaction between thickness and production of deep coalbed methane wells in Shenfu block, Ordos Basin

    图  6  鄂尔多斯盆地神府区块产能皮尔逊相关系数热力图

    Figure  6.  Pearson correlation coefficient heatmap of production capacity in Shenfu block, Ordos Basin

    图  7  鄂尔多斯盆地神府区块SF-44井拟合结果

    Figure  7.  Fitting results for well SF-44 in Shenfu block, Ordos Basin

    图  8  鄂尔多斯盆地神府区块不同裂缝半长下累产气量和钻完井投资成本

    Figure  8.  Accumulated gas production and drilling completion investment costs under different fracture half-lengths in Shenfu block, Ordos Basin

    表  1  鄂尔多斯盆地神府区块SF-10井含气量测试结果

    Table  1.   Gas content test results of well SF-10 in Shenfu block

    样品编号 解吸样质量/g 解吸气量/ cm3 损失气量/ cm3 残余气总量/ cm3 总气含量/(cm3/g) 取样深度/m
    空气干燥基 干燥无灰基 空气干燥基 干燥无灰基
    SF-10-8+9-1 1 129 838.51 6 385.14 1 667.98 109.65 7.23 9.74 1 940.73~1 941.03
    SF-10-8+9-2 1 115 938.05 6 029.33 2 355.78 141.78 7.65 9.09 1 941.06~1 941.36
    SF-10-8+9-3 1 285 1 054.99 10 228.57 2 826.64 314.95 10.40 12.67 1 941.68~1 941.98
    SF-10-8+9-4 1 060 906.09 9 205.75 2 074.80 105.07 10.74 12.57 1 941.98~1 942.28
    SF-10-8+9-6 1 125 877.05 5 137.22 1 525.65 201.63 6.10 7.83 1 943.06~1 943.36
    SF-10-8+9-8 1 020 684.11 6 302.10 1 931.62 136.56 8.21 12.24 1 943.36~1 943.66
    SF-10-8+9-9 1 293 965.48 7 864.54 1 519.05 85.25 7.32 9.81 1 943.73~1 944.05
    SF-10-8+9-10 1 277 998.10 5 061.79 1 441.79 202.11 5.25 6.72 1 944.05~1 944.36
    SF-10-8+9-11 985 741.41 5 607.06 1 369.93 84.35 7.17 9.53 1 944.73~1 945.03
    SF-10-8+9-12 1 213 755.70 6 824.64 1 430.34 130.14 6.91 11.10 1 945.38~1 945.68
    SF-10-8+9-17 1 019 679.27 6 351.15 1 189.90 59.21 7.46 11.19 1 945.73~1 946.08
    下载: 导出CSV

    表  2  鄂尔多斯盆地神府区块SF-5井含气量测试结果

    Table  2.   Gas content test results of well SF-5 in Shenfu block, Ordos Basin

    样品编号 解吸样质量/g 解吸气量/ cm3 损失气量/ cm3 残余气总量/ cm3 总气含量/(cm3/g) 取样深度/m
    空气干燥基 干燥无灰基 空气干燥基 干燥无灰基
    SF-05-8-3 1 150 871.93 5 180.76 9 296.88 434.68 12.97 17.10 2 004.83~2 005.09
    SF-05-8-4 1 150 1 021.78 3 501.38 5 016.29 241.29 7.62 8.57 2 005.09~2 005.34
    SF-05-8-5 1 100 973.39 5 827.93 12 541.71 365.28 17.03 19.25 2 005.34~2 005.60
    下载: 导出CSV

    表  3  鄂尔多斯盆地神府区块SF-79井台生产井压裂参数及产气量

    Table  3.   Fracturing parameters and gas production of wells in platform SF-79 of Shenfu block, Ordos Basin

    井名 加液量/m3 加砂量/m3 排量/(m3/min) 产气量/(m3/d)
    SF-79-1D 3 156 300.4 15 2 500
    SF-79-2D 2 589 263.0 15 2 300
    SF-79-3D 3 786 504.0 20 4 600
    SF-79-4D 3 668 500.0 20 5 400
    下载: 导出CSV

    表  4  鄂尔多斯盆地神府区块不同裂缝参数所需压裂规模

    Table  4.   Required fracturing scale for different fracture parameters in Shenfu block, Ordos Basin

    序号 水平段长/m 半缝长/m 单簇液量/m3 簇间距/m 总液量/m3 总砂量/m3
    1 1 000 50 100 20 5 000 690
    2 1 000 100 250 20 12 500 1 740
    3 1 000 120 360 20 18 000 2 580
    4 1 000 150 610 20 30 500 4 190
    5 1 000 180 1 050 20 52 500 6 640
    6 1 000 200 1 500 20 75 000 10 490
    7 1 000 230 2 500 20 125 000 16 090
    8 1 000 50 100 15 6 667 923
    9 1 000 100 250 15 16 667 2 323
    10 1 000 120 360 15 24 000 3 440
    11 1 000 150 610 15 40 667 5 587
    12 1 000 180 1 050 15 70 000 8 853
    13 1 000 200 1 500 15 100 000 13 987
    14 1 000 230 2 500 15 166 667 21 453
    15 1 000 50 100 25 4 000 552
    16 1 000 100 250 25 10 000 1 392
    17 1 000 120 360 25 14 400 2 064
    18 1 000 150 610 25 24 400 3 352
    19 1 000 180 1 050 25 42 000 5 312
    20 1 000 200 1 500 25 60 000 8 392
    21 1 000 230 2 500 25 100 000 12 872
    22 1 000 50 100 30 3 333 460
    23 1 000 100 250 30 8 333 1 160
    24 1 000 120 360 30 12 000 1 720
    25 1 000 150 610 30 20 333 2 793
    26 1 000 180 1 050 30 35 000 4 427
    27 1 000 200 1 500 30 50 000 6 993
    28 1 000 230 2 500 30 83 333 10 727
    29 1 000 50 100 35 2 857 394
    30 1 000 100 250 35 7 143 994
    31 1 000 120 360 35 10 286 1 474
    32 1 000 150 610 35 17 429 2 390
    33 1 000 180 1 050 35 30 000 3 790
    34 1 000 200 1 500 35 42 857 5 990
    35 1 000 230 2 500 35 71 429 9 190
    下载: 导出CSV

    表  5  鄂尔多斯盆地神府区块SF-44井拟合地层参数

    Table  5.   Fitting formation parameters for well SF-44 in Shenfu block, Ordos Basin

    参数 参数值 参数 参数值
    地层厚度/m 10.8 割理渗透率/(10-3 μm2) 0.12
    孔隙度/% 5 地层压力/MPa 20.6
    裂缝半长/m 70 裂缝导流能力/(10-3 μm2·m) 250
    兰氏压力/MPa 2.8 兰氏体积/(m3/t) 13.0
    含气量/(m3/t) 10.9 临界解吸压力/MPa 19.6
    下载: 导出CSV

    表  6  鄂尔多斯盆地神府区块不同参数下单井累产气量

    Table  6.   Accumulated gas production from individual wells with different parameters in Shenfu block, Ordos Basin

    序号 簇间距/ m 半缝长/ m 井距/m 控制储量/ (104 m3) 累产气/ (104 m3)
    1 15 100 250 8 375 4 889
    2 20 100 250 8 375 4 694
    3 25 100 250 8 375 4 474
    4 30 100 250 8 375 4 245
    5 35 100 250 8 375 4 028
    6 15 120 250 8 375 4 921
    7 20 120 250 8 375 4 725
    8 25 120 250 8 375 4 504
    9 30 120 250 8 375 4 275
    10 35 120 250 8 375 4 063
    ... ... ... ... ... ...
    下载: 导出CSV

    表  7  鄂尔多斯盆地神府区块不同井距下最优压裂规模评价结果

    Table  7.   Evaluation results of optimal fracturing scale at different well spacings in Shenfu block, Ordos Basin

    井距/m 最优簇间距/m 最优半缝长/m NPV 采出程度/% 总液量/ m3 总砂量/ m3
    250 20 100 0.16 46 12 500 1 740
    300 20 120 0.19 43 18 000 2 580
    350 25 150 0.19 35 24 400 3 350
    400 25 180 0.18 33 42 400 5 842
    450 25 200 0.17 29 64 800 9 120
    下载: 导出CSV

    表  8  鄂尔多斯盆地神府区块SF4-12井组压裂参数和生产效果

    Table  8.   Fracturing parameters and production performance of well group SF4-12 in Shenfu block, Ordos Basin

    井名 排采时间 总液量/m3 总砂量/m3 水平段长/m 峰值产气量/(m3/d)
    SF4-12-1H 2023-11-27至今 19 393 2 472 1 008 14 192
    SF4-12-2H 2023-11-27至今 37 025 4 842 1 025 18 819
    SF4-12-3H 2023-11-27至今 19 122 2 523 1 065 15 024
    SF4-12-4H 2023-11-27至今 19 280 2 467 1 036 17 905
    SF4-12-5H 2023-11-27至今 13 455 1 648 1 060 11 203
    SF4-12-6H 2023-11-27至今 21 905 2 468 1 034 16 985
    下载: 导出CSV
  • [1] 张懿, 朱光辉, 郑求根, 等. 中国煤层气资源分布特征及勘探研究建议[J]. 非常规油气, 2022, 9(4): 1-8.

    ZHANG Yi, ZHU Guanghui, ZHENG Qiugen, et al. Distribution characteristics of coalbed methane resources in China and recommendations for exploration research[J]. Unconventional Oil & Gas, 2022, 9(4): 1-8.
    [2] 秦勇. 中国深部煤层气地质研究进展[J]. 石油学报, 2023, 44(11): 1791-1811. doi: 10.7623/syxb202311004

    QIN Yong. Progress on geological research of deep coalbed methane in China[J]. Acta Petrolei Sinica, 2023, 44(11): 1791-1811. doi: 10.7623/syxb202311004
    [3] 徐长贵, 朱光辉, 季洪泉, 等. 中国海油陆上天然气勘探进展及增储发展战略[J]. 中国石油勘探, 2024, 29(1): 32-46.

    XU Changgui, ZHU Guanghui, JI Hongquan, et al. Exploration progress and reserve increase strategy of onshore natural gas of CNOOC[J]. China Petroleum Exploration, 2024, 29(1): 32-46.
    [4] 程建, 周小进, 刘超英, 等. 中西部大盆地重点勘探领域战略选区研究[J]. 石油实验地质, 2023, 45(2): 229-237. doi: 10.11781/sysydz202302229

    CHENG Jian, ZHOU Xiaojin, LIU Chaoying, et al. Strategic area selection and key exploration fields in central and western large basins[J]. Petroleum Geology & Experiment, 2023, 45(2): 229-237. doi: 10.11781/sysydz202302229
    [5] 戴小河, 雷肖霄. 我国发现千亿方深煤层气田, 储量或超1100亿立方米[N]. 新华每日电讯, 2023-10-24(003).

    DAI Xiaohe, LEI Xiaoxiao. China has discovered a 100 billion cubic meter deep coalbed methane field with reserves potentially exceeding 110 billion cubic meters[N]. Xinhua daily telegraph, 2023-10-24(003).
    [6] 朱光辉, 季洪泉, 米洪刚, 等. 神府深部煤层气大气田的发现与启示[J]. 煤田地质与勘探, 2024, 52(8): 12-21.

    ZHU Guanghui, JI Hongquan, MI Honggang, et al. Discovery of a large gas field of deep coalbed methane in the Shenfu block and its implications[J]. Coal Geology & Exploration, 2024, 52(8): 12-21.
    [7] 徐长贵, 季洪泉, 王存武, 等. 鄂尔多斯盆地东缘临兴—神府区块深部煤层气富集规律与勘探对策[J]. 煤田地质与勘探, 2024, 52(8): 1-11.

    XU Changgui, JI Hongquan, WANG Cunwu, et al. Enrichment patterns and exploration countermeasures of deep coalbed methane in the Linxing-Shenfu block on the eastern margin of the Ordos Basin[J]. Coal Geology & Exploration, 2024, 52(8): 1-11.
    [8] 刘建忠, 朱光辉, 刘彦成, 等. 鄂尔多斯盆地东缘深部煤层气勘探突破及未来面临的挑战与对策: 以临兴—神府区块为例[J]. 石油学报, 2023, 44(11): 1827-1839. doi: 10.7623/syxb202311006

    LIU Jianzhong, ZHU Guanghui, LIU Yancheng, et al. Breakthrough, future challenges and countermeasures of deep coalbed methane in the eastern margin of Ordos Basin: a case study of Linxing-Shenfu block[J]. Acta Petrolei Sinica, 2023, 44(11): 1827-1839. doi: 10.7623/syxb202311006
    [9] 郭晓娇, 王雷, 姚仙洲, 等. 深部煤岩地质特征及煤层气富集主控地质因素: 以鄂尔多斯盆地东部M区为例[J/OL]. 石油实验地质, 1-11[2024-09-01]. http://kns.cnki.net/kcms/detail/32.1151.TE.20240823.1625.002.html.

    GUO Xiaojiao, WANG Lei, YAO Xianzhou, et al. Geological characteristics of deep coal rock and main geological factors controlling coalbed methane enrichment: a case study of the M area in the eastern Ordos Basin[J]. Petroleum Geology & Experiment, 1-11[2024-09-01]. http://kns.cnki.net/kcms/detail/32.1151.TE.20240823.1625.002.html.
    [10] 杨帆, 李斌, 王昆剑, 等. 深部煤层气水平井大规模极限体积压裂技术: 以鄂尔多斯盆地东缘临兴区块为例[J]. 石油勘探与开发, 2024, 51(2): 389-398.

    YANG Fan, LI Bin, WANG Kunjian, et al. Extreme massive hydraulic fracturing in deep coalbed methane horizontal wells: a case study of the Linxing block, eastern Ordos Basin, NW China[J]. Petroleum Exploration and Development, 2024, 51(2): 389-398.
    [11] 安琦, 杨帆, 杨睿月, 等. 鄂尔多斯盆地神府区块深部煤层气体积压裂实践与认识[J]. 煤炭学报, 2024, 49(5): 2376-2393.

    AN Qi, YANG Fan, YANG Ruiyue, et al. Practice and understanding of deep coalbed methane massive hydraulic fracturing in Shenfu block, Ordos Basin[J]. Journal of China Coal Society, 2024, 49(5): 2376-2393.
    [12] 徐凤银, 聂志宏, 孙伟, 等. 鄂尔多斯盆地东缘深部煤层气高效开发理论技术体系[J]. 煤炭学报, 2024, 49(1): 528-544.

    XU Fengyin, NIE Zhihong, SUN Wei, et al. Theoretical and technological system for highly efficient development of deep coalbed methane in the eastern edge of Erdos Basin[J]. Journal of China Coal Society, 2024, 49(1): 528-544.
    [13] 赵志刚, 朱学申, 王存武, 等. 基于资源性与可压性的深部煤层气"甜点"预测[J]. 煤田地质与勘探, 2024, 52(8): 22-31.

    ZHAO Zhigang, ZHU Xueshen, WANG Cunwu, et al. Predicting the "sweet spot" of deep coalbed methane based on resource conditions and fracability[J]. Coal Geology & Exploration, 2024, 52(8): 22-31.
    [14] 赵欣, 段士川, 王梓良, 等. 煤层气井位精细部署的地质工程一体化影响因素分析与科学优化[J]. 煤炭科学技术, 2023, 51(12): 42-51. doi: 10.12438/cst.2023-1001

    ZHAO Xin, DUANG Shichuan, WANG Ziliang, et al. Analysis and scientific optimization of geological engineering integration influencing factors for precise deployment of coalbed methane well locations[J]. Coal Science and Technology, 2023, 51(12): 42-51. doi: 10.12438/cst.2023-1001
    [15] 王成旺, 刘新伟, 李曙光, 等. 大宁—吉县区块深部煤层气富集主控因素分析及地质工程甜点区评价[J]. 西安石油大学学报(自然科学版), 2024, 39(4): 1-9.

    WANG Chengwang, LIU Xinwei, LI Shuguang, et al. Analysis of main controlling factors of deep coalbed methane enrichment and evaluation of geological and engineering sweet areas in Daning-Jixian block[J]. Journal of Xi'an Shiyou University (Natural Science Edition), 2024, 39(4): 1-9.
    [16] 诸立凯. 基于深度学习的煤层气产能预测及排采制度优化研究[D]. 北京: 中国石油大学(北京), 2022.

    ZHU Likai. Research on coal-bed methane productivity prediction and drainage system optimization based on deep learning[D]. Beijing: China University of Petroleum (Beijing), 2022.
    [17] 闫涛滔, 邓志宇, 吴鹏, 等. 鄂尔多斯盆地东缘临兴东区杨家坡区块煤层气井产能特征及主控因素[J]. 现代地质, 2024, 38(6): 1545-1556.

    YAN Taotao, DENG Zhiyu, WU Peng, et al. Characteristics and main control factors of coalbed methane well productivity in Yangjiapo block of eastern Linxing District, Eastern Ordos Basin[J]. Geoscience, 2024, 38(6): 1545-1556.
    [18] 郭广山, 王海侨, 刘松楠, 等. 沁水盆地古交区块煤层气水平井产能影响因素分析[J]. 中国海上油气, 2024, 36(2): 110-118.

    GUO Guangshan, WANG Haiqiao, LIU Songnan, et al. Analysis of factors influencing the productivity of horizontal wells in Gujiao coalbed methane block of Qinshui Basin[J]. China Offshore Oil and Gas, 2024, 36(2): 110-118.
    [19] 吕玉民, 柳迎红, 陈桂华, 等. 沁水盆地南部煤层气水平井产能影响因素分析[J]. 煤炭科学技术, 2020, 48(10): 225-232.

    LV Yumin, LIU Yinghong, CHEN Guihua, et al. Analysis of factors affecting productivity of CBM in horizontal wells in southern Qinshui Basin[J]. Coal Science and Technology, 2020, 48(10): 225-232.
    [20] 李倩, 李童, 蔡益栋, 等. 煤层气储层水力裂缝扩展特征与控因研究进展[J]. 煤炭学报, 2023, 48(12): 4443-4460.

    LI Qian, LI Tong, CAI Yidong, et al. Research progress on hydraulic fracture characteristics and controlling factors of coalbed methane reservoirs[J]. Journal of China Coal Society, 2023, 48(12): 4443-4460.
    [21] 孟庆春, 左银卿, 魏强, 等. 沁水煤层气田樊庄区块产能影响因素分析[J]. 中国煤层气, 2010, 7(6): 10-14. doi: 10.3969/j.issn.1672-3074.2010.06.003

    MENG Qingchun ZUO Yinqing, WEI Qiang, et al. Analysis of factors influencing production capacity of Fanzhuang block in Qingshui CBM field[J]. China Coalbed Methane, 2010, 7(6): 10-14. doi: 10.3969/j.issn.1672-3074.2010.06.003
    [22] 倪小明, 苏现波, 王庆伟, 等. 恩村井田煤层气垂直井产能地质主控因素分析[J]. 煤矿安全, 2009, 40(7): 79-82.

    NI Xiaoming, SU Xianbo, WANG Qingwen, et al. Analysis of geological main control factors for coalbed methane vertical well productivity in Encun Mining Field[J]. Safety in Coal Mines, 2009, 40(7): 79-82.
    [23] 潘建旭, 王延斌, 倪小明, 等. 资源条件与煤层气垂直井产能关系: 以沁水盆地南部樊庄与潘庄区块为例[J]. 煤田地质与勘探, 2011, 39(4): 24-27. doi: 10.3969/j.issn.1001-1986.2011.04.007

    PAN Jianxu, WANG Yanbin, NI Xiaoming, et al. The relationship between resource conditions and CBM productivity of vertical wells: case of Fanzhuang and Panzhuang blocks in southern Qinshui Basin[J]. Coal Geology & Exploration, 2011, 39(4): 24-27. doi: 10.3969/j.issn.1001-1986.2011.04.007
    [24] 吕玉民, 汤达祯, 许浩, 等. 沁南盆地樊庄煤层气田早期生产特征及主控因素[J]. 煤炭学报, 2012, 37(S2): 401-406.

    LV Yumin, TANG Dazhen, XU Hao, et al. Initial production characteristic and its controls in Fanzhuang coalbed methane field, southern Qinshui Basin[J]. Journal of China Coal Society, 2012, 37(S2): 401-406.
    [25] 彭龙仕, 乔兰, 龚敏, 等. 煤层气井多层合采产能影响因素[J]. 煤炭学报, 2014, 39(10): 2060-2067.

    PENG Longshi, QIAO Lan, GONG Min, et al. Factors affecting the production performance of coalbed methane wells with multiple- zone[J]. Journal of China Coal Society, 2014, 39(10): 2060-2067.
    [26] 林文姬. 韩城地区煤层气藏开发动态及产能响应[D]. 北京: 中国地质大学(北京), 2014.

    LIN Wenji. Development dynamics and productivity responses of coalbed methane reservoirs in Hancheng area[D]. Beijing: China University of Geosciences (Beijing), 2014.
    [27] 曹海霄. 沁水盆地樊庄区块煤层气藏产能评价[D]. 青岛: 中国石油大学(华东), 2017.

    CAO Haixiao. Evaluation of productivity for CBM reservoir in Fanzhuang block, Qinshui Basin[D]. Qingdao: China University of Petroleum (East China), 2017.
    [28] 孔祥伟, 谢昕, 王存武, 等. 基于灰色关联方法的深层煤层气井压后产能影响地质工程因素评价[J]. 油气藏评价与开发, 2023, 13(4): 433-440.

    KONG Xiangwei, XIE Xin, WANG Cunwu, et al. Evaluation of geological engineering factors for productivity of deep CBM well after fracturing based on grey correlation method[J]. Petroleum Reservoir Evaluation and Development, 2023, 13(4): 433-440.
    [29] 李亚林. 基于机器学习方法研究煤层气单井产量主控因素及产量预测[D]. 北京: 中国石油大学(北京), 2017.

    LI Yalin. Study on main control factors and production prediction of single well production of coalbed methane based on machine learning[D]. Beijing: China University of Petroleum (Beijing), 2017.
    [30] 闵超, 代博仁, 石咏衡, 等. 基于聚类匹配的煤层气压裂效果主控因素识别[J]. 特种油气藏, 2022, 29(4): 135-141. doi: 10.3969/j.issn.1006-6535.2022.04.019

    MIN Chao, DAI Boren, SHI Yongheng, et al. Identification of main controlling factors of coalbed methane fracturing effect based on cluster matching[J]. Special Oil & Gas Reservoirs, 2022, 29(4): 135-141. doi: 10.3969/j.issn.1006-6535.2022.04.019
  • 加载中
图(8) / 表(8)
计量
  • 文章访问数:  87
  • HTML全文浏览量:  32
  • PDF下载量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-10-08
  • 修回日期:  2024-11-26
  • 刊出日期:  2025-01-28

目录

    /

    返回文章
    返回