Storage and permeation space development characteristics and water production capacity evaluation of deep coal reservoirs in Linxing-Shenfu area of Ordos Basin
-
摘要: 鄂尔多斯盆地临兴—神府地区是我国深部煤层气开发重点区块之一,实际生产中不同区域煤层气井产水量差异显著,影响了深部煤层气的高效开发。通过高压压汞、低温CO2吸附、低温N2吸附、CT扫描等实验,对临兴—神府地区8#+9#煤层的煤岩样品进行了全尺度的联测表征,查明了研究区储渗空间发育特征。通过赋水模拟实验模拟计算了煤岩储水能力,通过数值模拟预测深部储层产水量,明确了研究区深部煤储层的产水能力,并进一步结合煤层气井产水数据评价了煤层水的来源。研究表明,临兴—神府地区深部煤储层整体上微孔和宏孔及裂隙比较发育,介孔发育相对较差。随变质程度升高,总孔体积先减后增,深部煤岩原始含水性急剧下降,储水能力先减后增,光亮煤在储水能力上有较大优势。研究区低镜质体反射率(Ro)煤岩日均产水量预测为12.81~26.01 m3,中Ro煤岩为1.82~7.22 m3,高Ro煤岩为1.90~8.22 m3。煤层气井实际日产水量超出该范围即为受外源水补给影响,低于该范围即为煤层自产。深部煤储层原始含水性较差,且储水能力有限,尤其在高Ro段,即使储层在完全饱和水的条件下,其产水量也应保持较低水平,持续高产水必定伴随大量的外源输入。Abstract: The Linxing-Shenfu area in the Ordos Basin is one of the key areas for deep coalbed methane (CBM) development in China. However, significant variations in water production among CBM wells in different regions have hindered the efficient development of deep CBM. This study conducted multi-scale characterizations of coal samples from the 8#+9# coal seams in the Linxing-Shenfu area using high-pressure mercury intrusion porosimetry, low-temperature CO2 adsorption, low-temperature N2 adsorption, and CT scanning experiments. These methods revealed the development characteristics of the storage and permeability space in the study area. Water saturation simulation experiments were conducted to estimate the water storage capacity of coal samples, and numerical simulations were used to predict the water production capacity of deep reservoirs, providing a clear understanding of the water production capacity of deep coal reservoirs in the study area. Combined with actual water production data from CBM wells, the sources of coal seam water were further evaluated. The results show that deep coal reservoirs in the Linxing-Shenfu area exhibit well-developed micropores, macropores, and fractures, with relatively underdeveloped mesopores. As coal rank increases, the total pore volume first decreases and then increases. The original water content of deep coal samples declines sharply, while the water storage capacity first decreases and then increases, with bright coal showing a greater advantage in water storage capacity. The predicted daily water production ranges for low-vitrinite-reflectance (Ro) coal reservoirs in the study area are 12.81 to 26.01 m3, for medium-Ro coal reservoirs 1.82 to 7.22 m3, and for high-Ro coal reservoirs 1.90 to 8.22 m3. Actual water production exceeding these ranges indicates the influence from external water input, while production below these ranges indicates self-sourced water from the coal seams. Deep coal reservoirs have poor original water content and limited water storage capacity, especially in high-Ro coal reservoirs. Even when these reservoirs are fully saturated, water production remains low. Sustained high water output must involve substantial external water input.
-
表 1 鄂尔多斯盆地临兴—神府地区8#+9#煤层煤岩样品基本信息
Table 1. Basic information of coal rock samples from 8#+9# coal seams in Linxing-Shenfu area, Ordos Basin
样品编号 岩性 平均镜质体反射率/% 工业组分/% 显微组分/% 水分 灰分 挥发分 固定碳 壳质组 镜质组 惰质组 L-GL 光亮煤 0.77 1.32 8.48 23.13 67.07 3.1 95.4 1.5 L-AD 暗淡煤 0.77 1.28 31.89 28.59 38.24 5.3 38.0 56.7 M-GL 光亮煤 1.26 0.39 2.59 22.20 74.82 98.6 1.4 M-AD 暗淡煤 1.26 0.37 37.68 14.67 47.28 30.8 69.2 H-GL 光亮煤 2.10 0.37 4.16 9.63 85.84 93.7 6.3 H-AD 暗淡煤 2.10 0.34 38.19 10.57 50.90 46.4 53.6 表 2 鄂尔多斯盆地临兴—神府地区8#+9#煤层煤岩样品压汞法和气体吸附法联测孔隙结构信息
Table 2. Pore structure information of coal rock samples from 8#+9# coal seams in Linxing-Shenfu area, Ordos Basin, jointly measured using mercury intrusion porosimetry and gas adsorption analysis
样品编号 CO2吸附法 N2吸附法 压汞 DR比表面积/ (m2/g) DA总孔容/ (cm3/g) 平均孔径/ nm BET比表面积/ (m2/g) BJH总孔容/ (cm3/g) 平均孔径/ nm 注汞体积/ (mL/g) 平均孔径/ nm L-GL 67.095 0.020 72 1.262 50 1.334 9 0.005 45 14.350 0.43 264.69 L-AD 56.087 0.017 35 1.172 50 2.802 0 0.010 56 13.870 0.22 113.78 M-GL 64.449 0.009 88 1.044 40 0.915 4 0.005 68 23.570 0.08 57.62 M-AD 16.608 0.002 02 0.992 30 2.429 0 0.011 20 19.160 0.05 97.32 H-GL 113.941 0.027 57 1.117 70 0.490 0 0.002 00 3.981 0.11 71.39 H-AD 55.690 0.014 54 1.154 10 1.437 0 0.003 00 3.902 0.08 125.39 表 3 鄂尔多斯盆地临兴—神府地区8#+9#煤层产水量计算参数
Table 3. Parameters for water production calculation of 8#+9# coal seams in Linxing-Shenfu area, Ordos Basin
Ro/% 煤岩类型 孔隙度/% 总压缩系数/MPa-1 地层原始渗透率/10-3 μm2 0.60 光亮煤 28.8 2.282 06 0.96 暗淡煤 12.0 3.249 75 0.19 1.00 光亮煤 15.6 2.003 54 0.82 暗淡煤 9.5 2.865 94 0.17 1.35 光亮煤 2.1 1.141 03 0.56 暗淡煤 0.8 1.522 97 0.13 1.80 光亮煤 2.5 0.283 54 0.68 暗淡煤 0.9 0.564 27 0.15 2.10 光亮煤 3.5 0.228 21 0.72 暗淡煤 0.9 0.315 18 0.16 表 4 鄂尔多斯盆地临兴—神府地区8#+9#煤层理论日均产水量预测结果
Table 4. Predicted theoretical daily average water production of 8#+9# coal seams in Linxing-Shenfu area, Ordos Basin
Ro/% 煤岩类型 理论平均日产水量(生产压差为11 MPa)/m3 0.60 光亮煤 26.007 3 暗淡煤 12.809 8 1.00 光亮煤 13.439 2 暗淡煤 5.337 4 1.35 光亮煤 7.224 4 暗淡煤 1.815 2 1.80 光亮煤 8.172 3 暗淡煤 1.892 9 2.10 光亮煤 8.215 7 暗淡煤 1.901 9 -
[1] 庚勐, 陈浩, 陈艳鹏, 等. 第4轮全国煤层气资源评价方法及结果[J]. 煤炭科学技术, 2018, 46(6): 64-68.GENG Meng, CHEN Hao, CHEN Yanpeng, et al. Methods and results of the fourth round national CBM resources evaluation[J]. Coal Science and Technology, 2018, 46(6): 64-68. [2] 张道勇, 朱杰, 赵先良, 等. 全国煤层气资源动态评价与可利用性分析[J]. 煤炭学报, 2018, 43(6): 1598-1604.ZHANG Daoyong, ZHU Jie, ZHAO Xianliang, et al. Dynamic assessment of coalbed methane resources and availability in China[J]. Journal of China Coal Society, 2018, 43(6): 1598-1604. [3] 徐凤银, 王成旺, 熊先钺, 等. 深部(层)煤层气成藏模式与关键技术对策: 以鄂尔多斯盆地东缘为例[J]. 中国海上油气, 2022, 34(4): 30-42. doi: 10.11935/j.issn.1673-1506.2022.04.003XU Fengyin, WANG Chengwang, XIONG Xianyue, et al. Deep (layer) coalbed methane reservoir forming modes and key technical countermeasures: taking the eastern margin of Ordos Basin as an example[J]. China Offshore Oil and Gas, 2022, 34(4): 30-42. doi: 10.11935/j.issn.1673-1506.2022.04.003 [4] 朱光辉, 李本亮, 李忠城, 等. 鄂尔多斯盆地东缘非常规天然气勘探实践及发展方向: 以临兴—神府气田为例[J]. 中国海上油气, 2022, 34(4): 16-29. doi: 10.11935/j.issn.1673-1506.2022.04.002ZHU Guanghui, LI Benliang, LI Zhongcheng, et al. Practices and development trend of unconventional natural gas exploration in eastern margin of Ordos Basin: taking Linxing-Shenfu gas field as an example[J]. China Offshore Oil and Gas, 2022, 34(4): 16-29. doi: 10.11935/j.issn.1673-1506.2022.04.002 [5] 关晓东, 郭磊. 深层—超深层油气成藏研究新进展及展望[J]. 石油实验地质, 2023, 45(2): 203-209. doi: 10.11781/sysydz202302203GUAN Xiaodong, GUO Lei. New progress and prospect of oil and gas accumulation research in deep to ultra-deep strata[J]. Petroleum Geology & Experiment, 2023, 45(2): 203-209. doi: 10.11781/sysydz202302203 [6] 许浩, 汤达祯, 陶树, 等. 深、浅部煤层气地质条件差异性及其形成机制[J]. 煤田地质与勘探, 2024, 52(2): 33-39.XU Hao, TANG Dazhen, TAO Shu, et al. Differences in geological conditions of deep and shallow coalbed methane and their formation mechanisms[J]. Coal Geology & Exploration, 2024, 52(2): 33-39. [7] 陈贞龙. 延川南深部煤层气田地质单元划分及开发对策[J]. 煤田地质与勘探, 2021, 49(2): 13-20. doi: 10.3969/j.issn.1001-1986.2021.02.002CHEN Zhenlong. Geological unit division and development countermeasures of deep coalbed methane in southern Yanchuan block[J]. Coal Geology & Exploration, 2021, 49(2): 13-20. doi: 10.3969/j.issn.1001-1986.2021.02.002 [8] 陈文文, 杨延辉, 王生维, 等. 高煤阶煤层气藏内水赋存特征与运移规律研究[J]. 煤炭科学技术, 2016, 44(S1): 154-159.CHEN Wenwen, YANG Yanhui, WANG Shengwei, et al. Study on water occurrence features and migration rules in high rank coalbed methane reservoir[J]. Coal Science and Technology, 2016, 44(S1): 154-159. [9] SUN X, YI J, LI J. Characteristics of water occurrence in coalbed methane reservoir[J]. Unconventional Resources, 2023, 3, 30-36. doi: 10.1016/j.uncres.2022.11.003 [10] 王凯峰, 唐书恒, 张松航, 等. 构造条件和水力压裂控制下的煤层气井异常高产水成因探讨[J]. 煤炭学报, 2021, 46(S2): 849-861.WANG Kaifeng, TANG Shuheng, ZHANG Songhang, et al. Discussion on the causes of abnormally high water production of coalbed methane wells under the control of structural conditions and hydraulic fracturing[J]. Journal of China Coal Society, 2021, 46(S2): 849-861. [11] 李可心. 临兴西深部煤层气储层特征及气水产出机理[D]. 徐州: 中国矿业大学, 2020.LI Kexin. Characteristic of deep coalbed methane reservoirs and mechanism of gas-water production in western Linxing area[D]. Xuzhou: China University of Mining & Technology, 2020. [12] 任海鹰, 温书鹏, 侯建军, 等. 基于低场核磁共振技术的煤储层孔裂隙分形模型适用性分析[J]. 特种油气藏, 2024, 31(5): 85-94.REN Haiying, WEN Shupeng, HOU Jianjun, et al. Applicability analysis of fractal model with poricidal fracture in coal bed based on low-field nuclear magnetic resonance technology[J]. Special Oil & Gas Reservoirs, 2024, 31(5): 85-94. [13] 朱文涛, 李小刚, 任勇, 等. 基于CT扫描的煤岩孔隙结构全孔径表征[J]. 特种油气藏, 2024, 31(4): 71-80.ZHU Wentao, LI Xiaogang, REN Yong, et al. Full pore size characterization of coal pore structure based on CT scanning[J]. Special Oil & Gas Reservoirs, 2024, 31(4): 71-80. [14] 吴见, 孙强, 石雪峰, 等. 深部煤层孔隙结构与流体差异赋存特征研究[J]. 煤田地质与勘探, 2024, 52(8): 89-100.WU Jian, SUN Qiang, SHI Xuefeng, et al. Pore structure and differential fluid occurrence of deep coal seams[J]. Coal Geology & Exploration, 2024, 52(8): 89-100. [15] 邱文慈, 桑树勋, 郭志军, 等. 贵州六盘水煤田构造煤储层特征与煤层气勘探开发方向[J]. 油气藏评价与开发, 2024, 14(6): 959-966.QIU Wenci, SANG Shuxun, GUO Zhijun, et al. Characteristics of stratified coal reservoirs in Liupanshui coalfield of Guizhou Province and exploration and development direction of coalbed methane[J]. Petroleum Reservoir Evaluation and Development, 2024, 14(6): 959-966. [16] XU Lifu, LI Yong, SUN Xiaoguang, et al. Geological controls on gas content in tidal flats-lagoonal and deltaic shales in the northeastern Ordos Basin[J]. Geoenergy Science and Engineering, 2023, 221: 111291. doi: 10.1016/j.petrol.2022.111291 [17] 高丽军, 逄建东, 谢英刚, 等. 临兴区块深部煤层气潜在可采地质模式分析[J]. 煤炭科学技术, 2019, 47(9): 89-96.GAO Lijun, PANG Jiandong, XIE Yinggang, et al. Analysis on potential geological mining model of deep coalbed methane in Linxing block[J]. Coal Science and Technology, 2019, 47(9): 89-96. [18] 米洪刚, 吴见, 彭文春, 等. 神府区块深部煤储层力学特性及裂缝扩展机制[J]. 煤田地质与勘探, 2024, 52(8): 32-43.MI Honggang, WU Jian, PENG Wenchun, et al. Mechanical characteristics and fracture propagation mechanism of deep coal reservoirs in the Shenfu block[J]. Coal Geology & Exploration, 2024, 52(8): 32-43. [19] 李斌, 杨帆, 张红杰, 等. 神府区块深部煤层气高效开发技术研究[J]. 煤田地质与勘探, 2024, 52(8): 57-68.LI Bin, YANG Fan, ZHANG Hongjie, et al. Technology for efficient production of deep coalbed methane in the Shenfu block[J]. Coal Geology & Exploration, 2024, 52(8): 57-68. [20] 李贵红, 张泓. 鄂尔多斯盆地东缘煤层气藏演化及其差异分析[J]. 中国煤层气, 2020, 17(3): 3-8.LI Guihong, ZHANG Hong. Evolution History of coalbed methane reservoir and its difference in eastern Ordos Basin[J]. China Coalbed Methane, 2020, 17(3): 3-8. [21] ROUQUEROL J, AVNIR D, FAIRBRIDGE C W, et al. Recommendations for the characterization of porous solids[J]. Pure & Applied Chemistry, 1994, 66(8): 1739-1758. http://ci.nii.ac.jp/naid/80007770305 [22] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 煤的镜质体反射率显微镜测定方法: GB/T 6948—2008[S]. 北京: 中国标准出版社, 2009.General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, National Standardization Administration. Method of determining microscopically the reflectance of vitrinite in coal: GB/T 6948-2008[S]. Beijing: China Standard Press, 2009. [23] 中国煤炭工业协会. 煤的工业分析方法: GB/T 212—2008[S]. 北京: 中国标准出版社, 2008.China National Coal Association. Proximate analysis of coal: GB/T 212-2008[S]. Beijing: China Standard Press, 2008. [24] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 压汞法和气体吸附法测定固体材料孔径分布和孔隙度第3部分: 气体吸附法分析微孔: GB/T 21650.3—2011[S]. 北京: 中国标准出版社, 2012.General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, National Standardization Administration. Pore size distribution and porosity of solid materials by mercury porosimetry and gas adsorption—Part 3: Analysis of micropores by gas adsorption: GB/T 21650.3-2011[S]. Beijing: China Standard Press, 2012. [25] BOYD P G, CHIDAMBARAM A, GARCÍA-DÍEZ E, et al. Data-driven design of metal-organic frameworks for wet flue gas CO2 capture[J]. Nature, 2019, 576(7786): 253-256. doi: 10.1038/s41586-019-1798-7 [26] 王琪, 朱铮真, 李耀明. 多孔物质的孔隙结构和吸附性质的研究[J]. 北京化工学院学报(自然科学版), 1984(1): 88-97.WANG Qi, ZHU Zhengzhen, LI Yaoming. Study on pore structure and adsorptive properties of porous materials[J]. Journal of Beijing University of Chemical Technology (Natural Science Edition), 1984(1): 88-97. [27] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 气体吸附BET法测定固态物质比表面积: GB/T 19587—2017[S]. 北京: 中国标准出版社, 2017.General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, National Standardization Administration. Determination of the specific surface area of solids by gas adsorption using the BET method: GB/T 19587- 2017[S]. Beijing: China Standard Press, 2017. [28] BRUNAUER S, EMMETT P H, TELLER E. Adsorption of gases in multimolecular layers[J]. Journal of the American Chemical Society, 1938, 60(2): 309-319. doi: 10.1021/ja01269a023 [29] BARRETT E P, JOYNER L G, HALENDA P P. The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms[J]. Journal of the American Chemical Society, 1951, 73(1): 373-380. doi: 10.1021/ja01145a126 [30] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 岩石毛管压力曲线的测定: GB/T 29171—2012[S]. 北京: 中国标准出版社, 2013.General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, National Standardization Administration. Rock capillary pressure measurement: GB/T 29171-2012[S]. Beijing: China Standard Press, 2013. [31] 杨起, 李思田, 陈钟惠, 等. 煤田地质学[M]. 北京: 地质出版社, 1979.YANG Qi, LI Sitian, CHEN Zhonghui, et al. Coal geology[M]. Beijing: Geology Press, Beijing, 1979. [32] 倪小明, 苏现波, 张小东. 煤层气开发地质学[M]. 北京: 化学工业出版社, 2010.NI Xiaoming, SU Xianbo, ZHANG Xiaodong. Coal bed methane development geology[M]. Beijing: Chemical Industry Press, 2010. [33] 谢诗章, 许浩, 汤达祯, 等. 煤层气储层产水量的分类和成因分析[J]. 煤田地质与勘探, 2016, 44(1): 47-50.XIE Shizhang, XU Hao, TANG Dazhen, et al. Analysis of classification and causes of water production in CBM reservoir[J]. Coal Geology & Exploration, 2016, 44(1): 47-50. [34] 陈耀良. 计算压降漏斗边缘半径的方法[J]. 油气井测试, 1992, 1(3): 21-25.CHEN Yaoliang. Method for calculating edge radius of pressure drop funnel[J]. Well Testing, 1992, 1(3): 21-25. -