留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

渝东南南川地区龙潭组煤储层可压性特征及改造效果分析

刘尽贤 郭涛 周亚彤 李东阳 金晓波

刘尽贤, 郭涛, 周亚彤, 李东阳, 金晓波. 渝东南南川地区龙潭组煤储层可压性特征及改造效果分析[J]. 石油实验地质, 2025, 47(1): 77-88. doi: 10.11781/sysydz2025010077
引用本文: 刘尽贤, 郭涛, 周亚彤, 李东阳, 金晓波. 渝东南南川地区龙潭组煤储层可压性特征及改造效果分析[J]. 石油实验地质, 2025, 47(1): 77-88. doi: 10.11781/sysydz2025010077
LIU Jinxian, GUO Tao, ZHOU Yatong, LI Dongyang, JIN Xiaobo. Compressibility characteristics and modification effect of coal reservoirs in Longtan Formation, Nanchuan area, southeast Chongqing[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2025, 47(1): 77-88. doi: 10.11781/sysydz2025010077
Citation: LIU Jinxian, GUO Tao, ZHOU Yatong, LI Dongyang, JIN Xiaobo. Compressibility characteristics and modification effect of coal reservoirs in Longtan Formation, Nanchuan area, southeast Chongqing[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2025, 47(1): 77-88. doi: 10.11781/sysydz2025010077

渝东南南川地区龙潭组煤储层可压性特征及改造效果分析

doi: 10.11781/sysydz2025010077
基金项目: 

中国石化科技攻关项目 P23205

中国石化科技攻关项目 P23230

中国石化科技攻关项目 P24118

详细信息
    作者简介:

    刘尽贤(1995—),女,硕士,助理研究员,从事煤层气地质综合研究。E-mail: 529833010@qq.com

  • 中图分类号: TE122.23

Compressibility characteristics and modification effect of coal reservoirs in Longtan Formation, Nanchuan area, southeast Chongqing

  • 摘要: 压裂改造是增加煤层气井煤储层渗透率及导流能力的重要手段。为更好指导渝东南南川地区龙潭组煤层气井开发生产,综合应用测录井资料、工业分析、扫描电镜、光片观察、全岩分析等多种实验手段,基于煤岩孔隙、顶板、底板展布和含气性特征,分析并探讨了煤储层可压性地质特征及其对储层改造的影响。研究表明:(1)煤岩具有“中高演化、中高镜质组、中低灰分”特征,煤岩储集空间主要为微孔隙和裂隙,有利于气体吸附;煤层分布稳定,底板为铝土质泥岩,顶板为泥岩,局部变为泥质灰岩、灰岩;煤储层及其顶、底板组合模式和顶板矿物组成差异为海陆过渡沉积环境的体现。(2)煤层及顶、底板力学参数及地应力差异大,初步说明可压性较好;三轴应力实验揭示高压力下煤层力学参数会超过顶板,增加压裂风险。(3)受煤系地层沉积条件差异控制,煤层与顶板的岩性组合、顶板矿物组成直接影响了水平井钻井的井壁稳定性,高含黏土矿物的泥岩顶板性脆、易碎、遇水易膨胀,是导致剥落风险的主要原因,影响水平井钻遇率。(4)不规则的天然裂缝会导致压裂窜通和缝高失控;与最大主应力方向一致的规则裂缝有利于人工裂缝扩展,可对储层有效改造。

     

  • 图  1  四川盆地渝东南南川地区龙潭组底面构造位置

    Figure  1.  Tectonic structure of base in Longtan Formation of Nanchuan area, southeast Chongqing, Sichuan Basin

    图  2  四川盆地渝东南南川地区龙潭组沉积柱状图

    Figure  2.  Sedimentary column of Longtan Formation in Nanchuan area, southeast Chongqing, Sichuan Basin

    图  3  四川盆地渝东南南川地区龙潭组煤岩光片及扫描电镜照片

    a.垂直切面光片,YY1井,1号煤;b.光片a局部放大,惰质组与镜质组层状分布,镜质组割理裂隙发育;c.光片a局部放大,惰质组与镜质组层状分布,惰质组植物胞腔孔发育,镜质组割理、裂隙发育;d.扫描电镜照片,有机质表面见微裂缝,Y2井,1号煤。

    Figure  3.  Photos of polished section and its SEM image of coal rocks from Longtan Formation in Nanchuan area, southeast Chongqing, Sichuan Basin

    图  4  四川盆地渝东南南川地区龙潭组1号煤厚度(a)及顶板(b)分布

    Figure  4.  Thickness(a) and roof plate(b) distribution of No.1 coal seam in Longtan Formation of Nanchuan area, southeast Chongqing, Sichuan Basin

    图  5  四川盆地渝东南南川地区龙潭组煤岩及顶、底板矿物组成扫描电镜

    a.有机质表面见长石颗粒,Y2井,4号煤;b.自形方解石颗粒,Y2井,1号煤;c.草莓状黄铁矿集合体,3号煤,YY1井;d.有机质呈弯曲条带状分布,1号煤,YY1井;e.YY1井2号煤泥岩底板,黏土矿物晶间孔缝;f.YY1井1号煤铝土质泥岩底板,黏土矿物晶间孔缝。

    Figure  5.  SEM images of mineral composition in coal rocks, roof and floor plates of Longtan Formation in Nanchuan area, southeast Chongqing, Sichuan Basin

    图  6  四川盆地渝东南南川地区龙潭组煤层及顶、底板黏土矿物含量分布

    Figure  6.  Distribution of clay mineral content in coal seams, roof and floor plates of Longtan Formation in Nanchuan area, southeast Chongqing, Sichuan Basin

    图  7  四川盆地渝东南南川地区YY1井龙潭组三轴应力实验结果

    Figure  7.  Triaxial stress experiment results of Longtan Formation in well YY1 of Nanchuan area, southeast Chongqing, Sichuan Basin

    图  8  四川盆地渝东南南川地区龙潭组煤层与顶、底板最大、最小主应力对比

    Figure  8.  Column chart for comparing maximum and minimum principal stresses in coal seams, roof and floor plates of Longtan Formation in Nanchuan area, southeast Chongqing, Sichuan Basin

    图  9  四川盆地渝东南南川地区水平井YM2-11HF钻遇龙潭组返出掉块照片

    Figure  9.  Photos of falling blocks from Longtan Formation of drilling well YM2-11HF in Nanchuan area, southeast Chongqing, Sichuan Basin

    图  10  四川盆地南川地区、鄂尔多斯盆地延川南地区和沁水盆地晋中地区主力煤层顶板对比

    Figure  10.  Roof plate comparison among coal seams in Nanchuan area of Sichuan Basin, Yanchuannan area of Ordos Basin, and Jinzhong area of Qinshui Basin

    图  11  四川盆地渝东南南川地区龙潭组曲率属性(a)及蚂蚁体属性(b)

    Figure  11.  Curvature attributes(a) and ant body attributes(b) of Longtan Formation in Nanchuan area, southeast Chongqing, Sichuan Basin

    图  12  四川盆地渝东南南川地区PM198井组及Y2井生产曲线

    Figure  12.  Production curves of well Y2 and well group PM198 of Longtan Formation in Nanchuan area, southeast Chongqing, Sichuan Basin

    表  1  四川盆地渝东南南川地区龙潭组煤层气过路井全烃中值统计

    Table  1.   Statistics of median total hydrocarbon values of CBM crossing wells in Longtan Formation of Nanchuan area, southeast Chongqing, Sichuan Basin

    序号 井号 全烃中值/(m3/t) 序号 井号 全烃中值/(m3/t) 序号 井号 全烃中值/(m3/t) 序号 井号 全烃中值/(m3/t)
    1 DS3HF 32 10 JY201-1 23 19 SY18-1HF 25 28 SY3-1HF 28
    2 JY10 11 11 JY204-2HF 15 20 SY19-2HF 21 29 SY33-5HF 67
    3 JY10-10 51 12 JY205-1HF 26 21 SY2 47 30 SY36-3HF 18
    4 JY10-10 51 13 JY207-3HF 10 22 SY20-2HF 38 31 SY5 22
    5 JY195-2HF 52 14 JY208-2HF 18 23 SY23-1HF 10 32 SY9-1HF 7.7
    6 JY196-1HF 24 15 JY209-51HF 24 24 SY27-3HF 37 33 YY53-1HF 50
    7 JY197-4HF 60 16 JY211-4HF 20 25 SY3 46
    8 JY198-3HF 18 17 SY13-3HF 55 26 SY30-1HF 31
    9 JY199-1HF 55 18 SY14-51HF 32 27 SY31-2HF 39
    下载: 导出CSV

    表  2  四川盆地渝东南南川地区龙潭组煤层及顶、底板矿物组成测试结果

    Table  2.   Test results of mineral composition in coal seams, roof and floor plates of Longtan Formation in Nanchuan area, southeast Chongqing, Sichuan Basin

    地区 井号 样品类型 深度/m 矿物质量分数/%
    顶深 底深 石英 钾长石 斜长石 方解石 白云石 菱铁矿 黄铁矿 铁白云石 锐钛矿 黏土矿物
    东胜 SY18-22 泥岩顶板 1 818.27 1 818.38 28.6 0.4 1.0 47.1 6.5 1.3 15.1
    煤层 1 820.00 1 820.25 2.0 1.2 0.2 11.5
    1 820.71 1 820.96 1.8 1.2 15.0
    1 821.20 1 821.45 2.5 6.4 0.2 13.1
    1 821.88 1 822.13 1.9 1.7 0.2 25.1
    铝土质泥岩底板 1 822.26 1 822.4 1.4 0.7 0.9 0.3 2.0 94.7
    阳春沟 Y2 煤层 1 976.91 1 977.06 2.4 2.1 4.2 1.7 5.0 6.4 78.2
    YY1 泥岩顶板 2 685.09 2 685.11 12.7 1.3 3.5 14.0 2.3 4.9 61.3
    2 685.44 2 685.54 11.1 0.8 3.4 23.7 2.5 5.1 53.4
    2 685.93 2 685.95 10.6 1.1 3.3 23.1 2.2 4.7 55.0
    2 686.81 2 686.83 13.0 1.3 3.8 9.5 4.9 5.7 61.8
    2 687.43 2 687.46 13.5 1.3 7.8 5.5 2.9 5.4 63.6
    2 687.78 2 687.82 11.5 1.3 1.8 3.9 14.1 2.7 4.8 59.9
    2 688.98 2 689.03 9.6 2.0 3.6 12.8 7.1 5.8 59.1
    2 689.51 2 689.56 10.7 1.3 2.8 18.6 1.5 5.8 59.3
    2 690.14 2 690.21 9.9 1.7 2.9 16.1 3.0 5.8 60.6
    2 691.51 2 691.61 26.9 1.8 6.5 3.2 2.9 4.6 54.1
    2 692.2 2 692.23 22.4 23.1 6.5 0.7 5.5 7.5 34.3
    2 692.72 2 692.83 6.4 4.2 0.2 1.1 1.7 6.9 79.5
    铝土质泥岩底板 2 698.13 2 698.15 9.6 0.3 0.3 9.5 80.3
    2 698.71 2 698.76 51.2 0.4 1.7 0.1 4.8 41.8
    下载: 导出CSV

    表  3  四川盆地渝东南南川地区Y2井龙潭组一段1号煤层及顶、底板声波扫描测井结果

    Table  3.   Sonic scanner logging results of No.1 coal seam, roof and floor plates in the first member of Longtan Formation of well Y2, Nanchuan area, southeast Chongqing, Sichuan Basin

    类型 岩性 抗压强度/MPa 抗拉强度/MPa 杨氏模量/GPa 破裂压力/MPa 泊松比
    顶板 粉砂质泥岩 78.388 6.271 19.870 41.723 0.287
    煤层 黑色煤 26.659 2.244 6.758 37.919 0.314
    底板 铝土质泥岩 116.887 9.236 30.390 45.905 0.280
    下载: 导出CSV
  • [1] 明盈, 孙豪飞, 汤达祯, 等. 四川盆地上二叠统龙潭组深—超深部煤层气资源开发潜力[J]. 煤田地质与勘探, 2024, 52(2): 102-112.

    MING Ying, SUN Haofei, TANG Dazhen, et al. Potential for the production of deep to ultrdeep coalbed methane resources in the Upper Permian Longtan Formation, Sichuan Basin[J]. Coal Geology & Exploration, 2024, 52(2): 102-112.
    [2] 姚红生, 肖翠, 陈贞龙, 等. 延川南深部煤层气高效开发调整对策研究[J]. 油气藏评价与开发, 2022, 12(4): 545-555.

    YAO Hongsheng, XIAO Cui, CHEN Zhenlong, et al. Adjustment countermeasures for efficient development of deep coalbed methane in southern Yanchuan CBM Field[J]. Petroleum Reservoir Evaluation and Development, 2022, 12(4): 545-555.
    [3] 魏志福, 王永莉, 吴陈君, 等. 四川盆地上二叠统龙潭组烃源岩的地球化学特征及对有机质来源和沉积环境的指示意义[J]. 天然气地球科学, 2015, 26(8): 1613-1618.

    WEI Zhifu, WANG Yongli, WU Chenjun, et al. Geochemical characteristics of source rock from Upper Permian Longtan Formation in Sichuan Basin[J]. Natural Gas Geoscience, 2015, 26(8): 1613-1618.
    [4] 秦胜飞, 白斌, 袁苗, 等. 四川盆地中部地区海相储层煤成气来源[J]. 天然气地球科学, 2019, 30(6): 790-797.

    QIN Shengfei, BAI Bin, YUAN Miao, et al. Sources of coal-derived gas in marine strata in central Sichuan[J]. Natural Gas Geoscience, 2019, 30(6): 790-797.
    [5] 张洪亮. 四川盆地东部重庆长寿地区早二叠世龙潭组(P3l)地层、古地理及聚煤特征研究[C]//第十五届全国古地理学及沉积学学术会议摘要集. 成都: 中国矿物岩石地球化学学会岩相古地理专业委员会, 2018: 1.

    ZHANG Hongliang. Research on the geological strata, paleogeography, and coal-accumulation characteristics of the Longtan Formation (P3l) in Chongqing Changshou area, eastern Sichuan Basin[C]// Abstracts of the 15th National Symposium on Paleogeography and Sedimentology. Chengdu: China Mineral Geology and Geochemistry Society Subcommittee on Stratigraphy and Paleogeography, 2018: 1.
    [6] 宋文燕, 梁仲, 杨靖, 等. 重庆地区二叠系龙潭组煤系地层非常规气地质特征分析[J]. 能源与环保, 2024, 46(2): 118-125.

    SONG Wenyan, LIANG Zhong, YANG Jing, et al. Analysis of unconventional gas geological characteristics of Permian System Longtan Formation coal measure strata in Chongqing area[J]. China Energy and Environmental Protection, 2024, 46(2): 118-125.
    [7] 薛冈, 郭涛, 张烨, 等. 渝南地区二叠系龙潭组C25煤层煤层气基础地质条件分析[J]. 油气藏评价与开发, 2024, 14(3): 492-503.

    XUE Gang, GUO Tao, ZHANG Ye, et al. Analysis of general geological conditions of coalbed methane in coal seam C25 of Permian Longtan Formation, south Chongqing[J]. Petroleum Reservoir Evaluation and Development, 2024, 14(3): 492-503.
    [8] 胡雄, 邬长武, 杨秀春, 等. 低渗透煤层微观孔隙结构与煤层气解吸规律[J]. 特种油气藏, 2024, 31(2): 129-135. doi: 10.3969/j.issn.1006-6535.2024.02.015

    HU Xiong, WU Changwu, YANG Xiuchun, et al. Microscopic pore structure and coalbed methane desorption law in low-permeability coal seams[J]. Special Oil & Gas Reservoirs, 2024, 31(2): 129-135. doi: 10.3969/j.issn.1006-6535.2024.02.015
    [9] 王伟, 王成旺, 季亮, 等. 大宁—吉县河西区块深部煤层破裂压力预测及分布特征[J]. 断块油气田, 2024, 31(4): 669-675.

    WANG Wei, WANG Chengwang, JI Liang, et al. Prediction and distribution characteristics of deep coal seam fracture pressure in Hexi block of Daning-Jixian[J]. Fault-Block Oil & Gas Field, 2024, 31(4): 669-675.
    [10] LI Qian, ZHANG Rui, CAI Yidong, et al. CH4 adsorption capacity of coalbed methane reservoirs induced by microscopic differences in pore structure[J]. Unconventional Resources, 2024, 4: 100097. doi: 10.1016/j.uncres.2024.100097
    [11] 梁龙军, 陈捷, 颜智华, 等. 六盘水煤田大倾角地层煤层气L型水平井钻完井技术[J]. 断块油气田, 2023, 30(4): 616-623.

    LIANG Longjun, CHEN Jie, YAN Zhihua, et al. Drilling and completion technology of L-shaped horizontal wells for coalbed methane in high-dip formation in Liupanshui coalfield[J]. Fault- Block Oil & Gas Field, 2023, 30(4): 616-623.
    [12] 李小刚, 秦杨, 刘紫微, 等. 微波强化煤层气井压裂开采的物性规律[J]. 特种油气藏, 2024, 31(3): 70-77.

    LI Xiaogang, QIN Yang, LIU Ziwei, et al. Physical property law of coalbed methane well fracturing development enhanced by microwave[J]. Special Oil & Gas Reservoirs, 2024, 31(3): 70-77.
    [13] 陈杨. 沁水盆地南部煤储层水力压裂改造的地质与力学约束机制[D]. 北京: 中国地质大学(北京), 2022.

    CHEN Yang. Geological and mechanical constraints on hydraulic fracturing reconstruction of coal reservoir in southern Qinshui Basin[D]. Beijing: China University of Geosciences (Beijing), 2022.
    [14] 姚红生, 陈贞龙, 郭涛, 等. 延川南深部煤层气地质工程一体化压裂增产实践[J]. 油气藏评价与开发, 2021, 11(3): 291-296.

    YAO Hongsheng, CHEN Zhenlong, GUO Tao, et al. Stimulation practice of geology-engineering integration fracturing for deep CBM in Yanchuannan Field[J]. Petroleum Reservoir Evaluation and Development, 2021, 11(3): 291-296.
    [15] 李可心, 张聪, 李俊, 等. 沁水盆地南部煤层气水平井射孔优化[J]. 新疆石油地质, 2024, 45(5): 581-589.

    LI Kexin, ZHANG Cong, LI Jun, et al. Optimization of perforation in CBM horizontal wells in southern Qinshui Basin[J]. Xinjiang Petroleum Geology, 2024, 45(5): 581-589.
    [16] 唐书恒, 朱宝存, 颜志丰. 地应力对煤层气井水力压裂裂缝发育的影响[J]. 煤炭学报, 2011, 36(1): 65-69.

    TANG Shuheng, ZHU Baocun, YAN Zhifeng. Effect of crustal stress on hydraulic fracturing in coalbed methane wells[J]. Journal of China Coal Society, 2011, 36(1): 65-69.
    [17] 田丰华, 李小刚, 朱文涛, 等. 大宁—吉县区块8号煤裂缝三维特征评价及压裂段优选[J]. 能源与环保, 2023, 45(9): 88-95.

    TIAN Fenghua, LI Xiaogang, ZHU Wentao, et al. Evaluation of 3D characteristics and optimization of fracturing sections for No. 8 coal seam crack in Daning-Ji County block[J]. China Energy and Environmental Protection, 2023, 45(9): 88-95.
    [18] 高向东, 孙昊, 王延斌, 等. 临兴地区深部煤储层地应力场及其对压裂缝形态的控制[J]. 煤炭科学技术, 2022, 50(8): 140-150.

    GAO Xiangdong, SUN Hao, WANG Yanbin, et al. In-situ stress field of deep coal reservoir in Linxing area and its control on fracturing crack[J]. Coal Science and Technology, 2022, 50(8): 140-150.
    [19] 边利恒, 张亮, 刘清. 天然裂隙对煤层气压裂效果的影响: 以鄂尔多斯盆地韩城区块为例[J]. 天然气工业, 2018, 38(S1): 129-133.

    BIAN Liheng, ZHANG Liang, LIU Qing. The effect of natural fractures on coal seam hydraulic fracturing: a case study of Hancheng block in Ordos Basin[J]. Natural Gas Industry, 2018, 38(S1): 129-133.
    [20] 梅廉夫, 刘昭茜, 汤济广, 等. 湘鄂西—川东中生代陆内递进扩展变形: 来自裂变径迹和平衡剖面的证据[J]. 地球科学(中国地质大学学报), 2010, 35(2): 161-174.

    MEI Lianfu, LIU Zhaoqian, TANG Jiguang, et al. Mesozoic intra-continental progressive deformation in western Hunan-Hubei- eastern Sichuan Provinces of China: evidence from apatite fission track and balanced cross-section[J]. Earth Science (Journal of China University of Geoscience), 2010, 35(2): 161-174.
    [21] 何希鹏, 张培先, 任建华, 等. 渝东南南川地区东胜构造带常压页岩气勘探开发实践[J]. 石油实验地质, 2023, 45(6): 1057-1066. doi: 10.11781/sysydz2023061057

    HE Xipeng, ZHANG Peixian, REN Jianhua, et al. Exploration and development practice of normal pressure shale gas in Dongsheng structural belt, Nanchuan area, southeast Chongqing[J]. Petroleum Geology & Experiment, 2023, 45(6): 1057-1066. doi: 10.11781/sysydz2023061057
    [22] 冯动军. 川东南二叠系龙潭组海—陆过渡相页岩气甜点评价及意义[J]. 石油与天然气地质, 2023, 44(3): 778-788.

    FENG Dongjun. Sweet spot assessment and its significance for the marine-continental transitional shale gas of Permian Longtan Fm. in southeastern Sichuan Basin[J]. Oil & Gas Geology, 2023, 44(3): 778-788.
    [23] 王运海, 贺庆, 朱智超, 等. 渝东南南川地区常压页岩气示范井应用评价及推广效果[J]. 石油实验地质, 2023, 45(6): 1160-1169. doi: 10.11781/sysydz2023061160

    WANG Yunhai, HE Qing, ZHU Zhichao, et al. Application evaluation and promotion effect of normal pressure shale gas demonstration well in Nanchuan area in southeastern Chongqing[J]. Petroleum Geology & Experiment, 2023, 45(6): 1160-1169. doi: 10.11781/sysydz2023061160
    [24] 高令宇, 陈孔全, 陆建林, 等. 构造作用对常规—非常规油气连续聚积耦合成藏控制机制: 以川东南平桥地区为例[J]. 石油实验地质, 2024, 46(3): 565-575. doi: 10.11781/sysydz202403565

    GAO Lingyu, CHEN Kongquan, LU Jianlin, et al. Control mechanism of tectonic action on continuous accumulation and coupling of conventional-unconventional oil and gas reservoirs: a case study of Pingqiao area, southeastern Sichuan Basin[J]. Petroleum Geology & Experiment, 2024, 46(3): 565-575. doi: 10.11781/sysydz202403565
    [25] 汤济广, 汪凯明, 秦德超, 等. 川东南南川地区构造变形与页岩气富集[J]. 地质科技通报, 2021, 40(5): 11-21.

    TANG Jiguang, WANG Kaiming, QIN Dechao, et al. Tectonic deformation and its constraints to shale gas accumulation in Nanchuan area, southeastern Sichuan Basin[J]. Bulletin of Geological Science and Technology, 2021, 40(5): 11-21.
    [26] 李昌昊, 时志强, 闫长辉, 等. 川东南地区上二叠统龙潭组沉积相新认识[C]//第十七届全国古地理学及沉积学学术会议摘要集——专题3 : 河流—三角洲—大陆架体系沉积过程、记录及模拟. 青岛: 中国矿物岩石地球化学学会岩相古地理专业委员会, 2023: 2.

    LI Changhao, SHI Zhiqiang, YAN Changhui, et al. New insights into sedimentary facies of the Longtan Formation in the Upper Permian of the Chuanbeizong area[C]//Abstracts of the 17th National Symposium on Paleogeography and Sedimentology-Topic 3: Sedimentation processes, records, and simulation of river-deltas-continental shelf systems. Qingdao: Committee on Paleostratigraphy and Paleogeography of the Chinese Mineralogical Society, 2023: 2.
    [27] 刘尽贤. 渝东南南川地区深层煤层特征与煤层气赋存状态研究[J]. 中国煤炭地质, 2024, 36(6): 18-26.

    LIU Jinxian. Characteristics of deep coal seam and occurrence state of coalbed methane in Nanchuan, southeast Chongqing[J]. Coal Geology of China, 2024, 36(6): 18-26.
    [28] 姜洪丰, 柳兵, 高永德, 等. 涠西南流沙港组页岩储层地质特征及可压性评价[J]. 科学技术与工程, 2024, 24(15): 6241-6253. doi: 10.12404/j.issn.1671-1815.2304624

    JIANG Hongfeng, LIU Bing, GAO Yongde, et al. Geological characteristics and evaluation of fracturability of Weixinan Liushagang Formation shale reservoirs[J]. Science Technology and Engineering, 2024, 24(15): 6241-6253. doi: 10.12404/j.issn.1671-1815.2304624
    [29] 余坤, 屈争辉, 余可龙, 等. 淮南矿区新集矿1001井煤系泥岩脆性矿物及其沉积控制[J]. 煤田地质与勘探, 2017, 45(6): 14-21. doi: 10.3969/j.issn.1001-1986.2017.06.003

    YU Kun, QU Zhenghui, YU Kelong, et al. Brittle minerals and depositional control of mudstone in coal measures form in well 1001 in Huainan mining area[J]. Coal Geology & Exploration, 2017, 45(6): 14-21. doi: 10.3969/j.issn.1001-1986.2017.06.003
    [30] DAI Shifeng, ZHANG Weiguo, WARD C R, et al. Mineralogical and geochemical anomalies of Late Permian coals from the Fusui Coalfield, Guangxi Province, southern China: influences of terrigenous materials and hydrothermal fluids[J]. International Journal of Coal Geology, 2013, 105: 60-84. doi: 10.1016/j.coal.2012.12.003
    [31] CHEN Jian, LIU Guijian, LI Hui, et al. Mineralogical and geochemical responses of coal to igneous intrusion in the Pansan Coal Mine of the Huainan coalfield, Anhui, China[J]. International Journal of Coal Geology, 2014, 124: 11-35. doi: 10.1016/j.coal.2013.12.018
    [32] 杜佳宗, 蔡进功, 谢忠怀, 等. 泥岩埋藏成岩过程中绿泥石的演化途径及意义[J]. 高校地质学报, 2018, 24(3): 371-379.

    DU Jiazong, CAI Jingong, XIE Zhonghuai, et al. Chloritization sequences in mudstone during diagenesis and its geological significance[J]. Geological Journal of China Universities, 2018, 24(3): 371-379.
    [33] 冯兴凯. 煤储层破裂压力对压裂改造的影响与工程应用[J]. 煤矿安全, 2024, 55(3): 84-90.

    FENG Xingkai. Influence of coal reservoir fracture pressure on fracturing reconstruction and its engineering application[J]. Safety in Coal Mines, 2024, 55(3): 84-90.
    [34] LIU Jun, YAO Yaobin, LIU Dameng, et al. Experimental simulation of the hydraulic fracture propagation in an anthracite coal reservoir in the southern Qinshui Basin, China[J]. Journal of Petroleum Science and Engineering, 2018, 168: 400-408. doi: 10.1016/j.petrol.2018.05.035
    [35] 赵志刚, 朱学申, 王存武, 等. 基于资源性与可压性的深部煤层气"甜点"预测[J]. 煤田地质与勘探, 2024, 52(8): 22-31.

    ZHAO Zhigang, ZHU Xueshen, WANG Cunwu, et al. Predicting the 'sweet spot' of deep coalbed methane based on resource conditions and fracability[J]. Coal Geology & Exploration, 2024, 52(8): 22-31.
    [36] 李金平, 潘军, 李勇, 等. 基于流动物质平衡理论的煤层气井定量化排采新方法[J]. 天然气工业, 2023, 43(6): 87-95. doi: 10.3787/j.issn.1000-0976.2023.06.008

    LI Jinping, PAN Jun, LI Yong, et al. A new CBM well quantitative production method based on the flow material balance theory[J]. Natural Gas Industry, 2023, 43(6): 87-95. doi: 10.3787/j.issn.1000-0976.2023.06.008
    [37] 姚艳斌, 王辉, 杨延辉, 等. 煤层气储层可改造性评价: 以郑庄区块为例[J]. 煤田地质与勘探, 2021, 49(1): 119-129. doi: 10.3969/j.issn.1001-1986.2021.01.012

    YAO Yanbin, WANG Hui, YANG Yanhui, et al. Evaluation of the hydro-fracturing potential for coalbed methane reservoir: a case study of Zhengzhuang CBM field[J]. Coal Geology & Exploration, 2021, 49(1): 119-129. doi: 10.3969/j.issn.1001-1986.2021.01.012
    [38] 李文博. 碎软煤层井下顶板长钻孔分段水力压裂瓦斯抽采技术研究[D]. 北京: 煤炭科学研究总院, 2023.

    LI Wenbo. Study on gas drainage technology of long borehole staged hydraulic fracturing in underground roof of broken and soft coal seam[D]. Beijing: China Coal Research Institute, 2023.
    [39] 刘晓. 不同压裂规模下煤储层缝网形态对比研究: 以延川南煤层气田为例[J]. 油气藏评价与开发, 2024, 14(3): 510-518.

    LIU Xiao. Comparison of seam network morphology in coal reservoirs under different fracturing scales: a case of Yanchuannan CBM Gas Field[J]. Petroleum Reservoir Evaluation and Development, 2024, 14(3): 510-518.
    [40] 孔祥伟, 谢昕, 王存武. 基于综合可压指数的煤层气水平井压裂分段参数优化[J]. 油气藏评价与开发, 2024, 14(6): 925-932.

    KONG Xiangwei, XIE Xin, WANG Cunwu. Optimization of segmented fracturing parameters for coalbed methane horizontal wells based on comprehensive fracability index[J]. Petroleum Reservoir Evaluation and Development, 2024, 14(6): 925-932.
  • 加载中
图(12) / 表(3)
计量
  • 文章访问数:  77
  • HTML全文浏览量:  27
  • PDF下载量:  29
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-08-29
  • 修回日期:  2024-12-10
  • 刊出日期:  2025-01-28

目录

    /

    返回文章
    返回