留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

深层高阶煤层CO2-ECBM技术研究与应用启示——以沁水盆地晋中地区为例

郑永旺 崔轶男 李鑫 肖翠 郭涛 张登峰

郑永旺, 崔轶男, 李鑫, 肖翠, 郭涛, 张登峰. 深层高阶煤层CO2-ECBM技术研究与应用启示——以沁水盆地晋中地区为例[J]. 石油实验地质, 2025, 47(1): 143-152. doi: 10.11781/sysydz2025010143
引用本文: 郑永旺, 崔轶男, 李鑫, 肖翠, 郭涛, 张登峰. 深层高阶煤层CO2-ECBM技术研究与应用启示——以沁水盆地晋中地区为例[J]. 石油实验地质, 2025, 47(1): 143-152. doi: 10.11781/sysydz2025010143
ZHENG Yongwang, CUI Yinan, LI Xin, XIAO Cui, GUO Tao, ZHANG Dengfeng. Research and insights for application of CO2-ECBM technology in deep high-rank coal seams: a case study of Jinzhong block, Qinshui Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2025, 47(1): 143-152. doi: 10.11781/sysydz2025010143
Citation: ZHENG Yongwang, CUI Yinan, LI Xin, XIAO Cui, GUO Tao, ZHANG Dengfeng. Research and insights for application of CO2-ECBM technology in deep high-rank coal seams: a case study of Jinzhong block, Qinshui Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2025, 47(1): 143-152. doi: 10.11781/sysydz2025010143

深层高阶煤层CO2-ECBM技术研究与应用启示——以沁水盆地晋中地区为例

doi: 10.11781/sysydz2025010143
基金项目: 

中国石化科技部项目“华东探区深部煤层气富集规律与有效开发技术” P23205

详细信息
    作者简介:

    郑永旺(1984—),男,高级工程师,从事非常规油气勘探开发方面的研究与管理工作。E-mail: zhengyw.hdsj@sinopec.com

    通讯作者:

    崔轶男(1995—),女,助理研究员,从事煤层气高效开发工作。E-mail: cuiyn1109.hdsj@sinopec.com

  • 中图分类号: TE341

Research and insights for application of CO2-ECBM technology in deep high-rank coal seams: a case study of Jinzhong block, Qinshui Basin

  • 摘要: 深层高阶煤层资源潜力大,但具有“强吸附、难解吸”的特点,常规开发方式难以实现效益动用。与化学驱、热力驱等其他提高采收率技术相比,CO2-ECBM(CO2地质封存及强化煤层开采)技术具有节能减排和提高煤层气采收率双重效益。为明确CO2吸附、解吸特性,论证CO2-ECBM技术提高深层高阶煤层气采收率可行性,助力深层高阶煤层气产能释放,以沁水盆地晋中地区为研究对象,开展深层高阶煤层CO2吸附、解吸特征研究实验。研究结果表明,随着平衡压力的增加,煤层对CH4的吸附量逐渐增加,而受煤层孔裂隙发育特征及CO2特征影响,煤层对CO2的吸附量呈先持续上升再在临界压力附近骤降后大幅上升的特征。深层高阶煤层对CO2的吸附能力约为CH4的2~5倍,超临界CO2在煤层中的吸附能力更强,CO2的敏感解吸压力为CH4的3/4,且吸附于煤层后,CO2呈现出明显的吸附、解吸滞后特征,大比例CO2以吸附封存和残余封存形式滞留在煤层中无法脱附,成为实现大规模封存CO2和替换CH4的有利条件。通过实验结果分析,明确了深层高阶煤层气开展CO2-ECBM具备大幅提高采收率的可行性。矿场应用中,可通过超前注气、加大注入压力等方式提高气藏压力水平,提升竞争吸附效率,同时低敏感解吸压力也表明注入CO2后返排率较高,需考虑CO2循环利用。

     

  • 图  1  沁水盆地晋中地区煤层孔隙孔径、孔体积曲线

    Figure  1.  Pore diameter and pore volume curves of coal seams in Jinzhong block, Qinshui Basin

    图  2  不同地区煤层裂缝发育情况

    Figure  2.  Development of coal seam fractures in different blocks

    图  3  沁水盆地晋中地区和鄂尔多斯盆地延川南地区裂隙开度分级分布

    Figure  3.  Graded distribution of fracture opening in Jinzhong block, Qinshui Basin and Yanchuan south block, Ordos Basin

    图  4  不同演化程度煤储层吸附等温线

    Figure  4.  Adsorption isotherms of coal reservoirs with different evolution degrees

    图  5  各地区敏感解吸压力对比

    Figure  5.  Comparison of sensitive desorption pressures in each block

    图  6  煤岩高压储层流体吸附、解吸性能测定装置及流程

    Figure  6.  Device and process for measuring fluid adsorption and desorption performance of high-pressure coal reservoir

    图  7  沁水盆地晋中地区煤样CH4吉布斯吸附量曲线

    Figure  7.  Curves of CH4 Gibbs adsorption capacity of coal samples from Jinzhong block, Qinshui Basin

    图  8  沁水盆地晋中地区煤样CO2吉布斯吸附量曲线

    Figure  8.  Curves of CO2 Gibbs adsorption capacity of coal samples from Jinzhong block, Qinshui Basin

    图  9  沁水盆地晋中地区煤样CH4吸附等温线以及Langmuir模型拟合结果

    Figure  9.  CH4 adsorption isotherm of coal samples from Jinzhong block, Qinshui Basin, and Langmuir model fitting results

    图  10  沁水盆地晋中地区煤样CO2吸附等温线以及Langmuir模型拟合结果

    Figure  10.  CO2 adsorption isotherm of coal samples from Jinzhong block, Qinshui Basin, and Langmuir model fitting results

    图  11  沁水盆地晋中地区煤样气体吸附量对比

    Figure  11.  Comparison of gas adsorption capacities of coal samples from Jinzhong block, Qinshui Basin

    图  12  318.15 K温度下CO2密度随压力变化特征

    数据来源于文献[31]。

    Figure  12.  Variation of CO2 density with pressure at 318.15 K

    图  13  沁水盆地晋中地区煤样CH4吸附和解吸曲线

    Figure  13.  CH4 adsorption and desorption isotherms of coal samples from Jinzhong block, Qinshui Basin

    图  14  沁水盆地晋中地区煤样CO2吸附和解吸曲线

    Figure  14.  CO2 adsorption and desorption isotherms of coal samples from Jinzhong block, Qinshui Basin

    表  1  沁水盆地晋中地区煤样CH4、CO2吸附和解吸实验样品基本信息

    Table  1.   Basic information of CH4 and CO2 adsorption and desorption experimental coal samples from in Jinzhong block, Qinshui Basin

    煤样编号 井段/m 块体密度/(g/cm3) Ro/% 显微组分/% 工业组分/%
    镜质组 惰质组 矿物 水分 灰分 挥发分 固定碳
    J1-28-1 1 883.50~1 883.75 1.4 3.0 75.4 19.8 4.8 3.2 29.4 6.5 60.9
    J1-29-1 1 883.90~1 884.17 1.5 2.9 68.2 24.4 7.4 3.4 16.9 5.2 74.5
    J1-29-2 1 884.50~1 884.77 1.5 2.9 72.0 19.8 8.2 2.7 20.8 6.8 69.6
    J1-33-1 1 889.23~1 889.50 1.5 2.9 88.2 6.8 5.0 1.8 20.5 7.4 70.2
    J1-34-1 1 890.44~1 890.70 1.5 2.9 71.6 26.8 1.6 2.7 18.0 8.3 71.0
    J1-34-2 1 889.87~1 890.14 1.4 2.9 73.4 25.0 1.6 1.9 7.5 7.1 83.5
    J1-35-1 1 891.64~1 891.90 1.4 3.0 79.2 11.6 9.2 3.1 20.1 6.3 70.5
    J1-35-2 1 891.38~1 891.64 1.4 2.9 82.8 14.0 3.2 2.3 16.6 6.7 74.5
    下载: 导出CSV

    表  2  沁水盆地晋中地区煤样CH4吸附等温线Langmuir模型拟合结果

    Table  2.   Langmuir model fitting results for CH4 adsorption isotherm of coal samples from Jinzhong block, Qinshui Basin

    煤样编号 质量/g VL/ (cm3/g) PL/ MPa 相关系数 平均相对误差/%
    J1-28-1 20.132 1 48.31 2.39 0.996 5 4.27
    J1-34-2 20.031 4 41.49 1.87 0.999 0 2.56
    下载: 导出CSV

    表  3  沁水盆地晋中地区煤样CO2吸附等温线Langmuir模型拟合结果

    Table  3.   Langmuir model fitting results for CO2 adsorption isotherm of coal samples from Jinzhong block, Qinshui Basin

    煤样编号 质量/g VL/ (cm3/g) PL/ MPa 相关系数 平均相对误差/%
    J1-28-1 20.040 0 69.44 1.47 0.978 1 5.82
    J1-34-2 20.499 0 66.23 1.01 0.990 8 5.01
    下载: 导出CSV
  • [1] 徐旭辉, 周卓明, 宋振响, 等. 油气资源评价方法关键参数研究和资源分布特征: 以中国石化探区"十三五"资源评价为例[J]. 石油实验地质, 2023, 45(5): 832-843. https://read.cnki.net/web/Journal/Article/SYSD202305002.html

    XU Xuhui, ZHOU Zhuoming, SONG Zhenxiang, et al. Methods and key parameters for oil and gas resource assessment and distribution characteristics of oil and gas resource: a case study of resource assessment of SINOPEC during the 13th Five-Year Plan period[J]. Petroleum Geology & Experiment, 2023, 45(5): 832-843. https://read.cnki.net/web/Journal/Article/SYSD202305002.html
    [2] 姚艳斌, 孙晓晓, 万磊. 煤层CO2地质封存的微观机理研究[J]. 煤田地质与勘探, 2023, 51(2): 146-157.

    YAO Yanbin, SUN Xiaoxiao, WAN Lei. Micro-mechanism of geological sequestration of CO2 in coal seam[J]. Coal Geology & Exploration, 2023, 51(2): 146-157.
    [3] 饶孟余, 张遂安, 商昌盛. 提高我国煤层气采收率的主要技术分析[J]. 中国煤层气, 2007, 4(2): 12-16. doi: 10.3969/j.issn.1672-3074.2007.02.003

    RAO Mengyu, ZHANG Suian, SHANG Changsheng. Analysis on key techniques to improve CBM recovery in China[J]. China Coalbed Methane, 2007, 4(2): 12-16. doi: 10.3969/j.issn.1672-3074.2007.02.003
    [4] HAN Sijie, SANG Shuxun, LIANG Jingjing, et al. Supercritical CO2 adsorption in a simulated deep coal reservoir environment, implications for geological storage of CO2 in deep coals in the southern Qinshui Basin, China[J]. Energy Science & Engineering, 2019, 7(2): 488-503.
    [5] 杜秋浩. CO2—水—煤作用对煤渗透性和力学特性影响的试验研究[D]. 北京: 清华大学, 2019.

    DU Qiuhao. Experimental study on effects of CO2-water interactions with coal on permeability and mechanical properties[D]. Beijing: Tsinghua University, 2019.
    [6] 王帅峰, 韩思杰, 桑树勋, 等. 煤层亚临界/超临界CO2吸附特征与封存模式[J]. 天然气工业, 2024, 44(6): 152-168. doi: 10.3787/j.issn.1000-0976.2024.06.015

    WANG Shuaifeng, HAN Sijie, SANG Shuxun, et al. Adsorption characteristics and storage models of subcritical/supercritical CO2 in coal seams[J]. Natural Gas Industry, 2024, 44(6): 152-168. doi: 10.3787/j.issn.1000-0976.2024.06.015
    [7] 刘世奇, 方辉煌, 桑树勋, 等. 基于多物理场耦合求解的煤层CO2-ECBM数值模拟研究[J]. 煤炭科学技术, 2019, 47(9): 51-59.

    LIU Shiqi, FANG Huihuang, SANG Shuxun, et al. Numerical simulation study on coal seam CO2-ECBM based on multi-physics fields coupling solution[J]. Coal Science and Technology, 2019, 47(9): 51-59.
    [8] 倪冠华, 李钊, 温永瓒, 等. CO2注入下煤层气产出及储层渗透率演化规律[J]. 采矿与安全工程学报, 2022, 39(4): 837-846.

    NI Guanhua, LI Zhao, WEN Yongzan, et al. Evolution of coalbed methane output and reservoir permeability under CO2 injection[J]. Journal of Mining & Safety Engineering, 2022, 39(4): 837-846.
    [9] CHARRIÈRE D, POKRYSZKA Z, BEHRA P. Effect of pressure and temperature on diffusion of CO2 and CH4 into coal from the Lorraine Basin (France)[J]. International Journal of Coal Geology, 2010, 81(4): 373-380. doi: 10.1016/j.coal.2009.03.007
    [10] 苏现波, 黄津, 王乾, 等. CO2强化煤层气产出与其同步封存实验研究[J]. 煤田地质与勘探, 2023, 51(1): 176-184.

    SU Xianbo, HUANG Jin, WANG Qian, et al. Experimental study on CO2-enhanced coalbed methane production and its simultaneous storage[J]. Coal Geology & Exploration, 2023, 51(1): 176-184.
    [11] MUKHERJEE M, MISRA S. A review of experimental research on Enhanced Coal Bed Methane (ECBM) recovery via CO2 sequestration[J]. Earth-Science Reviews, 2018, 179: 392-410. doi: 10.1016/j.earscirev.2018.02.018
    [12] PAN Zhejun, YE Jianping, ZHOU Fubao, et al. CO2 storage in coal to enhance coalbed methane recovery: a review of field experiments in China[J]. International Geology Review, 2018, 60(5/6): 754-776.
    [13] 王烽, 汤达祯, 刘洪林, 等. 利用CO2-ECBM技术在沁水盆地开采煤层气和埋藏CO2的潜力[J]. 天然气工业, 2009, 29(4): 117-120.

    WANG Feng, TANG Dazhen, LIU Honglin, et al. Analysis on the potential of the carbon dioxide-enhanced coalbed methane (CO2-ECBM) recovery in the Qinshui Basin[J]. Natural Gas Industry, 2009, 29(4): 117-120.
    [14] ZHOU Fengde, HOU Wanwan, ALLINSON G, et al. A feasibility study of ECBM recovery and CO2 storage for a producing CBM field in southeast Qinshui Basin, China[J]. International Journal of Greenhouse Gas Control, 2013, 19: 26-40. doi: 10.1016/j.ijggc.2013.08.011
    [15] 叶建平, 张兵, 韩学婷, 等. 深煤层井组CO2注入提高采收率关键参数模拟和试验[J]. 煤炭学报, 2016, 41(1): 149-155.

    YE Jianping, ZHANG Bing, HAN Xueting, et al. Well group carbon dioxide injection for enhanced coalbed methane recovery and key parameter of the numerical simulation and application in deep coalbed methane[J]. Journal of China Coal Society, 2016, 41(1): 149-155.
    [16] 王鹏. 煤中气体解吸收缩有效应力变化特征[J]. 采矿技术, 2022, 22(1): 86-89. doi: 10.3969/j.issn.1671-2900.2022.01.023

    WANG Peng. Variation characteristics of effective stress of gas desorption shrinkage in coal[J]Mining Technology, 2022, 22(1): 86-89. doi: 10.3969/j.issn.1671-2900.2022.01.023
    [17] 秦兴林. 煤体孔隙结构及渗透率对不同时长酸化作用的响应规律研究[J]. 煤矿安全, 2020, 51(12): 18-22.

    QIN Xinglin. Study on response law of coal pore structure and permeability affected by different time of acidification[J]. Safety in Coal Mines, 2020, 51(12): 18-22.
    [18] 马强, 李让. 基于应变角度分析N2和CO2对煤层透气性的影响[J]. 辽宁工程技术大学学报(自然科学版), 2010, 29(2): 193-196. doi: 10.3969/j.issn.1008-0562.2010.02.005

    MA Qiang, LI Rang. Effect of N2 and CO2 injection on coal permeability due to stain[J]. Journal of Liaoning Technical University (Natural Science), 2010, 29(2): 193-196. doi: 10.3969/j.issn.1008-0562.2010.02.005
    [19] 刘佳佳, 聂子硕, 于宝种, 等. 超临界二氧化碳对煤体增透的作用机理及影响因素分析[J]. 煤炭科学技术, 2023, 51(2): 204-216.

    LIU Jiajia, NIE Zishuo, YU Baozhong, et al. Analysis of the mechanism and influencing factors of supercritical carbon dioxide on coal permeability enhancement[J]. Coal Science and Technology, 2023, 51(2): 204-216.
    [20] 胡婷. 二氧化碳在增强石油开采系统中的迁移转化过程与模型研究[D]. 长春: 吉林大学, 2022.

    HU Ting. Study on the process model of CO2 migration and phase transformation in enhanced oil recovery system[D]. Changchun: Jilin University, 2022.
    [21] 吴聿元, 陈贞龙. 延川南深部煤层气勘探开发面临的挑战和对策[J]. 油气藏评价与开发, 2020, 10(4): 1-11.

    WU Yuyuan, CHEN Zhenlong. Challenges and countermeasures for exploration and development of deep CBM of South Yanchuan[J]. Reservoir Evaluation and Development, 2020, 10(4): 1-11.
    [22] 王凯峰, 唐书恒, 等. 沁水盆地榆社—武乡区块二叠系煤系页岩储层地质建模及"甜点"预测[J]. 岩性油气藏, 2024, 36(04): 98-108.

    SHEN Youyi, WANG Kaifeng, TANG Shuheng, et al. Geological modeling and "sweet spot" prediction of Permian coal measures shale reservoirs in Yushe-Wuxiang block, Qinshui Basin[J]. Lithologic Reservoirs, 2024, 36(4): 98-108.
    [23] 陈贞龙, 王烽, 陈刚, 等. 延川南深部煤层气富集规律及开发特征研究[J]. 煤炭科学技术, 2018, 46(6): 80-84.

    CHEN Zhenlong, WANG Feng, CHEN Gang, et al. Study on enrichment law and development features of deep coalbed methane in South Yanchuan Field[J]. Coal Science and Technology, 2018, 46(6): 80-84.
    [24] 王青青, 孟艳军, 闫涛滔, 等. 不同煤阶煤储层吸附/解吸特征差异及其对产能的影响[J]. 煤田地质与勘探, 2023, 51(5): 66-77.

    WANG Qingqing, MENG Yanjun, YAN Taotao, et al. Differences in the adsorption/desorption characteristics of coal reservoirs with different coal ranks and their effects on the reservoir productivity[J]. Coal Geology & Exploration, 2023, 51(5): 66-77.
    [25] 陈贞龙. 解吸阶段划分对延川南煤层气田开发的指示意义[J]. 油气藏评价与开发, 2017, 7(5): 80-84. doi: 10.3969/j.issn.2095-1426.2017.05.015

    CHEN Zhenlong. The significance of desorption phase division on the development of coalbed methane fields in southern Yanchuan County[J]. Reservoir Evaluation and Development, 2017, 7(5): 80-84. doi: 10.3969/j.issn.2095-1426.2017.05.015
    [26] SWENSON H, STADIE N P. Langmuir's theory of adsorption: a centennial review[J]. Langmuir, 2019, 35(16): 5409-5426. doi: 10.1021/acs.langmuir.9b00154
    [27] HE Lilin, MELNICHENKO Y B, MASTALERZ M, et al. Pore accessibility by methane and carbon dioxide in coal as determined by neutron scattering[J]. Energy & Fuels, 2012, 26(3): 1975-1983.
    [28] 付学祥, 张登峰, 降文萍, 等. 煤体理化性质对其孔隙结构和甲烷吸附性能影响的研究进展[J]. 化工进展, 2019, 38(6): 2714-2725.

    FU Xuexiang, ZHANG Dengfeng, JIANG Wenping, et al. Influence of physicochemical properties of coals on pore morphology and methane adsorption: a perspective[J]. Chemical Industry and Engineering Progress, 2019, 38(6): 2714-2725.
    [29] LUN Zengmin, FAN Hongfu, WANG Haitao, et al. Interfacial tensions between reservoir brine and CO2 at high pressures for different salinity[J]. Energy & Fuels, 2012, 26(6): 3958-3962.
    [30] YANG Nannan, LIU Shuyan, YANG Xiaoning. Molecular simulation of preferential adsorption of CO2 over CH4 in Na-montmorillonite clay material[J]. Applied Surface Science, 2015, 356: 1262-1271. doi: 10.1016/j.apsusc.2015.08.101
    [31] SPAN R, WAGNER W. A new equation of state for carbon dioxide covering the fluid region from the triple‐point temperature to 1 100 K at pressures up to 800 MPa[J]. Journal of Physical and Chemical Reference Data, 1996, 25(6): 1509-1596. doi: 10.1063/1.555991
    [32] DAY S, SAKUROVS R, WEIR S. Supercritical gas sorption on moist coals[J]. International Journal of Coal Geology, 2008, 74(3/4): 203-214.
    [33] 史利燕, 李卫波, 康琴琴, 等. CH4-煤吸附/解吸过程视电阻率变化的实验研究[J]. 油气藏评价与开发, 2022, 12(4): 572-579.

    SHI Liyan, LI Weibo, KANG Qinqin, et al. Experimental study on variation of apparent resistivity in CH4-coal adsorption/desorption process[J]. Petroleum Reservoir Evaluation and Development, 2022, 12(4): 572-579.
    [34] 王倩倩. 超临界二氧化碳流体对煤体理化性质及吸附性能的作用规律[D]. 昆明: 昆明理工大学, 2016.

    WANG Qianqian. Effect of supercritical carbon dioxide fluid on physical and chemical properties and adsorption properties of coal[D]. Kunming: Kunming University of Science and Technology, 2016.
    [35] 孟雅, 李治平, 唐书恒, 等. 中、高阶煤样甲烷吸附应变及渗透性实验分析[J]. 煤炭学报, 2021, 46(6): 1915-1924.

    MENG Ya, LI Zhiping, TANG Shuheng, et al. Laboratory investigation on methane sorption-induced strain and permeability in middle and high rank coal samples[J]. Journal of China Coal Society, 2021, 46(6): 1915-1924.
  • 加载中
图(14) / 表(3)
计量
  • 文章访问数:  77
  • HTML全文浏览量:  30
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-10-16
  • 修回日期:  2024-12-13
  • 刊出日期:  2025-01-28

目录

    /

    返回文章
    返回