留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

深部煤层气水平井定向射孔压裂水力裂缝扩展特征

黄树新 李松 陈博

黄树新, 李松, 陈博. 深部煤层气水平井定向射孔压裂水力裂缝扩展特征[J]. 石油实验地质, 2025, 47(1): 153-162. doi: 10.11781/sysydz2025010153
引用本文: 黄树新, 李松, 陈博. 深部煤层气水平井定向射孔压裂水力裂缝扩展特征[J]. 石油实验地质, 2025, 47(1): 153-162. doi: 10.11781/sysydz2025010153
HUANG Shuxin, LI Song, CHEN Bo. Hydraulic fracture propagation characteristics of directional perforation fracturing in horizontal wells for deep coalbed methane[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2025, 47(1): 153-162. doi: 10.11781/sysydz2025010153
Citation: HUANG Shuxin, LI Song, CHEN Bo. Hydraulic fracture propagation characteristics of directional perforation fracturing in horizontal wells for deep coalbed methane[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2025, 47(1): 153-162. doi: 10.11781/sysydz2025010153

深部煤层气水平井定向射孔压裂水力裂缝扩展特征

doi: 10.11781/sysydz2025010153
基金项目: 

国家自然科学基金面上项目(42272195)和中国石化科技项目(P23205,YT24007)联合资助。

详细信息
    作者简介:

    黄树新(1974—),男,工程师,从事非常规油气资源研究与现场管理。E-mail:406682782@qq.com。

    通讯作者:

    李松(1985—),男,博士,副教授,从事非常规油气开发地质研究。E-mail:lisong@cugb.edu.cn。

  • 中图分类号: TE243

Hydraulic fracture propagation characteristics of directional perforation fracturing in horizontal wells for deep coalbed methane

  • 摘要: 深部煤层气资源禀赋特征好,勘探开发潜力大,是国家天然气“增储上产”发展战略的重要现实基础。水平井定向射孔压裂作为深部煤层气重要的增渗改造技术应用广泛,而地质—工程因素作用下的水力裂缝起裂—扩展机制认识尚不明确。为了探究深部煤岩定向射孔压裂特征,采用三维离散格子模拟算法,建立了深部煤层水平井定向射孔压裂数值模型,研究地质参数和射孔参数对压裂改造难度、裂缝形态和压裂改造面积的影响。结果表明:随着弹性模量的增大,煤岩破裂压力增加,改造面积和改造面积差异系数逐渐增大,且有利于长—窄缝的形成;水平应力差的增大导致不同水力裂缝间的交互作用减弱,改造面积减小,改造面积差异系数和裂缝开度增大。此外,射孔深度和射孔直径的增加将显著降低深部煤岩的破裂压力,射孔深度的增大将大幅提升改造面积,而射孔直径的增加造成改造面积减小,且改造面积差异系数也逐渐增大;射孔密度对破裂压力的影响不显著,而与改造面积成正相关关系。针对煤体结构完整的煤岩进行压裂改造,适当提升射孔深度和射孔密度,降低射孔直径,可以取得较好的效果。

     

  • [1] JIA Li, PENG Shoujian, XU Jiang, et al.Investigation on gas drainage effect under different borehole layout via 3D monitoring of gas pressure[J].Journal of Natural Gas Science and Engineering, 2022, 101:104522.
    [2] ZHANG Zetian, XIE Heping, ZHANG Ru, et al.Size and spatial fractal distributions of coal fracture networks under different mining-induced stress conditions[J].International Journal of Rock Mechanics and Mining Sciences, 2020, 132:104364.
    [3] LI Song, TANG Dazhen, PAN Zhejun, et al.Geological conditions of deep coalbed methane in the eastern margin of the Ordos Basin, China:implications for coalbed methane development[J].Journal of Natural Gas Science and Engineering, 2018, 53:394-402.
    [4] 康永尚, 皇甫玉慧, 张兵, 等.含煤盆地深层“超饱和”煤层气形成条件[J].石油学报, 2019, 40(12):1426-1438.

    KANG Yongshang, HUANGFU Yuhui, ZHANG Bing, et al.Formation conditions for deep oversaturated coalbed methane in coal-bearing basins[J].Acta Petrolei Sinica, 2019, 40(12):1426-1438.
    [5] LI Song, QIN Yong, TANG Dazhen, et al.A comprehensive review of deep coalbed methane and recent developments in China[J].International Journal of Coal Geology, 2023, 279:104369.
    [6] 桑树勋, 韩思杰, 周效志, 等.华东地区深部煤层气资源与勘探开发前景初探[J].油气藏评价与开发, 2023, 13(4):403-415.

    SANG Shuxun, HAN Sijie, ZHOU Xiaozhi, et al.Deep coalbed methane resource and its exploration and development prospect in East China[J].Petroleum Reservoir Evaluation and Development, 2023, 13(4):403-415.
    [7] 聂志宏, 时小松, 孙伟, 等.大宁—吉县区块深层煤层气生产特征与开发技术对策[J].煤田地质与勘探, 2022, 50(3):193-200.

    NIE Zhihong, SHI Xiaosong, SUN Wei, et al.Production characteristics of deep coalbed methane gas reservoirs in Daning-Jixian block and its development technology countermeasures[J].Coal Geology & Exploration, 2022, 50(3):193-200.
    [8] 张鹏豹, 肖宇航, 朱庆忠, 等.深层倾斜风化煤层特征及其对煤层气开发的影响:以河北大城区块南部为例[J].天然气工业, 2021, 41(11):86-96.

    ZHANG Pengbao, XIAO Yuhang, ZHU Qingzhong, et al.Characteristics of deep inclined weathered coalbed reservoir and its influence on coalbed methane development:a case study of the southern Dacheng block of Hebei Province[J].Natural Gas Industry, 2021, 41(11):86-96.
    [9] 桑树勋, 郑司建, 王建国, 等.岩石力学地层新方法在深部煤层气勘探开发“甜点”预测中的应用[J].石油学报, 2023, 44(11):1840-1853.

    SANG Shuxun, ZHENG Sijian, WANG Jianguo, et al.Application of new rock mechanical stratigraphy in sweet spot prediction for deep coalbed methane exploration and development[J].Acta Petrolei Sinica, 2023, 44(11):1840-1853.
    [10] 杨兆彪, 李存磊, 郭巧珍, 等.新疆准噶尔盆地白家海凸起深部煤层气不同赋存态分配规律[J/OL].中国矿业大学学报, 1-11(2024-09-29

    ).https://www.cnki.com.cn/Article/CJFDTotal-ZGKD20240927001.htm. YANG Zhaobiao, LI Cunlei, GUO Qiaozhen, et al.Distribution patterns of various occurrence states of deep coalbed methane in the Baijiahai Uplift, Junggar Basin, Xinjiang[J/OL].Journal of China University of Mining & Technology, 1-11(2024-09-29).https://www.cnki.com.cn/Article/CJFDTotal-ZGKD20240927001.htm.
    [11] 明盈, 孙豪飞, 汤达祯, 等.四川盆地上二叠统龙潭组深—超深部煤层气资源开发潜力[J].煤田地质与勘探, 2024, 52(2):102-112.

    MING Ying, SUN Haofei, TANG Dazhen, et al.Potential for the production of deep to ultradeep coalbed methane resources in the Upper Permian Longtan Formation, Sichuan Basin[J].Coal Geology and Exploration, 2024, 52(2):102-112.
    [12] 冯义, 任凯, 刘俊田, 等.深层煤层气水平井安全钻井技术[J].钻采工艺, 2024, 47(3):33-41.

    FENG Yi, REN Kai, LIU Juntian, et al.Safe drilling technology for deep CBM horizontal wells[J].Drilling and Production Technology, 2024, 47(3):33-41.
    [13] 梁龙军, 陈捷, 颜智华, 等.六盘水煤田大倾角地层煤层气L型水平井钻完井技术[J].断块油气田, 2023, 30(4):616-623.

    LIANG Longjun, CHEN Jie, YAN Zhihua, et al.Drilling and completion technology of L-shaped horizontal wells for coalbed methane in high-dip formation in Liupanshui coalfield[J].Fault-Block Oil & Gas Field, 2023, 30(4):616-623.
    [14] 姚红生, 陈贞龙, 何希鹏, 等.深部煤层气“有效支撑”理念及创新实践:以鄂尔多斯盆地延川南煤层气田为例[J].天然气工业, 2022, 42(6):97-106.

    YAO Hongsheng, CHEN Zhenlong, HE Xipeng, et al.“Effective support”concept and innovative practice of deep CBM in South Yanchuan Gas Field of the Ordos Basin[J].Natural Gas Industry, 2022, 42(6):97-106.
    [15] PU Yifan, LI Song, TANG Dazhen, et al.Numerical simulation study on the effectiveness of temporary plugging and fracturing in deep coal seam to construct complex fracture network[J].Geoenergy Science and Engineering, 2023, 227:211939.
    [16] 陈贞龙.延川南深部煤层气田地质单元划分及开发对策[J].煤田地质与勘探, 2021, 49(2):13-20.

    CHEN Zhenlong.Geological unit division and development countermeasures of deep coalbed methane in southern Yanchuan block[J].Coal Geology & Exploration, 2021, 49(2):13-20.
    [17] 陈贞龙, 郭涛, 李鑫, 等.延川南煤层气田深部煤层气成藏规律与开发技术[J].煤炭科学技术, 2019, 47(9):112-118.

    CHEN Zhenlong, GUO Tao, LI Xin, et al.Enrichment law and development technology of deep coalbed methane in South Yanchuan Coalbed Methane Field[J].Coal Science and Technology, 2019, 47(9):112-118.
    [18] 薛洋.WC-X1井空心斜向器与定向射孔技术研究及应用[J].复杂油气藏, 2023, 16(1):114-117.

    XUE Yang.Research and application of hollow whipstock and directional perforation technology in well WC-X1[J].Complex Hydrocarbon Reservoirs, 2023, 16(1):114-117.
    [19] 李可心, 张聪, 李俊, 等.沁水盆地南部煤层气水平井射孔优化[J].新疆石油地质, 2024, 45(5):581-589.

    LI Kexin, ZHANG Cong, LI Jun, et al.Optimization of perforation in CBM horizontal wells in southern Qinshui Basin[J].Xinjiang Petroleum Geology, 2024, 45(5):581-589.
    [20] 刘合, 王峰, 王毓才, 等.现代油气井射孔技术发展现状与展望[J].石油勘探与开发, 2014, 41(6):731-737.

    LIU He, WANG Feng, WANG Yucai, et al.Oil well perforation technology:status and prospects[J].Petroleum Exploration and Development, 2014, 41(6):731-737.
    [21] 赵成龙, 王俊石, 卢启敬.现代油气井射孔技术发展现状与展望[J].石化技术, 2022, 29(8):216-218.

    ZHAO Chenglong, WANG Junshi, LU Qijing.Oil well perforation technology:status and prospects[J].Petrochemical Industry Technology, 2022, 29(8):216-218.
    [22] MILLER C K, WATERS G A, RYLANDER E I.Evaluation of production log data from horizontal wells drilled in organic shales[C]//North American Unconventional Gas Conference and Exhibition.The Woodlands, Texas, USA:OnePetro, 2011:SPE-144326-MS.
    [23] LI Yuwei, HUBUQIN, WU Jing, et al.Optimization method of oriented perforation parameters improving uneven fractures initiation for horizontal well fracturing[J].Fuel, 2023, 349:128754.
    [24] ZHANG Jun, LI Yuwei, PAN Yishan, et al.Experiments and analysis on the influence of multiple closed cemented natural fractures on hydraulic fracture propagation in a tight sandstone reservoir[J].Engineering Geology, 2021, 281:105981.
    [25] 张儒鑫, 侯冰, 单清林, 等.致密砂岩储层水平井螺旋射孔参数优化研究[J].岩土工程学报, 2018, 40(11):2143-2147.

    ZHANG Ruxin, HOU Bing, SHAN Qinglin, et al.Parameter optimization of spiral perforations in horizontal well with tight sandstone reservoir[J].Chinese Journal of Geotechnical Engineering, 2018, 40(11):2143-2147.
    [26] ZHANG Ruxin, HOU Bing, SHAN Qinglin, et al.Hydraulic fracturing initiation and near-wellbore nonplanar propagation from horizontal perforated boreholes in tight formation[J].Journal of Natural Gas Science and Engineering, 2018, 55:337-349.
    [27] LI Minghui, ZHOU Fujian, DONG Enjia, et al.Experimental study on the multiple fracture simultaneous propagation during extremely limited-entry fracturing[J].Journal of Petroleum Science and Engineering, 2022, 218:110906.
    [28] GUO Peng, LI Xiao, LI Shouding, et al.Experimental investigation of simultaneous and asynchronous hydraulic fracture growth from multiple perforations in shale considering stress anisotropy[J].Rock Mechanics and Rock Engineering, 2023, 56(11):8209-8220.
    [29] 单清林, 金衍, 韩玲, 等.水平井螺旋射孔参数对近井筒裂缝形态影响规律[J].石油科学通报, 2017, 2(1):44-52.

    SHAN Qinglin, JIN Yan, HAN Ling, et al.Influence of spiral perforation parameters on fracture geometry near horizontal wellbores[J].Petroleum Science Bulletin, 2017, 2(1):44-52.
    [30] LI Jing, WANG Lixiang, FENG Chun, et al.Study on the influence of perforation parameters on hydraulic fracture initiation and propagation based on CDEM[J].Computers and Geotechnics, 2024, 167:106061.
    [31] SHAN Qinglin, ZHANG Ruxin, JIANG Yujing.Complexity and tortuosity hydraulic fracture morphology due to near-wellbore nonplanar propagation from perforated horizontal wells[J].Journal of Natural Gas Science and Engineering, 2021, 89:103884.
    [32] LIAN Zhanghua, MENG Yingfeng, TONG Min.A new method of numerical simulation for perforation completion of fracture formation[C]//SPE Asia Pacific Oil and Gas Conference and Exhibition.Brisbane, Australia:SPE, 2000.
    [33] ZHANG Guangqing, CHEN Mian.Complex fracture shapes in hydraulic fracturing with orientated perforations[J].Petroleum Exploration and Development, 2009, 36(1):103-107.
    [34] ZHANG F, MACK M.Modeling of hydraulic fracture initiation from perforation tunnels using the 3D lattice method[C]//50th U.S. Rock Mechanics/Geomechanics Symposium.Houston, Texas:OnePetro, 2016:ARMA-2016-534.
    [35] HUANG Liuke, LIU Jianjun, ZHANG Fengshou, et al.3D lattice modeling of hydraulic fracture initiation and near-wellbore propagation for different perforation models[J].Journal of Petroleum Science and Engineering, 2020, 191:107169.
    [36] WANG Xiaohua, TANG Meirong, DU Xianfei, et al.Three-dimensional experimental and numerical investigations on fracture initiation and propagation for oriented limited-entry perforation and helical perforation[J].Rock Mechanics and Rock Engineering, 2023, 56(1):437-462.
    [37] 付海峰, 黄刘科, 张丰收, 等.射孔模式对水力压裂裂缝起裂与扩展的影响机制研究[J].岩石力学与工程学报, 2021, 40(S2):3163-3173.

    FU Haifeng, HUANG Liuke, ZHANG Fengshou, et al.Effect of perforation technologies on the initiation and propagation of hydraulic fracture[J].Chinese Journal of Rock Mechanics and Engineering, 2021, 40(S2):3163-3173.
    [38] 赵凯凯, 张镇, 李文洲, 等.基于XSite的钻孔起裂水力裂缝三维扩展研究[J].岩土工程学报, 2021, 43(8):1483-1491.

    ZHAO Kaikai, ZHANG Zhen, LI Wenzhou, et al.Three-dimensional simulation of hydraulic fracture from a borehole using XSite[J].Chinese Journal of Geotechnical Engineering, 2021, 43(8):1483-1491.
    [39] 柳贡慧, 庞飞, 陈治喜.水力压裂模拟实验中的相似准则[J].石油大学学报(自然科学版), 2000, 24(5):45-48. LIU Gonghui, PANG Fei, CHEN Zhixi.Development of scaling laws for hydraulic fracture simulation tests[J].Journal of the University of Petroleum, China, 2000, 24(5):45-48.
    [40] 郭天魁, 刘晓强, 顾启林.射孔井水力压裂模拟实验相似准则推导[J].中国海上油气, 2015, 27(3):108-112.

    GUO Tiankui, LIU Xiaoqiang, GU Qilin.Deduction of similarity laws of hydraulic fracturing simulation experiments for perforated wells[J].China Offshore Oil and Gas, 2015, 27(3):108-112.
    [41] 侯冰, 陈勉, 李志猛, 等.页岩储集层水力裂缝网络扩展规模评价方法[J].石油勘探与开发, 2014, 41(6):763-768.

    HOU Bing, CHEN Mian, LI Zhimeng, et al.Propagation area evaluation of hydraulic fracture networks in shale gas reservoirs[J].Petroleum Exploration and Development, 2014, 41(6):763-768.
    [42] LECAMPION B, BUNGER A, ZHANG Xi.Numerical methods for hydraulic fracture propagation:a review of recent trends[J].Journal of Natural Gas Science and Engineering, 2018, 49:66-83.
    [43] CONG Ziyuan, LI Yuwei, TANG Jizhou, et al.Numerical simulation of hydraulic fracture height layer-through propagation based on three-dimensional lattice method[J].Engineering Fracture Mechanics, 2022, 264:108331.
    [44] GU Hongren, SIEBRITS E.Effect of formation modulus contrast on hydraulic fracture height containment[J].SPE Production & Operations, 2008, 23(2):170-176.
    [45] BRUMLEY J L, ABASS H H.Hydraulic fracturing of deviated wells:interpretation of breakdown and initial fracture opening pressure[C]//SPE Eastern Regional Meeting.Columbus, Ohio:SPE, 1996:SPE-37363-MS.
    [46] 余前港.螺旋射孔裂缝扩展规律及不同储层压裂优化研究[D].大庆:东北石油大学, 2023. YU Qiangang.Study on fracture propagation law of spiral perforation and optimization of fracturing for different reservoirs[D].Daqing:Northeast Petroleum University, 2023.
  • 加载中
计量
  • 文章访问数:  5
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-09-29
  • 修回日期:  2024-12-03
  • 网络出版日期:  2025-01-24

目录

    /

    返回文章
    返回