留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

深部煤层气水平井定向射孔压裂水力裂缝扩展特征

黄树新 李松 陈博

黄树新, 李松, 陈博. 深部煤层气水平井定向射孔压裂水力裂缝扩展特征[J]. 石油实验地质, 2025, 47(1): 153-162. doi: 10.11781/sysydz2025010153
引用本文: 黄树新, 李松, 陈博. 深部煤层气水平井定向射孔压裂水力裂缝扩展特征[J]. 石油实验地质, 2025, 47(1): 153-162. doi: 10.11781/sysydz2025010153
HUANG Shuxin, LI Song, CHEN Bo. Hydraulic fracture propagation characteristics of directional perforation fracturing in horizontal wells for deep coalbed methane[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2025, 47(1): 153-162. doi: 10.11781/sysydz2025010153
Citation: HUANG Shuxin, LI Song, CHEN Bo. Hydraulic fracture propagation characteristics of directional perforation fracturing in horizontal wells for deep coalbed methane[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2025, 47(1): 153-162. doi: 10.11781/sysydz2025010153

深部煤层气水平井定向射孔压裂水力裂缝扩展特征

doi: 10.11781/sysydz2025010153
基金项目: 

国家自然科学基金面上项目 42272195

中国石化科技项目 P23205

中国石化科技项目 YT24007

详细信息
    作者简介:

    黄树新(1974—),男,工程师,从事非常规油气资源研究与现场管理。E-mail: 406682782@qq.com

    通讯作者:

    李松(1985—),男,博士,副教授,从事非常规油气开发地质研究。E-mail: lisong@cugb.edu.cn

  • 中图分类号: TE243

Hydraulic fracture propagation characteristics of directional perforation fracturing in horizontal wells for deep coalbed methane

  • 摘要: 深部煤层气资源禀赋特征好,勘探开发潜力大,是国家天然气“增储上产”发展战略的重要现实基础。水平井定向射孔压裂作为深部煤层气重要的增渗改造技术应用广泛,而地质—工程因素作用下的水力裂缝起裂—扩展机制认识尚不明确。为了探究深部煤岩定向射孔压裂特征,采用三维离散格子模拟算法,建立了深部煤层水平井定向射孔压裂数值模型,研究地质参数和射孔参数对压裂改造难度、裂缝形态和压裂改造面积的影响。结果表明:随着弹性模量的增大,煤岩破裂压力增加,改造面积和改造面积差异系数逐渐增大,且有利于长—窄缝的形成;水平应力差的增大导致不同水力裂缝间的交互作用减弱,改造面积减小,改造面积差异系数和裂缝开度增大。此外,射孔深度和射孔直径的增加将显著降低深部煤岩的破裂压力,射孔深度的增大将大幅提升改造面积,而射孔直径的增加造成改造面积减小,且改造面积差异系数也逐渐增大;射孔密度对破裂压力的影响不显著,而与改造面积成正相关关系。针对煤体结构完整的煤岩进行压裂改造,适当提升射孔深度和射孔密度,降低射孔直径,可以取得较好的效果。

     

  • 图  1  三维离散格子算法示意

    Figure  1.  Schematic diagram of three-dimensional discrete lattice algorithm

    图  2  定向射孔压裂模型示意

    SV.垂向应力;SH.水平最大主应力;Sh.水平最小主应力。

    Figure  2.  Schematic diagram of directional perforation fracturing model

    图  3  不同弹性模量下裂缝形态

    Figure  3.  Fracture morphologies under different elastic moduli

    图  4  不同弹性模量下水力压裂效果

    Figure  4.  Hydraulic fracturing effects under different elastic moduli

    图  5  不同水平应力差下裂缝的形态

    Figure  5.  Fracture morphologies under different horizontal stress differences

    图  6  不同水平应力差下射孔压裂改造效果

    Figure  6.  Modification effects of perforation fracturing under different horizontal stress differences

    图  7  不同射孔深度下裂缝的形态

    Figure  7.  Fracture morphologies under different perforation depths

    图  8  不同射孔深度下压裂效果

    Figure  8.  Hydraulic fracturing effects under different perforation depths

    图  9  不同射孔直径下水力裂缝形态

    Figure  9.  Hydraulic fracture morphologies under different perforation diameters

    图  10  不同射孔直径下的压裂效果

    Figure  10.  Hydraulic fracturing effects under different perforation diameters

    图  11  不同射孔密度下水力裂缝形态

    Figure  11.  Hydraulic fracture morphologies under different perforation densities

    图  12  不同射孔密度下的压裂效果

    Figure  12.  Hydraulic fracturing effects under different perforation densities

    表  1  定向射孔模型基本参数

    Table  1.   Basic parameters of directional perforation model

    类型 参数 数值
    储层 弹性模量/GPa 4
    单轴抗压强度/MPa 15
    渗透率/10-3μm2 0.1
    水平最小主应力/MPa 27
    垂向应力/MPa 43
    压裂液密度/(kg/m3) 1 010
    泊松比 0.26
    抗拉强度/MPa 1.5
    孔隙度/% 6
    水平最大主应力/MPa 35
    注入排量/(m3/min) 20
    黏度/(mPa·s) 2
    射孔参数 射孔长度/m 0.4
    射孔直径/m 0.012
    射孔密度(孔/m) 12
    相位角/(°) 180
    下载: 导出CSV
  • [1] JIA Li, PENG Shoujian, XU Jiang, et al. Investigation on gas drainage effect under different borehole layout via 3D monitoring of gas pressure[J]. Journal of Natural Gas Science and Engineering, 2022, 101: 104522. doi: 10.1016/j.jngse.2022.104522
    [2] ZHANG Zetian, XIE Heping, ZHANG Ru, et al. Size and spatial fractal distributions of coal fracture networks under different mining-induced stress conditions[J]. International Journal of Rock Mechanics and Mining Sciences, 2020, 132: 104364. doi: 10.1016/j.ijrmms.2020.104364
    [3] LI Song, TANG Dazhen, PAN Zhejun, et al. Geological conditions of deep coalbed methane in the eastern margin of the Ordos Basin, China: implications for coalbed methane development[J]. Journal of Natural Gas Science and Engineering, 2018, 53: 394-402. doi: 10.1016/j.jngse.2018.03.016
    [4] 康永尚, 皇甫玉慧, 张兵, 等. 含煤盆地深层"超饱和"煤层气形成条件[J]. 石油学报, 2019, 40(12): 1426-1438. doi: 10.7623/syxb201912002

    KANG Yongshang, HUANGFU Yuhui, ZHANG Bing, et al. Formation conditions for deep oversaturated coalbed methane in coal-bearing basins[J]. Acta Petrolei Sinica, 2019, 40(12): 1426-1438. doi: 10.7623/syxb201912002
    [5] LI Song, QIN Yong, TANG Dazhen, et al. A comprehensive review of deep coalbed methane and recent developments in China[J]. International Journal of Coal Geology, 2023, 279: 104369. doi: 10.1016/j.coal.2023.104369
    [6] 桑树勋, 韩思杰, 周效志, 等. 华东地区深部煤层气资源与勘探开发前景初探[J]. 油气藏评价与开发, 2023, 13(4): 403-415.

    SANG Shuxun, HAN Sijie, ZHOU Xiaozhi, et al. Deep coalbed methane resource and its exploration and development prospect in East China[J]. Petroleum Reservoir Evaluation and Development, 2023, 13(4): 403-415.
    [7] 聂志宏, 时小松, 孙伟, 等. 大宁—吉县区块深层煤层气生产特征与开发技术对策[J]. 煤田地质与勘探, 2022, 50(3): 193-200.

    NIE Zhihong, SHI Xiaosong, SUN Wei, et al. Production characteristics of deep coalbed methane gas reservoirs in Daning-Jixian block and its development technology countermeasures[J]. Coal Geology & Exploration, 2022, 50(3): 193-200.
    [8] 张鹏豹, 肖宇航, 朱庆忠, 等. 深层倾斜风化煤层特征及其对煤层气开发的影响: 以河北大城区块南部为例[J]. 天然气工业, 2021, 41(11): 86-96. doi: 10.3787/j.issn.1000-0976.2021.11.009

    ZHANG Pengbao, XIAO Yuhang, ZHU Qingzhong, et al. Characteristics of deep inclined weathered coalbed reservoir and its influence on coalbed methane development: a case study of the southern Dacheng block of Hebei Province[J]. Natural Gas Industry, 2021, 41(11): 86-96. doi: 10.3787/j.issn.1000-0976.2021.11.009
    [9] 桑树勋, 郑司建, 王建国, 等. 岩石力学地层新方法在深部煤层气勘探开发"甜点"预测中的应用[J]. 石油学报, 2023, 44(11): 1840-1853. doi: 10.7623/syxb202311007

    SANG Shuxun, ZHENG Sijian, WANG Jianguo, et al. Application of new rock mechanical stratigraphy in sweet spot prediction for deep coalbed methane exploration and development[J]. Acta Petrolei Sinica, 2023, 44(11): 1840-1853. doi: 10.7623/syxb202311007
    [10] 杨兆彪, 李存磊, 郭巧珍, 等. 新疆准噶尔盆地白家海凸起深部煤层气不同赋存态分配规律[J/OL]. 中国矿业大学学报, 1-11(2024-09-29). https://www.cnki.com.cn/Article/CJFDTotal-ZGKD20240927001.htm.

    YANG Zhaobiao, LI Cunlei, GUO Qiaozhen, et al. Distribution patterns of various occurrence states of deep coalbed methane in the Baijiahai Uplift, Junggar Basin, Xinjiang[J/OL]. Journal of China University of Mining & Technology, 1-11(2024-09-29). https://www.cnki.com.cn/Article/CJFDTotal-ZGKD20240927001.htm.
    [11] 明盈, 孙豪飞, 汤达祯, 等. 四川盆地上二叠统龙潭组深—超深部煤层气资源开发潜力[J]. 煤田地质与勘探, 2024, 52(2): 102-112.

    MING Ying, SUN Haofei, TANG Dazhen, et al. Potential for the production of deep to ultradeep coalbed methane resources in the Upper Permian Longtan Formation, Sichuan Basin[J]. Coal Geology and Exploration, 2024, 52(2): 102-112.
    [12] 冯义, 任凯, 刘俊田, 等. 深层煤层气水平井安全钻井技术[J]. 钻采工艺, 2024, 47(3): 33-41. doi: 10.3969/J.ISSN.1006-768X.2024.03.05

    FENG Yi, REN Kai, LIU Juntian, et al. Safe drilling technology for deep CBM horizontal wells[J]. Drilling and Production Technology, 2024, 47(3): 33-41. doi: 10.3969/J.ISSN.1006-768X.2024.03.05
    [13] 梁龙军, 陈捷, 颜智华, 等. 六盘水煤田大倾角地层煤层气L型水平井钻完井技术[J]. 断块油气田, 2023, 30(4): 616-623.

    LIANG Longjun, CHEN Jie, YAN Zhihua, et al. Drilling and completion technology of L-shaped horizontal wells for coalbed methane in high-dip formation in Liupanshui coalfield[J]. Fault- Block Oil & Gas Field, 2023, 30(4): 616-623.
    [14] 姚红生, 陈贞龙, 何希鹏, 等. 深部煤层气"有效支撑"理念及创新实践: 以鄂尔多斯盆地延川南煤层气田为例[J]. 天然气工业, 2022, 42(6): 97-106. doi: 10.3787/j.issn.1000-0976.2022.06.009

    YAO Hongsheng, CHEN Zhenlong, HE Xipeng, et al. "Effective support"concept and innovative practice of deep CBM in South Yanchuan Gas Field of the Ordos Basin[J]. Natural Gas Industry, 2022, 42(6): 97-106. doi: 10.3787/j.issn.1000-0976.2022.06.009
    [15] PU Yifan, LI Song, TANG Dazhen, et al. Numerical simulation study on the effectiveness of temporary plugging and fracturing in deep coal seam to construct complex fracture network[J]. Geoenergy Science and Engineering, 2023, 227: 211939. doi: 10.1016/j.geoen.2023.211939
    [16] 陈贞龙. 延川南深部煤层气田地质单元划分及开发对策[J]. 煤田地质与勘探, 2021, 49(2): 13-20. doi: 10.3969/j.issn.1001-1986.2021.02.002

    CHEN Zhenlong. Geological unit division and development countermeasures of deep coalbed methane in southern Yanchuan block[J]. Coal Geology & Exploration, 2021, 49(2): 13-20. doi: 10.3969/j.issn.1001-1986.2021.02.002
    [17] 陈贞龙, 郭涛, 李鑫, 等. 延川南煤层气田深部煤层气成藏规律与开发技术[J]. 煤炭科学技术, 2019, 47(9): 112-118.

    CHEN Zhenlong, GUO Tao, LI Xin, et al. Enrichment law and development technology of deep coalbed methane in South Yanchuan Coalbed Methane Field[J]. Coal Science and Technology, 2019, 47(9): 112-118.
    [18] 薛洋. WC-X1井空心斜向器与定向射孔技术研究及应用[J]. 复杂油气藏, 2023, 16(1): 114-117.

    XUE Yang. Research and application of hollow whipstock and directional perforation technology in well WC-X1[J]. Complex Hydrocarbon Reservoirs, 2023, 16(1): 114-117.
    [19] 李可心, 张聪, 李俊, 等. 沁水盆地南部煤层气水平井射孔优化[J]. 新疆石油地质, 2024, 45(5): 581-589.

    LI Kexin, ZHANG Cong, LI Jun, et al. Optimization of perforation in CBM horizontal wells in southern Qinshui Basin[J]. Xinjiang Petroleum Geology, 2024, 45(5): 581-589.
    [20] 刘合, 王峰, 王毓才, 等. 现代油气井射孔技术发展现状与展望[J]. 石油勘探与开发, 2014, 41(6): 731-737.

    LIU He, WANG Feng, WANG Yucai, et al. Oil well perforation technology: status and prospects[J]. Petroleum Exploration and Development, 2014, 41(6): 731-737.
    [21] 赵成龙, 王俊石, 卢启敬. 现代油气井射孔技术发展现状与展望[J]. 石化技术, 2022, 29(8): 216-218. doi: 10.3969/j.issn.1006-0235.2022.08.075

    ZHAO Chenglong, WANG Junshi, LU Qijing. Oil well perforation technology: status and prospects[J]. Petrochemical Industry Technology, 2022, 29(8): 216-218. doi: 10.3969/j.issn.1006-0235.2022.08.075
    [22] MILLER C K, WATERS G A, RYLANDER E I. Evaluation of production log data from horizontal wells drilled in organic shales[C]//North American Unconventional Gas Conference and Exhibition. The Woodlands, Texas, USA: OnePetro, 2011: SPE-144326-MS.
    [23] LI Yuwei, HUBUQIN, WU Jing, et al. Optimization method of oriented perforation parameters improving uneven fractures initiation for horizontal well fracturing[J]. Fuel, 2023, 349: 128754. doi: 10.1016/j.fuel.2023.128754
    [24] ZHANG Jun, LI Yuwei, PAN Yishan, et al. Experiments and analysis on the influence of multiple closed cemented natural fractures on hydraulic fracture propagation in a tight sandstone reservoir[J]. Engineering Geology, 2021, 281: 105981. doi: 10.1016/j.enggeo.2020.105981
    [25] 张儒鑫, 侯冰, 单清林, 等. 致密砂岩储层水平井螺旋射孔参数优化研究[J]. 岩土工程学报, 2018, 40(11): 2143-2147. doi: 10.11779/CJGE201811022

    ZHANG Ruxin, HOU Bing, SHAN Qinglin, et al. Parameter optimization of spiral perforations in horizontal well with tight sandstone reservoir[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(11): 2143-2147. doi: 10.11779/CJGE201811022
    [26] ZHANG Ruxin, HOU Bing, SHAN Qinglin, et al. Hydraulic fracturing initiation and near-wellbore nonplanar propagation from horizontal perforated boreholes in tight formation[J]. Journal of Natural Gas Science and Engineering, 2018, 55: 337-349. doi: 10.1016/j.jngse.2018.05.021
    [27] LI Minghui, ZHOU Fujian, DONG Enjia, et al. Experimental study on the multiple fracture simultaneous propagation during extremely limited-entry fracturing[J]. Journal of Petroleum Science and Engineering, 2022, 218: 110906. doi: 10.1016/j.petrol.2022.110906
    [28] GUO Peng, LI Xiao, LI Shouding, et al. Experimental investigation of simultaneous and asynchronous hydraulic fracture growth from multiple perforations in shale considering stress anisotropy[J]. Rock Mechanics and Rock Engineering, 2023, 56(11): 8209-8220. doi: 10.1007/s00603-023-03499-6
    [29] 单清林, 金衍, 韩玲, 等. 水平井螺旋射孔参数对近井筒裂缝形态影响规律[J]. 石油科学通报, 2017, 2(1): 44-52.

    SHAN Qinglin, JIN Yan, HAN Ling, et al. Influence of spiral perforation parameters on fracture geometry near horizontal wellbores[J]. Petroleum Science Bulletin, 2017, 2(1): 44-52.
    [30] LI Jing, WANG Lixiang, FENG Chun, et al. Study on the influence of perforation parameters on hydraulic fracture initiation and propagation based on CDEM[J]. Computers and Geotechnics, 2024, 167: 106061. doi: 10.1016/j.compgeo.2023.106061
    [31] SHAN Qinglin, ZHANG Ruxin, JIANG Yujing. Complexity and tortuosity hydraulic fracture morphology due to near-wellbore nonplanar propagation from perforated horizontal wells[J]. Journal of Natural Gas Science and Engineering, 2021, 89: 103884. doi: 10.1016/j.jngse.2021.103884
    [32] LIAN Zhanghua, MENG Yingfeng, TONG Min. A new method of numerical simulation for perforation completion of fracture formation[C]//SPE Asia Pacific Oil and Gas Conference and Exhibition. Brisbane, Australia: SPE, 2000.
    [33] ZHANG Guangqing, CHEN Mian. Complex fracture shapes in hydraulic fracturing with orientated perforations[J]. Petroleum Exploration and Development, 2009, 36(1): 103-107. doi: 10.1016/S1876-3804(09)60113-0
    [34] ZHANG F, MACK M. Modeling of hydraulic fracture initiation from perforation tunnels using the 3D lattice method[C]//50th U.S. Rock Mechanics/Geomechanics Symposium. Houston, Texas: OnePetro, 2016: ARMA-2016-534.
    [35] HUANG Liuke, LIU Jianjun, ZHANG Fengshou, et al. 3D lattice modeling of hydraulic fracture initiation and near-wellbore propagation for different perforation models[J]. Journal of Petroleum Science and Engineering, 2020, 191: 107169. doi: 10.1016/j.petrol.2020.107169
    [36] WANG Xiaohua, TANG Meirong, DU Xianfei, et al. Three-dimensional experimental and numerical investigations on fracture initiation and propagation for oriented limited-entry perforation and helical perforation[J]. Rock Mechanics and Rock Engineering, 2023, 56(1): 437-462. doi: 10.1007/s00603-022-03069-2
    [37] 付海峰, 黄刘科, 张丰收, 等. 射孔模式对水力压裂裂缝起裂与扩展的影响机制研究[J]. 岩石力学与工程学报, 2021, 40(S2): 3163-3173.

    FU Haifeng, HUANG Liuke, ZHANG Fengshou, et al. Effect of perforation technologies on the initiation and propagation of hydraulic fracture[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(S2): 3163-3173.
    [38] 赵凯凯, 张镇, 李文洲, 等. 基于XSite的钻孔起裂水力裂缝三维扩展研究[J]. 岩土工程学报, 2021, 43(8): 1483-1491.

    ZHAO Kaikai, ZHANG Zhen, LI Wenzhou, et al. Three-dimensional simulation of hydraulic fracture from a borehole using XSite[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(8): 1483-1491.
    [39] 柳贡慧, 庞飞, 陈治喜. 水力压裂模拟实验中的相似准则[J]. 石油大学学报(自然科学版), 2000, 24(5): 45-48.

    LIU Gonghui, PANG Fei, CHEN Zhixi. Development of scaling laws for hydraulic fracture simulation tests[J]. Journal of the University of Petroleum, China, 2000, 24(5): 45-48.
    [40] 郭天魁, 刘晓强, 顾启林. 射孔井水力压裂模拟实验相似准则推导[J]. 中国海上油气, 2015, 27(3): 108-112.

    GUO Tiankui, LIU Xiaoqiang, GU Qilin. Deduction of similarity laws of hydraulic fracturing simulation experiments for perforated wells[J]. China Offshore Oil and Gas, 2015, 27(3): 108-112.
    [41] 侯冰, 陈勉, 李志猛, 等. 页岩储集层水力裂缝网络扩展规模评价方法[J]. 石油勘探与开发, 2014, 41(6): 763-768.

    HOU Bing, CHEN Mian, LI Zhimeng, et al. Propagation area evaluation of hydraulic fracture networks in shale gas reservoirs[J]. Petroleum Exploration and Development, 2014, 41(6): 763-768.
    [42] LECAMPION B, BUNGER A, ZHANG Xi. Numerical methods for hydraulic fracture propagation: a review of recent trends[J]. Journal of Natural Gas Science and Engineering, 2018, 49: 66-83. doi: 10.1016/j.jngse.2017.10.012
    [43] CONG Ziyuan, LI Yuwei, TANG Jizhou, et al. Numerical simulation of hydraulic fracture height layer-through propagation based on three-dimensional lattice method[J]. Engineering Fracture Mechanics, 2022, 264: 108331. doi: 10.1016/j.engfracmech.2022.108331
    [44] GU Hongren, SIEBRITS E. Effect of formation modulus contrast on hydraulic fracture height containment[J]. SPE Production & Operations, 2008, 23(2): 170-176. http://www.onacademic.com/detail/journal_1000039080441010_9e52.html
    [45] BRUMLEY J L, ABASS H H. Hydraulic fracturing of deviated wells: interpretation of breakdown and initial fracture opening pressure[C]//SPE Eastern Regional Meeting. Columbus, Ohio: SPE, 1996: SPE-37363-MS.
    [46] 余前港. 螺旋射孔裂缝扩展规律及不同储层压裂优化研究[D]. 大庆: 东北石油大学, 2023.

    YU Qiangang. Study on fracture propagation law of spiral perforation and optimization of fracturing for different reservoirs[D]. Daqing: Northeast Petroleum University, 2023.
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  84
  • HTML全文浏览量:  30
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-09-29
  • 修回日期:  2024-12-03
  • 刊出日期:  2025-01-28

目录

    /

    返回文章
    返回