留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于原子力显微镜的煤岩微观孔隙结构与力学性质研究

赵石虎 李勇 刘雅利 王延斌 刘曾勤 陈刚 陈新军

赵石虎, 李勇, 刘雅利, 王延斌, 刘曾勤, 陈刚, 陈新军. 基于原子力显微镜的煤岩微观孔隙结构与力学性质研究[J]. 石油实验地质, 2025, 47(1): 173-183. doi: 10.11781/sysydz2025010173
引用本文: 赵石虎, 李勇, 刘雅利, 王延斌, 刘曾勤, 陈刚, 陈新军. 基于原子力显微镜的煤岩微观孔隙结构与力学性质研究[J]. 石油实验地质, 2025, 47(1): 173-183. doi: 10.11781/sysydz2025010173
ZHAO Shihu, LI Yong, LIU Yali, WANG Yanbin, LIU Zengqin, CHEN Gang, CHEN Xinjun. Study on microscopic pore structures and mechanical properties[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2025, 47(1): 173-183. doi: 10.11781/sysydz2025010173
Citation: ZHAO Shihu, LI Yong, LIU Yali, WANG Yanbin, LIU Zengqin, CHEN Gang, CHEN Xinjun. Study on microscopic pore structures and mechanical properties[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2025, 47(1): 173-183. doi: 10.11781/sysydz2025010173

基于原子力显微镜的煤岩微观孔隙结构与力学性质研究

doi: 10.11781/sysydz2025010173
基金项目: 

中国石化科技部项目 P23206

中国石化科技部项目 P23230

中国石化石油勘探开发研究院优青项目 YK202406

详细信息
    作者简介:

    赵石虎(1992—),男,博士,从事煤层气地质研究工作。E-mail: zhaoshh0310.syky@sinopec.com

    通讯作者:

    李勇(1988—),男,博士,教授,博士生导师,从事煤与煤层气地质、煤系矿产资源方面的教学和科研工作。E-mail: liyong@cumtb.edu.cn

  • 中图分类号: TE132.2

Study on microscopic pore structures and mechanical properties

  • 摘要: 煤岩孔隙结构与力学性质是煤层气地质评价的关键参数,反映煤的储集性与可压性。以山西沁水、大同等盆地4块煤样(大同侏罗系煤、镜质体反射率Ro=0.91%,古交山西组2号煤、Ro=1.34%,古交太原组8号煤、Ro=1.70%,翼城山西组2号煤、Ro= 1.77%)为研究对象,基于原子力显微镜实验,利用图像分割法与Derjaguin-Muller-Toporov力学模型建立微观孔隙结构与力学性质联合表征技术,明确煤样的微观孔隙结构与力学性质,揭示了物质组成、孔隙结构及热演化程度对微观力学性质的影响。结果表明,煤样的面孔率主要分布于2.72%~4.60%,平均3.58%;总孔表面积为(3.413~5.638)×10-2 μm2/μm2,总孔容为(0.5~3.9)×10-4 μm3/μm2,孔径主要分布于10~100 nm,杨氏模量分布于2.24~3.10 GPa,平均2.77 GPa。煤的力学性质受到物质组成、孔隙结构与热演化程度的共同作用,随着水分的减少、挥发分与矿物含量的增加,杨氏模量呈现增大趋势;表面粗糙度、平均孔径、面孔率、比表面积及总孔容增大,杨氏模量表现出减小趋势;随着热演化程度增加,杨氏模量减小。基于原子力显微镜可同步揭示煤岩微观孔隙结构与力学性质,为煤储层储集性与力学研究提供新方法与新思路,对于非常规储层储集性评价及可压性研究具有重要意义。

     

  • 图  1  原子力显微镜基本原理与仪器

    据参考文献[22]修改。

    Figure  1.  Basic principle and device of atomic force microscope

    图  2  针尖与样品力—位移曲线

    据参考文献[24]修改。

    Figure  2.  Force and displacement curves between needle tip and sample

    图  3  煤样AFM表面形貌

    a、b、c、d分别为样品XZ-1、GJ2-1、GJ8-1、SH-1的表面形貌二维图;e、f、g、h分别为样品XZ-1、GJ2-1、GJ8-1、SH-1的表面形貌剖面图。

    Figure  3.  AFM surface morphologies of coal samples

    图  4  基于AFM形貌图的不同地区煤样分形特征

    a. XZ-1样品; b. GJ-2样品; c. GJ-8样品; d. SH-1样品。

    Figure  4.  Fractal characteristics of coal samples from different regions based on AFM morphologies

    图  5  基于阈值分水岭结合法的AFM图孔隙表征结果

    a. XZ-1样品; b. GJ-2样品; c. GJ-8样品; d. SH-1样品。

    Figure  5.  Pore characterization results of AFM images based on combination of threshold and watershed methods

    图  6  基于AFM的不同地区煤样孔径分布

    a. 孔隙数量分布; b.孔容占比分布; c. 孔表面积分布。

    Figure  6.  Pore size distributions of coal samples from different regions based on AFM

    图  7  基于AFM的微观DMT杨氏模量

    a. XZ-1样品煤基质; b. GJ2-1样品煤基质; c. GJ8-1样品煤基质; d. SH-1样品煤基质; e. SH-1样品矿物; f. GJ2-1样品矿物。

    Figure  7.  Micro DMT Young's modulus of coal samples based on AFM

    图  8  不同地区煤基质与矿物杨氏模量统计

    a. XZ-1样品煤基质; b. GJ2-1样品煤基质; c. GJ8-1样品煤基质; d. SH-1样品煤基质; e. SH-1样品矿物; f. GJ2-1样品矿物。

    Figure  8.  Young's modulus statistics of coal matrix and minerals from different regions

    图  9  GJ2-1煤样孔隙结构(a)和杨氏模量表征结果(b)与扫描电镜图像(c)对比

    Figure  9.  Comparison of characterization results of pore structure (a) and Young's modulus (b) with scanning electron microscopy images (c) of GJ2-1 coal samples

    图  10  煤的工业组分与DMT杨氏模量相关关系

    a. Mad与杨氏模量关系; b. Aad与杨氏模量关系; c. Vad与杨氏模量关系; d. FCad与杨氏模量关系。

    Figure  10.  Correlation between industrial components of coal and DMT Young's modulus

    图  11  微观孔隙结构参数与DMT杨氏模量相关关系

    a.Ra与杨氏模量关系; b.分形维数与杨氏模量关系; c.平均孔径与杨氏模量关系; d.面孔率与杨氏模量关系; e.总孔容与杨氏模量关系; f.总孔表面积与杨氏模量关系。

    Figure  11.  Correlation between microscopic pore structure parameters and DMT Young's modulus

    图  12  煤的镜质体反射率与DMT杨氏模量相关关系

    Figure  12.  Correlation between vitrinite reflectance of coal and DMT Young's modulus

    表  1  不同地区煤样工业组分及演化程度参数

    Table  1.   Parameters of industrial components and thermal evolution levels of coal samples from different regions

    样品来源 样品编号 Ro/% 工业组分含量/%
    Mad Aad Vad FCad
    忻州窑侏罗系煤 XZ-1 0.91 0.78 25.40 25.02 48.80
    原相矿区2号煤 GJ2-1 1.34 2.35 16.24 14.45 66.95
    原相矿区8号煤 GJ8-1 1.70 0.86 13.65 17.81 67.68
    上河矿区2号煤 SH-1 1.77 0.77 6.47 15.24 77.52
    注:Ro.镜质体反射率;Mad.空气干燥基水分;Aad.空气干燥基灰分;Vad.空气干燥基挥发分;FCad.空气干燥基固定碳。
    下载: 导出CSV

    表  2  不同地区煤样表面粗糙度评价结果

    Table  2.   Evaluation results of surface roughness of coal samples from different regions

    样品编号 Ro/% Ra/nm Rq/nm Rsk Rku
    XZ-1 0.91 0.73 0.97 0.50 0.83
    GJ2-1 1.34 1.34 1.87 1.94 21.18
    GJ8-1 1.70 0.78 1.01 0.16 0.76
    SH-1 1.77 0.95 1.45 0.72 6.08
    下载: 导出CSV

    表  3  煤样孔隙结构评价结果

    Table  3.   Evaluation results of pore structures of coal samples

    样品编号 孔隙数量/个 面孔率/% 平均孔径/nm 总孔表面积/(μm2/μm2) 总孔容/(μm3/μm2)
    XZ-1 338 2.72 103 3.413 0.005
    GJ2-1 637 4.60 104 5.638 0.039
    GJ8-1 352 4.03 129 5.259 0.011
    SH-1 467 2.95 94 3.631 0.023
    下载: 导出CSV
  • [1] 郭旭升, 周德华, 赵培荣, 等. 鄂尔多斯盆地石炭系—二叠系煤系非常规天然气勘探开发进展与攻关方向[J]. 石油与天然气地质, 2022, 43(5): 1013-1023.

    GUO Xusheng, ZHOU Dehua, ZHAO Peirong, et al. Progresses and directions of unconventional natural gas exploration and development in the Carboniferous-Permian coal measure strata, Ordos Basin[J]. Oil & Gas Geology, 2022, 43(5): 1013-1023.
    [2] 张千贵, 李权山, 范翔宇, 等. 中国煤与煤层气共采理论技术现状及发展趋势[J]. 天然气工业, 2022, 42(6): 130-145. doi: 10.3787/j.issn.1000-0976.2022.06.011

    ZHANG Qiangui, LI Quanshan, FAN Xiangyu, et al. Current situation and development trend of theories and technologies for coal and CBM co-mining in China[J]. Natural Gas Industry, 2022, 42(6): 130-145. doi: 10.3787/j.issn.1000-0976.2022.06.011
    [3] 周德华, 陈刚, 陈贞龙, 等. 中国深层煤层气勘探开发进展、关键评价参数与前景展望[J]. 天然气工业, 2022, 42(6): 43-51. doi: 10.3787/j.issn.1000-0976.2022.06.004

    ZHOU Dehua, CHEN Gang, CHEN Zhenlong, et al. Exploration and development progress, key evaluation parameters and prospect of deep CBM in China[J]. Natural Gas Industry, 2022, 42(6): 43-51. doi: 10.3787/j.issn.1000-0976.2022.06.004
    [4] 李勇, 徐立富, 张守仁, 等. 深煤层含气系统差异及开发对策[J]. 煤炭学报, 2023, 48(2): 900-917.

    LI Yong, XU Lifu, ZHANG Shouren, et al. Gas bearing system difference in deep coal seams and corresponded development strategy[J]. Journal of China Coal Society, 2023, 48(2): 900-917.
    [5] 郭涛, 金晓波, 武迪迪, 等. 川东南南川区块龙潭组深部煤层气成藏特征及勘探前景[J]. 煤田地质与勘探, 2024, 52(4): 60-67.

    GUO Tao, JIN Xiaobo, WU Didi, et al. Accumulation characteristics and exploration prospects of deep coalbed methane in the Longtan Formation of the Nanchuan block on the southeastern margin of the Sichuan Basin[J]. Coal Geology & Exploration, 2024, 52(4): 60-67.
    [6] 何发岐, 董昭雄. 深部煤层气资源开发潜力: 以鄂尔多斯盆地大牛地气田为例[J]. 石油与天然气地质, 2022, 43(2): 277-285.

    HE Faqi, DONG Zhaoxiong. Development potential of deep coalbed methane: a case study in the Daniudi gas field, Ordos Basin[J]. Oil & Gas Geology, 2022, 43(2): 277-285.
    [7] LI Jijun, YIN Jianxin, ZHANG Yanian, et al. A comparison of experimental methods for describing shale pore features: a case study in the Bohai Bay Basin of eastern China[J]. International Journal of Coal Geology, 2015, 152: 39-49. doi: 10.1016/j.coal.2015.10.009
    [8] 孔令运, 宋广朋, 蒋恕, 等. 深层页岩微观力学特征及控制机理: 以涪陵地区平桥区块JYA井深层页岩为例[J]. 石油实验地质, 2024, 46(4): 683-697. doi: 10.11781/sysydz202404683

    KONG Lingyun, SONG Guangpeng, JIANG Shu, et al. Micromechanical characteristics and controlling mechanism of deep shale: a case study of well JYA in Pingqiao block, Fuling area[J]. Petroleum Geology & Experiment, 2024, 46(4): 683-697. doi: 10.11781/sysydz202404683
    [9] 陈立超, 张典坤, 吕帅锋, 等. 海/陆相页岩微观力学性质压痕测试研究[J]. 油气地质与采收率, 2022, 29(6): 31-38.

    CHEN Lichao, ZHANG Diankun, LV Shuaifeng, et al. Micromechanical characteristics of marine/continental shale based on indentation test[J]. Petroleum Geology and Recovery Efficiency, 2022, 29(6): 31-38.
    [10] GOLUBEV Y A, KOVALEVA O V, YUSHKIN N P. Observations and morphological analysis of supermolecular structure of natural bitumens by atomic force microscopy[J]. Fuel, 2008, 87(1): 32-38. doi: 10.1016/j.fuel.2007.04.005
    [11] 李俊乾, 刘大锰, 卢双舫, 等. 中高煤阶煤岩弹性模量及其影响因素试验研究[J]. 煤炭科学技术, 2016, 44(1): 102-108.

    LI Junqian, LIU Dameng, LU Shuangfang, et al. Experimental study on elastic modulus of medium-high rank coals and its influencing factors[J]. Coal Science and Technology, 2016, 44(1): 102-108.
    [12] 王濡岳, 胡宗全, 董立, 等. 页岩气储层表征评价技术进展与思考[J]. 石油与天然气地质, 2021, 42(1): 54-65.

    WANG Ruyue, HU Zongquan, DONG Li, et al. Advancement and trends of shale gas reservoir characterization and evaluation[J]. Oil & Gas Geology, 2021, 42(1): 54-65.
    [13] 张琴, 刘畅, 梅啸寒, 等. 页岩气储层微观储集空间研究现状及展望[J]. 石油与天然气地质, 2015, 36(4): 666-674.

    ZHANG Qin, LIU Chang, MEI Xiaohan, et al. Status and prospect of research on microscopic shale gas reservoir space[J]. Oil & Gas Geology, 2015, 36(4): 666-674.
    [14] 余晓露, 李龙龙, 蒋宏, 等. 融合图像处理与深度学习的亮晶颗粒灰岩岩相学分析应用[J]. 石油实验地质, 2023, 45(5): 1026-1038.

    YU Xiaolu, LI Longlong, JIANG Hong, et al. Application of sparry grain limestone petrographic analysis combining image processing and deep learning[J]. Petroleum Geology & Experiment, 2023, 45(5): 1026-1038.
    [15] 王建丰, 杨超, 柳宇柯, 等. 纳米压痕技术在页岩力学性质表征中的应用进展[J]. 石油与天然气地质, 2022, 43(2): 477-488.

    WANG Jianfeng, YANG Chao, LIU Yuke, et al. Review on the application of nanoindentation to study of shale mechanical property[J]. Oil & Gas Geology, 2022, 43(2): 477-488.
    [16] 郭敬杰, 李伟, 韩祥凯, 等. 基于纳米压痕的构造煤与原生煤结构面力学特性[J]. 中国矿业大学学报, 2024, 53(3): 509-523.

    GUO Jingjie, LI Wei, HAN Xiangkai, et al. Mechanical properties instructural planes of tectonic coal and primary coal through nano-indentation[J]. Journal of China University of Mining & Technology, 2024, 53(3): 509-523.
    [17] 刘鹏, 赵渝龙, 聂百胜, 等. 煤体微观力学特性的纳米压痕实验研究[J]. 煤炭学报, 2024, 49(8): 3453-3467.

    LIU Peng, ZHAO Yulong, NIE Baisheng, et al. Study on nano-mechanical behavior of coal using nanoindentation tests[J]. Journal of China Coal Society, 2024, 49(8): 3453-3467.
    [18] 余昊, 沈瑞, 郭和坤, 等. 原子力显微镜在页岩储层表征中的应用进展[J]. 应用化工, 2023, 52(2): 511-516. doi: 10.3969/j.issn.1671-3206.2023.02.036

    YU Hao, SHEN Rui, GUO Hekun, et al. Application progress of atomic force microscopy in shale reservoir characterization[J]. Applied Chemical Industry, 2023, 52(2): 511-516. doi: 10.3969/j.issn.1671-3206.2023.02.036
    [19] LIU Jiaxun, JIANG Xiumin, HUANG Xiangyong, et al. Morphological characterization of super fine pulverized coal particle. Part 2. AFM investigation of single coal particle[J]. Fuel, 2010, 89(12): 3884-3891. doi: 10.1016/j.fuel.2010.07.001
    [20] YAO Suping, JIAO Kun, ZHANG Ke, et al. An atomic force microscopy study of coal nanopore structure[J]. Chinese Science Bulletin, 2011, 56(25): 2706-2712. doi: 10.1007/s11434-011-4623-8
    [21] PAN Jienan, ZHU Haitao, HOU Quanlin, et al. Macromolecular and pore structures of Chinese tectonically deformed coal studied by atomic force microscopy[J]. Fuel, 2015, 139: 94-101. doi: 10.1016/j.fuel.2014.08.039
    [22] ZHAO Shihu, LI Yong, WANG Yanbin, et al. Quantitative study on coal and shale pore structure and surface roughness based on atomic force microscopy and image processing[J]. Fuel, 2019, 244: 78-90. doi: 10.1016/j.fuel.2019.02.001
    [23] LI Yong, YANG Jianghao, PAN Zhejun, et al. Nanoscale pore structure and mechanical property analysis of coal: an insight combining AFM and SEM images[J]. Fuel, 2020, 260: 116352. doi: 10.1016/j.fuel.2019.116352
    [24] 杨江浩, 李勇, 吴翔, 等. 基于原子力显微镜的煤岩微尺度力学性质研究[J]. 煤炭科学技术, 2019, 47(9): 144-151.

    YANG Jianghao, LI Yong, WU Xiang, et al. Study on micro-scale mechanical properties of coal rock based on atomic force micro- scopy[J]. Coal Science and Technology, 2019, 47(9): 144-151.
    [25] JAFARZADEGAN K, MERWADE V. A DEM-based approach for large-scale floodplain mapping in ungauged watersheds[J]. Journal of Hydrology, 2017, 550: 650-662. doi: 10.1016/j.jhydrol.2017.04.053
    [26] WU Yanpeng, PENG Xiaoqi, RUAN Kai, et al. Improved image segmentation method based on morphological reconstruction[J]. Multimedia Tools and Applications, 2017, 76(19): 19781-19793. doi: 10.1007/s11042-015-3192-2
    [27] DERJAGUIN B V, MULLER V M, TOPOROV Y P. Effect of contact deformations on the adhesion of particles[J]. Journal of Colloid and Interface Science, 1975, 53(2): 314-326. doi: 10.1016/0021-9797(75)90018-1
    [28] TRTIK P, KAUFMANN J, VOLZ U. On the use of peak-force tapping atomic force microscopy for quantification of the local elastic modulus in hardened cement paste[J]. Cement and Concrete Research, 2012, 42(1): 215-221. doi: 10.1016/j.cemconres.2011.08.009
    [29] DOUKETIS C, WANG Zhouhang, HASLETT T L, et al. Fractal character of cold-deposited silver films determined by low-temperature scanning tunneling microscopy[J]. Physical Review B, 1995, 51(16): 11022-11031. doi: 10.1103/PhysRevB.51.11022
    [30] 张娜, 寻兴建, 王帅栋, 等. 煤系沉积岩多重分形维数计算及影响因素分析[J]. 矿业科学学报, 2021, 6(5): 623-632.

    ZHANG Na, XUN Xingjian, WANG Shuaidong, et al. Calculation of multi-fractal dimension of coal measure sedimentary rock and analysis of influencing factors[J]. Journal of Mining Science and Technology, 2021, 6(5): 623-632.
  • 加载中
图(12) / 表(3)
计量
  • 文章访问数:  51
  • HTML全文浏览量:  25
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-07
  • 修回日期:  2024-11-29
  • 刊出日期:  2025-01-28

目录

    /

    返回文章
    返回