留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

煤层气新钻井对老井产能的影响及其控制因素——以沁水盆地柿庄南地区为例

韩学婷 孟尚志 刘广景 任镇宇 陶树 门欣阳 韦子扬

韩学婷, 孟尚志, 刘广景, 任镇宇, 陶树, 门欣阳, 韦子扬. 煤层气新钻井对老井产能的影响及其控制因素——以沁水盆地柿庄南地区为例[J]. 石油实验地质, 2025, 47(1): 195-203. doi: 10.11781/sysydz2025010195
引用本文: 韩学婷, 孟尚志, 刘广景, 任镇宇, 陶树, 门欣阳, 韦子扬. 煤层气新钻井对老井产能的影响及其控制因素——以沁水盆地柿庄南地区为例[J]. 石油实验地质, 2025, 47(1): 195-203. doi: 10.11781/sysydz2025010195
HAN Xueting, MENG Shangzhi, LIU Guangjing, REN Zhenyu, TAO Shu, MEN Xinyang, WEI Ziyang. Impact of new coalbed methane wells on old well productivity and its controlling factors: a case study of Shizhuangnan block in Qinshui Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2025, 47(1): 195-203. doi: 10.11781/sysydz2025010195
Citation: HAN Xueting, MENG Shangzhi, LIU Guangjing, REN Zhenyu, TAO Shu, MEN Xinyang, WEI Ziyang. Impact of new coalbed methane wells on old well productivity and its controlling factors: a case study of Shizhuangnan block in Qinshui Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2025, 47(1): 195-203. doi: 10.11781/sysydz2025010195

煤层气新钻井对老井产能的影响及其控制因素——以沁水盆地柿庄南地区为例

doi: 10.11781/sysydz2025010195
基金项目: 

国家自然科学基金面上项目 42272200

详细信息
    作者简介:

    韩学婷(1989—),女,硕士,高级工程师,从事非常规气藏开发工作。E-mail: hanxt2@cnooc.com.cn

    通讯作者:

    陶树(1981—),男,博士,教授,从事非常规油气地质与工程研究与教学工作。E-mail: taoshu@cugb.edu.cn

  • 中图分类号: TE324

Impact of new coalbed methane wells on old well productivity and its controlling factors: a case study of Shizhuangnan block in Qinshui Basin

  • 摘要: 针对沁水盆地柿庄南地区产能释放不均衡等问题,通过水平井加密方式调整优化初始井网以提高储量动用程度,但钻井泥浆、压裂液窜流至邻井现象频发,导致老井产能受到不同程度的影响。以柿庄南地区煤层气开发实践为基础,分析了该区井间干扰发生的主要原因及其对产能的响应,从地质和工程角度提出应对方法或新钻井部署建议。新钻水平井分段压裂是影响老井产能的主要方式,钻井影响井占比较低、产能恢复率较差且集中发生于近井地带(最小井距小于120 m)。压裂影响井最小井距普遍介于120~300 m,在550~900 m埋深范围内均有分布。被影响井生产异常主要体现为液柱回升,最小井距小于150 m或构造煤发育的部分老井伴有黑水产出、卡泵停机等现象。卡泵停机或黑水产出井产能恢复效率较低,卡泵停机井人工实时解卡产量可大幅恢复,但解卡失败,检泵作业后产气量降幅明显。受新钻井压裂影响的老井分布在新钻井水平段射孔方向,地质层面主要受控于水平主应力各向异性,不同井距条件下存在水力裂缝沟通和压裂液前缘波及两种方式。柿庄南地区煤储层水平应力差为5.5~13.5 MPa,压裂影响井平均水平主应力差普遍大于10 MPa,高水平应力差条件下水力裂缝的强定向性致使老井流体场受到扰动。新钻井部署应与老井最小井距大于300 m且规避断层,高应力差地带可通过暂堵压裂或缩小簇间距、强化缝间应力干扰以弱化其对老井产能的影响。

     

  • 图  1  沁水盆地柿庄南地区研究区地理位置

    据参考文献[22-23]修改。

    Figure  1.  Geographical location of the study area in Shizhuangnan block, Qinshui Basin

    图  2  沁水盆地柿庄南地区典型被影响井产能特征

    Figure  2.  Productivity characteristics of typical affected wells in Shizhuangnan block, Qinshui Basin

    图  3  沁水盆地柿庄南地区加密井对老井影响方式及其对产能恢复率的影响

    Figure  3.  Impact mechanisms of infill wells on old wells and their effect on productivity recovery rate in Shizhuangnan block, Qinshui Basin

    图  4  沁水盆地柿庄南地区压裂影响井不同类型排采异常最小井距分布

    Figure  4.  Distribution of minimum well spacing for different types of abnormal drainage and production in fracturing-affected wells of Shizhuangnan block, Qinshui Basin

    图  5  沁水盆地柿庄南地区构造应变梯度与高斯曲率(Kg)的相关关系

    Figure  5.  Correlation between tectonic strain gradient and Gaussian curvature (Kg) in Shizhuangnan block, Qinshui Basin

    图  6  沁水盆地柿庄南地区煤层试井实测地应力参数垂向变化规律

    Figure  6.  Vertical variation pattern of in-situ stress parameters measured during coalbed methane well testing in Shizhuangnan block, Qinshui Basin

    图  7  沁水盆地柿庄南地区3号煤埋深及地球物理反演最大、最小、垂直主应力大小平面分布

    Figure  7.  Planar distribution of burial depth of No. 3 coal seam and maximum, minimum, and vertical principal stress from geophysical inversion in Shizhuangnan block, Qinshui Basin

    图  8  沁水盆地柿庄南地区水平应力差与水力缝长的关系(a)及新钻井轨迹与被影响井的相对位置(b)

    Figure  8.  Relationship between horizontal stress difference and hydraulic fracture length(a), and relative positions of new drilling trajectories and affected wells (b) in Shizhuangnan block, Qinshui Basin

    图  9  沁水盆地柿庄南地区新钻井与老井井间干扰影响因素及生产显现

    Figure  9.  Factors influencing well-to-well interference between new and old wells in Shizhuangnan block of Qinshui Basin and their production performance

    表  1  沁水盆地柿庄南地区钻井过程中水泥浆侵入井和液面回升井周边地层参数

    Table  1.   Parameters of strata surrounding wells with cement slurry intrusion and liquid level rise in Shizhuangnan block, Qinshui Basin

    井号 最小井距/m 影响方式 渗透率/10-3 μm2 孔隙度/% 碎粒煤占比/%
    A 73 水泥浆侵入 0.708 4 0.073 5 50.00
    B 67 水泥浆侵入 0.417 4 0.117 9 43.40
    C 109 水泥浆侵入 0.169 1 0.214 7 70.21
    D 119 液面回升 0.088 9 0.015 8 16.80
    E 108 液面回升 0.060 0 0.031 4 17.52
    F 112 液面回升 0.023 9 0.055 6 5.77
    下载: 导出CSV
  • [1] 徐凤银, 侯伟, 熊先钺, 等. 中国煤层气产业现状与发展战略[J]. 石油勘探与开发, 2023, 50(4): 669-682.

    XU Fengyin, HOU Wei, XIONG Xianyue, et al. The status and development strategy of coalbed methane industry in China[J]. Petroleum Exploration and Development, 2023, 50(4): 669-682.
    [2] 秦勇. 中国深部煤层气地质研究进展[J]. 石油学报, 2023, 44(11): 1791-1811. doi: 10.7623/syxb202311004

    QIN Yong. Progress on geological research of deep coalbed methane in China[J]. Acta Petrolei Sinica, 2023, 44(11): 1791-1811. doi: 10.7623/syxb202311004
    [3] 陈世达, 汤达祯, 侯伟, 等. 深部煤层气地质条件特殊性与储层工程响应[J]. 石油学报, 2023, 44(11): 1993-2006. doi: 10.7623/syxb202311018

    CHEN Shida, TANG Dazhen, HOU Wei, et al. Geological particularity and reservoir engineering response of deep coalbed methane[J]. Acta Petrolei Sinica, 2023, 44(11): 1993-2006. doi: 10.7623/syxb202311018
    [4] 冯义, 任凯, 刘俊田, 等. 深层煤层气水平井安全钻井技术[J]. 钻采工艺, 2024, 47(3): 33-41. doi: 10.3969/J.ISSN.1006-768X.2024.03.05

    FENG Yi, REN Kai, LIU Juntian, et al. Safe drilling technology for deep CBM horizontal wells[J]. Drilling and Production Technology, 2024, 47(3): 33-41. doi: 10.3969/J.ISSN.1006-768X.2024.03.05
    [5] 桑树勋, 韩思杰, 周效志, 等. 华东地区深部煤层气资源与勘探开发前景初探[J]. 油气藏评价与开发, 2023, 13(4): 403-415.

    SANG Shuxun, HAN Sijie, ZHOU Xiaozhi, et al. Deep coalbed methane resource and its exploration and development prospect in East China[J]. Petroleum Reservoir Evaluation and Development, 2023, 13(4): 403-415.
    [6] 孔祥伟, 谢昕, 王存武, 等. 基于灰色关联方法的深层煤层气井压后产能影响地质工程因素评价[J]. 油气藏评价与开发, 2023, 13(4): 433-440.

    KONG Xiangwei, XIE Xin, WANG Cunwu, et al. Evaluation of geological engineering factors for productivity of deep CBM well after fracturing based on grey correlation method[J]. Petroleum Reservoir Evaluation and Development, 2023, 13(4): 433-440.
    [7] 李小刚, 秦杨, 刘紫微, 等. 微波强化煤层气井压裂开采的物性规律[J]. 特种油气藏, 2024, 31(3): 70-77.

    LI Xiaogang, QIN Yang, LIU Ziwei, et al. Physical property law of coalbed methane well fracturing development enhanced by microwave[J]. Special Oil & Gas Reservoirs, 2024, 31(3): 70-77.
    [8] 孔祥伟, 谢昕, 王存武. 基于综合可压指数的煤层气水平井压裂分段参数优化[J]. 油气藏评价与开发, 2024, 14(6): 925-932.

    KONG Xiangwei, XIE Xin, WANG Cunwu. Optimization of segmented fracturing parameters for coalbed methane horizontal wells based on comprehensive fracability index[J]. Petroleum Reservoir Evaluation and Development, 2024, 14(6): 925-932.
    [9] 李可心, 张聪, 李俊, 等. 沁水盆地南部煤层气水平井射孔优化[J]. 新疆石油地质, 2024, 45(5): 581-589.

    LI Kexin, ZHANG Cong, LI Jun, et al. Optimization of perforation in CBM horizontal wells in southern Qinshui basin[J]. Xinjiang Petroleum Geology, 2024, 45(5): 581-589.
    [10] 段宝江, 孙雨亭, 刘成桢, 等. 柿庄南煤层气低效井区水平井加密技术研究及应用[J]. 江汉大学学报(自然科学版), 2023, 51(2): 90-96.

    DUAN Baojiang, SUN Yuting, LIU Chengzhen, et al. Research and application of horizontal well infilling technology in low-efficiency well area of Shizhuang south coalbed methane field[J]. Journal of Jianghan University (Natural Science Edition), 2023, 51(2): 90-96.
    [11] 张万春, 郭布民, 孔鹏, 等. 柿庄南煤层气重复压裂裂缝形态反演及效果分析评价[J]. 非常规油气, 2022, 9(1): 119-128.

    ZHANG Wanchun, GUO Bumin, KONG Peng, et al. Fracture morphology inversion and effect evaluation of CBM refracturing in southern Shizhuang block[J]. Unconventional Oil & Gas, 2022, 9(1): 119-128.
    [12] 李勇, 王延斌, 倪小明, 等. 煤层气低效井成因判识及治理体系构建研究[J]. 煤炭科学技术, 2020, 48(2): 185-193.

    LI Yong, WANG Yanbin, NI Xiaoming, et al. Study on identification and control system construction of low efficiency coalbed methane wells[J]. Coal Science and Technology, 2020, 48(2): 185-193.
    [13] 陈明, 孙俊义, 王立伟, 等. 大宁—吉县区块深层煤层气井间压窜主控因素分析及防治对策研究[J/OL]. 煤炭科学技术, 1-8[2024-09-16]. http://kns.cnki.net/kcms/detail/11.2402.TD.20240902.1652.020.html.

    CHEN Ming, SUN Junyi, WANG Liwei, et al. Analysis of the main controlling factors of intra-well frac hit between deep coalbed methane in Daning-Jixian block and research on countermeasures to prevent and control it[J/OL]. Coal Science and Technology, 1-8[2024-09-16]. http://kns.cnki.net/kcms/detail/11.2402.TD.20240902.1652.020.html.
    [14] 王喆. 延川南煤层气田压窜井影响因素分析和措施[J]. 中国石油和化工标准与质量, 2022, 42(16): 9-11. doi: 10.3969/j.issn.1673-4076.2022.16.004

    WANG Zhe. Analysis and measures of pressure intra-well frac hit in south CBM field[J]. China Petroleum and Chemical Standard and Quality, 2022, 42(16): 9-11. doi: 10.3969/j.issn.1673-4076.2022.16.004
    [15] 姚秀田, 苏鑫坤, 郑昕, 等. 特高含水期油藏井网调整开发效果三维物理模拟实验研究[J]. 油气地质与采收率, 2023, 30(1): 139-145.

    YAO Xiutian, SU Xinkun, ZHENG Xin, et al. 3D physical simulation experiments of development effects after well pattern adjustment in extra-high water cut reservoirs[J]. Petroleum Geology and Recovery Efficiency, 2023, 30(1): 139-145.
    [16] 王挺, 汪杰, 江厚顺, 等. 页岩水平井水力压裂裂缝扩展及防窜三维地质模拟[J]. 新疆石油地质, 2023, 44(6): 720-728.

    WANG Ting, WANG Jie, JIANG Houshun, et al. 3D geological simulation of hydraulic fracture propagation and frac-hit prevention in horizontal shale gas wells[J]. Xinjiang Petroleum Geology, 2023, 44(6): 720-728.
    [17] 胡永章, 唐煊赫, 朱海燕, 等. 威荣深层页岩储层水力压裂多井压窜现象及机理[J]. 断块油气田, 2024, 31(5): 851-857.

    HU Yongzhang, TANG Xuanhe, ZHU Haiyan, et al. Phenomenon and mechanism of multi-well frac hits hydraulic fracturing in Weirong deep shale reservoir[J]. Fault-Block Oil & Gas Field, 2024, 31(5): 851-857.
    [18] 何乐, 袁灿明, 龚蔚. 页岩气井间压窜影响因素分析和防窜对策[J]. 油气藏评价与开发, 2020, 10(5): 63-69.

    HE Le, YUAN Canming, GONG Wei. Influencing factors and preventing measures of intra-well frac hit in shale gas[J]. Reservoir Evaluation and Development, 2020, 10(5): 63-69.
    [19] 罗志锋, 李建斌, 张楠林, 等. 小井距压裂防窜机理研究与应用[J]. 断块油气田, 2023, 30(4): 593-600.

    LUO Zhifeng, LI Jianbin, ZHANG Nanlin, et al. Research and application of anti-channeling mechanism in small well spacing fracturing[J]. Fault-Block Oil & Gas Field, 2023, 30(4): 593-600.
    [20] 郑马嘉, 欧志鹏, 伍亚, 等. 深层页岩气井压窜特征与产能维护对策: 以四川盆地泸203井区北部为例[J]. 天然气工业, 2024, 44(8): 95-106. doi: 10.3787/j.issn.1000-0976.2024.08.008

    ZHENG Majia, OU Zhipeng, WU Ya, et al. Frac-hit characteristics and productivity maintenance strategies of deep shale gas wells: a case study of northern Lu 203 well block in the Sichuan Basin[J]. Natural Gas Industry, 2024, 44(8): 95-106. doi: 10.3787/j.issn.1000-0976.2024.08.008
    [21] 周优. 柿庄南区块煤系地层精细描述与三维地质建模[D]. 北京: 中国地质大学(北京), 2021.

    ZHOU You. Fine description and 3D geological modeling of coal measures in southern Shizhuang block[D]. Beijing: China University of Geosciences (Beijing), 2021.
    [22] 伊永祥. 沁水盆地柿庄南区块煤层气井生产特征及排采控制研究[D]. 北京: 中国地质大学(北京), 2020.

    YI Yongxiang. Research on the production characteristics and drainage control of CBM wells in the Shizhuangnan block of Qinshui Basin[D]. Beijing: China University of Geosciences (Beijing), 2020.
    [23] 杨延辉, 张鹏豹, 刘忠, 等. 沁水盆地南部深层高阶煤层气成藏特征[J]. 中国石油勘探, 2024, 29(5): 107-119.

    Yang Yanhui, Zhang Pengbao, Liu Zhong, et al. Gas accumulation characteristics of high-rank coal in deep formations in the southern Qinshui Basin[J]. China Petroleum Exploration, 2024, 29(5): 107-119.
    [24] 孙强, 孙建平, 张健, 等. 沁水盆地南部柿庄南区块煤层气地质特征[J]. 中国煤炭地质, 2010, 22(6): 9-12. doi: 10.3969/j.issn.1674-1803.2010.06.03

    SUN Qiang, SUN Jianping, ZHANG Jian, et al. CBM geological characteristics in Shizhuang south block, southern Qinshui Basin[J]. Coal Geology of China, 2010, 22(6): 9-12. doi: 10.3969/j.issn.1674-1803.2010.06.03
    [25] 徐最, 陆小霞, 李晨, 等. 开发中期煤层气田上市储量评估方法: 以柿庄南区块为例[J]. 中国煤层气, 2023, 20(3): 36-40. doi: 10.3969/j.issn.1672-3074.2023.03.009

    XU Zui, LU Xiaoxia, LI Chen, et al. Evaluation method of listed reserves for coalbed methane fields in the middle development stage: based on the Shizhuang south block as an example[J]. China Coalbed Methane, 2023, 20(3): 36-40. doi: 10.3969/j.issn.1672-3074.2023.03.009
    [26] LV A, AGHIGHI M A, MASOUMI H, et al. The effective stress coefficient of coal: a theoretical and experimental investigation[J]. Rock Mechanics and Rock Engineering, 2021, 54(8): 3891-3907. doi: 10.1007/s00603-021-02476-1
    [27] TAKADA A. The influence of regional stress and magmatic input on styles of monogenetic and polygenetic volcanism[J]. Journal of Geophysical Research: Solid Earth, 1994, 99(B7): 13563-13573. doi: 10.1029/94JB00494
    [28] 孟召平, 雷钧焕, 王宇恒. 基于Griffith强度理论的煤储层水力压裂有利区评价[J]. 煤炭学报, 2020, 45(1): 268-275.

    MENG Zhaoping, LEI Junhuan, WANG Yuheng. Evaluation of favorable areas for hydraulic fracturing of coal reservoir based on Griffith strength theory[J]. Journal of China Coal Society, 2020, 45(1): 268-275.
    [29] HUANG Saipeng, LIU Dameng, YAO Yanbin, et al. Natural fractures initiation and fracture type prediction in coal reservoir under different in-situ stresses during hydraulic fracturing[J]. Journal of Natural Gas Science and Engineering, 2017, 43: 69-80. doi: 10.1016/j.jngse.2017.03.022
    [30] 孙逊, 张士诚, 马新仿, 等. 基于高能CT扫描的煤岩水力压裂裂缝扩展研究[J]. 河南理工大学学报(自然科学版), 2020, 39(1): 18-25.

    SUN Xun, ZHANG Shicheng, MA Xinfang, et al. Study on fractures propagation mechanism in coal hydraulic fracturing based on high-energy CT scanning technique[J]. Journal of Henan Polytechnic University (Natural Science), 2020, 39(1): 18-25.
    [31] 何俊铧, 陈立超, 胡奇, 等. 不同原生裂缝壁面特征对煤储层压裂造缝影响的对比分析[J]. 煤炭学报, 2014, 39(9): 1868-1872.

    HE Junhua, CHEN Lichao, HU Qi, et al. Comparative analysis for the impact of different natural fracture surface characteristics on CBM fracturing[J]. Journal of China Coal Society, 2014, 39(9): 1868-1872.
    [32] 张士诚, 郭天魁, 周彤, 等. 天然页岩压裂裂缝扩展机理试验[J]. 石油学报, 2014, 35(3): 496-503.

    ZHANG Shicheng, GUO Tiankui, ZHOU Tong, et al. Fracture propagation mechanism experiment of hydraulic fracturing in natural shale[J]. Acta Petrolei Sinica, 2014, 35(3): 496-503.
    [33] CHEN Shida, ZHANG Yafei, TANG Dazhen, et al. Present-day stress regime, permeability, and fracture stimulations of coal reservoirs in the Qinshui Basin, northern China[J]. AAPG Bulletin, 2024, 108(8): 1509-1536. doi: 10.1306/03202422056
    [34] 郑力会, 崔金榜, 聂帅帅, 等. 郑X井重复压裂非产水煤层绒囊流体暂堵转向试验[J]. 钻井液与完井液, 2016, 33(5): 103-108.

    ZHENG Lihui, CUI Jinbang, NIE Shuaishuai, et al. Temporary plugging diverting test with fuzzy ball fluids in non-water producing coal beds in re-fracturing well Zheng-X[J]. Drilling Fluid & Completion Fluid, 2016, 33(5): 103-108.
    [35] LIU Xiaoqiang, RASOULI V, GUO Tiankui, et al. Numerical simulation of stress shadow in multiple cluster hydraulic fracturing in horizontal wells based on lattice modelling[J]. Engineering Fracture Mechanics, 2020, 238: 107278. doi: 10.1016/j.engfracmech.2020.107278
    [36] SIDDHAMSHETTY P, WU Kan, KWON J S I. Optimization of simultaneously propagating multiple fractures in hydraulic fracturing to achieve uniform growth using data-based model reduction[J]. Chemical Engineering Research and Design, 2018, 136: 675-686. doi: 10.1016/j.cherd.2018.06.015
    [37] MCKENNA J P, BLAZ M S, GREALY M H, et al. Using fracture stress shadows to drive stage spacing[C]//Proceedings of the Unconventional Resources Technology Conference. Austin, Texas, USA: American Association of Petroleum Geologists, 2017.
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  89
  • HTML全文浏览量:  47
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-10-16
  • 修回日期:  2024-12-13
  • 刊出日期:  2025-01-28

目录

    /

    返回文章
    返回