Morphological characteristics of framboidal pyrite and their paleo-environmental significance in Longmaxi Formation of Weirong area, southern Sichuan Basin
-
摘要: 草莓状黄铁矿的形态对页岩沉积环境和页岩气富集具有重要指示意义。以川南威荣地区WY1井龙马溪组一段页岩为研究对象,利用氩离子抛光扫描电镜观察和ImageJ图像处理等技术,获取了草莓状黄铁矿及其微晶形态与粒径特征,并结合微量元素、有机质丰度、含气性等参数,探讨了草莓状黄铁矿形态对古水体氧化还原环境和页岩气富集的表征作用。威荣地区WY1井龙马溪组一段页岩中草莓状黄铁矿平均粒径、微晶平均粒径及微晶晶型等参数在垂向上变化明显,草莓状黄铁矿平均粒径为4.02 μm,微晶平均粒径为0.45 μm,自下而上黄铁矿及其微晶粒径逐渐增大;下部微晶晶型主要为截角八面体,上部为截角八面体辅以八面体和截角四面体,自下而上微晶圆度逐渐减小。草莓状黄铁矿及其微晶形态参数特征表明,龙马溪组一段沉积水体还原性逐渐减弱,从硫化—缺氧环境转变为贫氧环境,这与微量元素所反映的氧化还原环境吻合较好。此外,有机质含量、解吸气含量与黄铁矿含量具有明显的正相关性,而与草莓状黄铁矿粒径及其微晶粒径具有明显的负相关性,指示硫化—缺氧环境有利于有机质富集和页岩气生成、储集和保存。Abstract: The morphological characteristics of framboidal pyrite have important indicative significance for the shale sedimentary environments and shale gas enrichment. Taking the shale in the first member of the Longmaxi Formation from well WY1 in the Weirong area of southern Sichuan Basin as the study subject, argon ion scanning electron microscopic analyses and ImageJ image processing were conducted to obtain the morphological characteristics and particle sizes of framboidal pyrite and its microcrystals. By analyzing parameters such as trace elements, organic matter abundance, and gas content, the study explored the indicative role of framboidal pyrite morphology in paleo-water redox environments and shale gas enrichment. The results demonstrated that parameters such as the average particle size of framboidal pyrite, the average particle size of microcrystals, and the crystalline structures showed significant variations vertically. The average particle sizes of pyrite and its microcrystals were 4.02 μm and 0.45 μm, respectively. The particle sizes of both pyrite and its microcrystal gradually increased from bottom to top. The crystalline structure of microcrystals from the lower part was mainly truncated octahedrons, and the upper part featured truncated octahedrons, supplemented by octahedrons and truncated tetrahedrons. The roundness of microcrystals gradually decreased from bottom to top. The morphological characteristics of framboidal pyrite and its microcrystals indicated that the reducibility of the sedimentary water body in the first member of the Longmaxi Formation gradually weakened, transitioning from an euxinic and anoxic environment to a suboxic environment. This aligned well with the redox environment reflected by trace elements. Furthermore, contents of organic matter and desorbed gas showed a significant positive correlation with pyrite content, but a clear negative correlation with the particle sizes of framboidal pyrite and its microcrystals. The findings show that an euxinic and anoxic environment is favorable for the enrichment of organic matter and the generation, accumulation, and preservation of shale gas.
-
图 4 川南威荣地区WY1井下志留统龙马溪组草莓状黄铁矿赋存状态与微晶形态
a.草莓状黄铁矿平行于层面分布,样品15, 3 540.9 m;b.草莓状黄铁矿与有机质伴生,样品13, 3 561.2 m;c.草莓状黄铁矿集合体,样品1, 3 583.3 m;d.草莓状黄铁矿微晶重结晶,样品3,3 579.7 m;e.黄铁矿自形晶,样品2, 3 581.6 m;f.黄铁矿自形晶与黏土矿物集合体,样品13, 3 561.2 m;g.草莓状黄铁矿微晶呈截角八面体,样品2, 3 581.6 m;h.草莓状黄铁矿微晶呈截角八面体,样品5, 3 575.9 m;i.草莓状黄铁矿微晶呈截角八面体,样品6, 3 573.7 m;j.草莓状黄铁矿微晶呈八面体,样品10, 3 566.6 m;k.草莓状黄铁矿微晶呈截角四面体,样品12, 3 563.3 m;l.草莓状黄铁矿微晶呈截角八面体,样品16, 3 530.5 m。
Figure 4. Occurrence state and microcrystal morphologies of framboidal pyrite in Lower Silurian Longmaxi Formation in well WY1, Weirong area, southern Sichuan Basin
表 1 川南威荣地区WY1井下志留统龙马溪组一段地球化学和草莓状黄铁矿相关参数
Table 1. Geochemical and framboidal pyrite-related parameters of Lower Silurian Longmaxi Formation in well WY1, Weirong area, southern Sichuan Basin
亚段 样品号 样品深度/m ω(TOC)/% V/Cr Ni/Co U/Th X衍射全岩黄铁矿含量/% 分散状黄铁矿面积占比/% 草莓状黄铁矿 草莓状黄铁矿微晶 含气量 数量/个 平均粒径/μm 最小粒径/μm 最大粒径/μm 粒径标准偏差/μm 偏态系数 平均圆度 数量/个 平均粒径/μm 最小粒径/μm 最大粒径/μm 粒径标准偏差/μm 偏态系数 解吸气量/(m3/t) 三 18 3 510.0 0.10 1.40 2.27 0.16 0.6 0.41 66 4.25 1.94 9.08 1.86 1.02 0.72 51 0.51 0.24 0.68 0.11 -1.04 0.14 17 3 520.3 0.22 1.33 2.88 0.17 1.7 0.41 175 4.16 2.10 17.10 1.89 3.22 0.77 201 0.77 0.32 1.80 0.35 4.13 0.20 16 3 530.5 0.15 1.29 2.65 0.19 0.7 0.69 114 4.14 1.96 9.82 1.67 1.20 0.81 212 0.64 0.22 1.29 0.20 -0.01 0.16 二 15 3 540.9 0.62 1.41 3.00 0.26 3.7 1.26 172 4.55 2.10 11.59 1.86 1.28 0.81 25 0.60 0.17 1.43 0.30 1.07 0.20 14 3 548.9 1.65 1.87 3.94 0.40 2.9 0.50 136 3.89 2.02 7.18 1.24 0.86 0.76 98 0.40 0.21 0.52 0.07 -0.84 0.41 一 13 3 561.2 1.87 2.92 5.66 0.35 2.5 0.44 108 3.97 2.01 9.29 1.46 1.53 0.72 195 0.58 0.21 1.43 0.16 0.41 0.37 12 3 563.3 2.57 3.39 6.92 0.82 3.7 1.58 192 4.73 1.98 15.76 2.25 1.92 0.76 275 0.45 0.19 0.87 0.11 0.47 0.58 11 3 565.2 3.55 3.34 8.59 1.12 5.0 1.49 113 4.48 2.24 12.31 1.74 1.63 0.81 188 0.33 0.21 0.50 0.05 0.49 0.59 10 3 566.6 2.69 3.43 9.98 0.73 3.7 0.91 155 4.31 2.01 9.21 1.57 0.85 0.76 56 0.59 0.25 0.83 0.17 -0.47 9 3 567.7 3.30 1.34 3.17 0.36 4.6 1.37 417 3.49 1.78 9.24 1.23 1.09 0.74 271 0.36 0.14 0.79 0.14 0.46 0.72 8 3 569.6 2.45 2.82 6.44 0.58 3.4 0.55 138 3.86 2.08 10.89 1.53 2.20 0.77 69 0.48 0.16 0.70 0.12 -1.05 7 3 571.7 2.82 4.35 6.40 0.66 3.1 0.56 194 3.89 2.13 16.63 1.93 3.12 0.68 67 0.24 0.03 0.39 0.10 5.43 0.77 6 3 573.7 2.79 2.63 5.39 0.59 4.1 0.80 180 3.30 1.44 10.53 1.47 1.75 0.74 277 0.55 0.23 0.92 0.11 -0.57 5 3 575.9 3.55 2.42 5.47 0.60 3.9 0.87 115 4.06 2.02 8.29 1.43 0.90 0.75 220 0.37 0.11 0.72 0.13 -0.99 0.48 4 3 578.2 2.22 3.74 5.38 0.57 3.2 0.50 131 3.77 2.00 8.41 1.35 0.99 0.79 84 0.41 0.15 0.59 0.10 -0.73 0.51 3 3 579.7 2.56 3.43 6.95 0.73 3.2 0.67 81 4.64 2.40 10.09 1.81 1.25 0.76 264 0.43 0.16 0.91 0.09 0.02 0.59 2 3 581.6 3.44 2.31 5.30 1.11 4.7 0.94 14 2.95 1.57 5.78 1.29 1.44 0.67 124 0.47 0.23 0.87 0.11 0.39 0.44 1 3 583.3 2.65 2.62 5.51 0.63 4.2 1.14 7 4.38 2.98 6.83 1.34 1.12 0.70 2 113 0.39 0.15 1.01 0.12 0.65 0.38 -
[1] SAWLOWICZ Z. Pyrite framboids and their development: a new conceptual mechanism[J]. Geologische Rundschau, 1993, 82(1): 148-156. doi: 10.1007/BF00563277 [2] 胡宗全, 杜伟, 彭勇民, 等. 页岩微观孔隙特征及源—储关系: 以川东南地区五峰组—龙马溪组为例[J]. 石油与天然气地质, 2015, 36(6): 1001-1008.HU Zongquan, DU Wei, PENG Yongmin, et al. Microscopic pore characteristics and the source-reservoir relationship of shale: a case study from the Wufeng and Longmaxi Formations in southeast Sichuan Basin[J]. Oil & Gas Geology, 2015, 36(6): 1001-1008. [3] RICKARD D. Sedimentary pyrite framboid size-frequency distributions: a meta-analysis[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 522: 62-75. doi: 10.1016/j.palaeo.2019.03.010 [4] 刘钰晨, 赵卫卫, 高剑波, 等. 鄂尔多斯盆地东南部长7段泥页岩黄铁矿成因及地质意义[J]. 断块油气田, 2024, 31(6): 978-984.LIU Yuchen, ZHAO Weiwei, GAO Jianbo, et al. Genesis and geological significance of shale pyrite in Chang 7 Member of southeastern Ordos Basin[J]. Fault-Block Oil & Gas Field, 2024, 31(6): 978-984. [5] 张光荣, 聂海宽, 唐玄, 等. 页岩中黄铁矿类型及其对页岩气富集的影响: 以四川盆地及其周缘五峰组—龙马溪组页岩为例[J]. 石油实验地质, 2020, 42(3): 459-466.ZHANG Guangrong, NIE Haikuan, TANG Xuan, et al. Pyrite type and its effect on shale gas accumulation: a case study of Wufeng-Longmaxi shale in Sichuan Basin and its periphery[J]. Petroleum Geology & Experiment, 2020, 42(3): 459-466. [6] 何庆, 高键, 董田, 等. 鄂西地区下寒武统牛蹄塘组页岩元素地球化学特征及沉积古环境恢复[J]. 沉积学报, 2021, 39(3): 686-703.HE Qing, GAO Jian, DONG Tian, et al. Elemental geochemistry and paleo-environmental conditions of the Lower Cambrian Niutitang shale in western Hubei province[J]. Acta Sedimentologica Sinica, 2021, 39(3): 686-703. [7] LOVE L G, AMSTUTZ G C. Review of microscopic pyrite from the Devonian Chattanooga shale and Rammelserg Banderz[J]. Fortschr Mineral, 1966, 43(2): 277-309. [8] 常华进, 储雪蕾, 冯连君, 等. 华南老堡组硅质岩中草莓状黄铁矿: 埃迪卡拉纪末期深海缺氧的证据[J]. 岩石学报, 2009, 25(4): 1001-1007.CHANG Huajin, CHU Xuelei, FENG Lianjun, et al. Framboidal pyrites in cherts of the Laobao Formation, South China: evidence for anoxic deep ocean in the terminal Ediacaran[J]. Acta Petrologica Sinica, 2009, 25(4): 1001-1007. [9] 常华进, 储雪蕾. 草莓状黄铁矿与古海洋环境恢复[J]. 地球科学进展, 2011, 26(5): 475-481.CHANG Huajin, CHU Xuelei. Pyrite framboids and palaeo-ocean redox condition reconstruction[J]. Advances in Earth Science, 2011, 26(5): 475-481. [10] 李洪星, 陆现彩, 边立曾, 等. 草莓状黄铁矿微晶形态和成分的地质意义: 以栖霞组含泥灰岩为例[J]. 矿物学报, 2012, 32(3): 443-448.LI Hongxing, LU Xiancai, BIAN Lizeng, et al. Geological significance of microcrystalline morphology and composition of framboids pyrite: a case study of marl of Chihsia Formation[J]. Acta Mineralogica Sinica, 2012, 32(3): 443-448. [11] 常晓琳, 黄元耕, 陈中强, 等. 沉积地层中草莓状黄铁矿分析方法及其在古海洋学上的应用[J]. 沉积学报, 2020, 38(1): 150-165.CHANG Xiaolin, HUANG Yuangeng, CHEN Zhongqiang, et al. The microscopic analysis of pyrite framboids and application in paleo-oceanography[J]. Acta Sedimentologica Sinica, 2020, 38(1): 150-165. [12] BERNER R A. The synthesis of framboidal pyrite[J]. Economic Geology, 1969, 64(4): 383-384. doi: 10.2113/gsecongeo.64.4.383 [13] MASSAAD M. Framboidal pyrite in concretions[J]. Mineralium Deposita, 1974, 9(1): 87-89. [14] WACEY D, KILBURN M R, SAUNDERS M, et al. Uncovering framboidal pyrite biogenicity using nano-scale CNorg mapping[J]. Geology, 2015, 43(1): 27-30. doi: 10.1130/G36048.1 [15] KERSHAW S, LIU M. Modern Black Sea oceanography applied to the end-Permian extinction event[J]. Journal of Palaeogeography, 2015, 4(1): 52-62. doi: 10.3724/SP.J.1261.2015.00067 [16] SWEENEY R E, KAPLAN I R. Pyrite framboid formation; Laboratory synthesis and marine sediments[J]. Economic Geology, 1973, 68(5): 618-634. doi: 10.2113/gsecongeo.68.5.618 [17] WILKIN R T, BARNES H L, BRANTLEY S L. The size distribution of framboidal pyrite in modern sediments: an indicator of redox conditions[J]. Geochimica et Cosmochimica Acta, 1996, 60(20): 3897-3912. doi: 10.1016/0016-7037(96)00209-8 [18] WILKIN R T, ARTHUR M A, DEAN W E. History of water-column anoxia in the Black Sea indicated by pyrite framboid size distributions[J]. Earth and Planetary Science Letters, 1997, 148(3/4): 517-525. [19] WILKIN R T, ARTHUR M A. Variations in pyrite texture, sulfur isotope composition, and iron systematics in the Black Sea: evidence for Late Pleistocene to Holocene excursions of the O2-H2S redox transition[J]. Geochimica et Cosmochimica Acta, 2001, 65(9): 1399-1416. doi: 10.1016/S0016-7037(01)00552-X [20] BOND D P G, WIGNALL P B. Pyrite framboid study of marine Permian-Triassic boundary sections: a complex anoxic event and its relationship to contemporaneous mass extinction[J]. Geological Society of America Bulletin, 2010, 122(7/8): 1265-1279. [21] 周杰, 邱振, 王红岩, 等. 草莓状黄铁矿形成机制及其研究意义[J]. 地质科学, 2017, 52(1): 242-253.ZHOU Jie, QIU Zhen, WANG Hongyan, et al. Formation mechanism of pyrite framboid and its research significance[J]. Chinese Journal of Geology, 2017, 52(1): 242-253. [22] 王东升, 张金川, 李振, 等. 草莓状黄铁矿的形成机制探讨及其对古氧化—还原环境的反演[J]. 中国地质, 2022, 49(1): 36-50.WANG Dongsheng, ZHANG Jinchuan, LI Zhen, et al. Formation mechanism of framboidal pyrite and its theory inversion of paleo-redox conditions[J]. Geology in China, 2022, 49(1): 36-50. [23] 张景廉, 张平中. 黄铁矿对有机质成烃的催化作用讨论[J]. 地球科学进展, 1996, 11(3): 282-287.ZHANG Jinglian, ZHANG Pingzhong. A discussion of pyrite catalysis on the hydrocarbon generation process[J]. Advances in Earth Science, 1996, 11(3): 282-287. [24] 曹涛涛, 邓模, 宋之光, 等. 黄铁矿对页岩油气富集成藏影响研究[J]. 天然气地球科学, 2018, 29(3): 404-414.CAO Taotao, DENG MO, SONG Zhiguang, et al. Study on the effect of pyrite on the accumulation of shale oil and gas[J]. Natural Gas Geoscience, 2018, 29(3): 404-414. [25] 史淼, 张金川, 袁野, 等. 贵州岑巩地区牛蹄塘组地层黄铁矿特征及其对页岩气的指示意义[J]. 岩石学报, 2023, 39(5): 1529-1540.SHI Miao, ZHANG Jinchuan, YUAN Ye, et al. Pyrite characteristics and shale gas significance of the Niutitang Formation in Cengong area, Guizhou Province[J]. Acta Petrologica Sinica, 2023, 39(5): 1529-1540. [26] 徐祖新, 韩淑敏, 王启超. 中扬子地区陡山沱组页岩储层中黄铁矿特征及其油气意义[J]. 岩性油气藏, 2015, 27(2): 31-37.XU Zuxin, HAN Shumin, WANG Qichao. Characteristics of pyrite and its hydrocarbon significance of shale reservoir of Doushantuo Formation in Middle Yangtze area[J]. Lithologic Reservoirs, 2015, 27(2): 31-37. [27] 赵迪斐, 郭英海, 朱炎铭, 等. 龙马溪组页岩黄铁矿微观赋孔特征及地质意义[J]. 沉积学报, 2018, 36(5): 864-876.ZHAO Difei, GUO Yinghai, ZHU Yanming, et al. Micropore characteristics and geological significance of pyrite in shale rocks of Longmaxi Formation[J]. Acta Sedimentologica Sinica, 2018, 36(5): 864-876. [28] 刘子驿, 张金川, 刘飏, 等. 湘鄂西地区五峰—龙马溪组泥页岩黄铁矿粒径特征[J]. 科学技术与工程, 2016, 16(26): 34-41.LIU Ziyi, ZHANG Jinchuan, LIU Yang, et al. The particle size characteristics of pyrite in western Hunan and Hubei areas' Wufeng-Longmaxi Formation shale[J]. Science Technology and Engineering, 2016, 16(26): 34-41. [29] 韩盛博, 李伍. 上扬子区龙马溪组页岩中黄铁矿成因[J]. 天然气地球科学, 2019, 30(11): 1608-1618. doi: 10.11764/j.issn.1672-1926.2019.11.010HAN Shengbo, LI Wu. Study on the genesis of pyrite in the Longmaxi Formation shale in the Upper Yangtze area[J]. Natural Gas Geoscience, 2019, 30(11): 1608-1618. doi: 10.11764/j.issn.1672-1926.2019.11.010 [30] 蒋柯, 周文, 邓乃尔, 等. 四川盆地五峰组—龙马溪组页岩储层中黄铁矿特征及地质意义[J]. 成都理工大学学报(自然科学版), 2020, 47(1): 50-64.JIANG Ke, ZHOU Wen, DENG Naier, et al. Characteristics and geological significance of pyrites in Wufeng and Longmaxi Formation reservoir shale in Sichuan Basin, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2020, 47(1): 50-64. [31] 段新国, 仙永凯, 苑保国, 等. 渝东南地区五峰组—龙马溪组页岩草莓状黄铁矿形成机制、生成环境及对储层的影响[J]. 成都理工大学学报(自然科学版), 2020, 47(5): 513-521.DUAN Xinguo, XIAN Yongkai, YUAN Baoguo, et al. Formation mechanism and formation environment of framboidal pyrite in Wufeng Formation-Longmaxi Formation shale and its influence on shale reservoir in the southeastern Chongqing, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2020, 47(5): 513-521. [32] 汪泽成, 赵文智, 彭红雨. 四川盆地复合含油气系统特征[J]. 石油勘探与开发, 2002, 29(2): 26-28.WANG Zecheng, ZHAO Wenzhi, PENG Hongyu. Characteristics of multi-source petroleum systems in Sichuan Basin[J]. Petroleum Exploration and Development, 2002, 29(2): 26-28. [33] 何登发, 李英强, 黄涵宇, 等. 四川多旋回叠合盆地的形成演化与油气聚集[M]. 北京: 科学出版社, 2020.HE Dengfa, LI Yingqiang, HUANG Hanyu, et al. Formation, evolution and hydrocarbon accumulation of multi-cycle superimposed basins in Sichuan[M]. Beijing: Science Press, 2020. [34] 刘江艳, 李士祥, 李桢, 等. 鄂尔多斯盆地长73亚段泥页岩黄铁矿发育特征及其地质意义[J]. 天然气地球科学, 2021, 32(12): 1830-1838.LIU Jiangyan, LI Shixiang, LI Zhen, et al. Characteristics and geological significance of pyrite in Chang 73 sub-member in the Ordos Basin[J]. Natural Gas Geoscience, 2021, 32(12): 1830-1838. [35] 宋辉, 邵德勇, 罗欢, 等. 鄂西宜昌地区下寒武统水井沱组草莓状黄铁矿SEM图像特征及古环境指示意义: 以鄂阳页1井为例[J]. 地学前缘, 2023, 30(3): 195-207.SONG Hui, SHAO Deyong, LUO Huan, et al. SEM image characteristics and paleoenvironmental significance of framboidal pyrite from the Lower Cambrian Shuijingtuo Formation in Yichang area, western Hubei Province, southern China: a case study of well EYY1[J]. Earth Science Frontiers, 2023, 30(3): 195-207. [36] HATCH J R, LEVENTHAL J S. Relationship between inferred redox potential of the depositional environment and geochemistry of the Upper Pennsylvanian (Missourian) Stark Shale Member of the Dennis Limestone, Wabaunsee County, Kansas, U.S.A. [J]. Chemical Geology, 1992, 99(1/3): 65-82. [37] JONES B, MANNING D A C. Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones[J]. Chemical Geology, 1994, 111(1/4): 111-129. [38] WANG Q W, MORSE J W. Pyrite formation under conditions approximating those in anoxic sediments I. Pathway and morphology[J]. Marine Chemistry, 1996, 52(2): 99-121. [39] 韦雪梅, 韦恒叶, 邱振, 等. 广西来宾蓬莱滩剖面G-L界线草莓状黄铁微晶粒径特征及其氧化还原意义[J]. 地质科学, 2017, 52(1): 230-241.WEI Xuemei, WEI Hengye, QIU Zhen, et al. Framboidal microcryst size characteristics of pyrite and its redox significance across the G-L boundary in Penglaitan section, Laibin, Guangxi[J]. Chinese Journal of Geology, 2017, 52(1): 230-241. [40] WEI Hengye, ALGEO T J, YU Hao, et al. Episodic euxinia in the Changhsingian (Late Permian) of South China: evidence from framboidal pyrite and geochemical data[J]. Sedimentary Geology, 2015, 319: 78-97. [41] WEI Hengye, CHEN Daizhao, WANG Jianguo, et al. Organic accumulation in the lower Chihsia Formation (Middle Permian) of South China: constraints from pyrite morphology and multiple geochemical proxies[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2012, 353-355: 73-86. [42] 李艳芳, 邵德勇, 吕海刚, 等. 四川盆地五峰组—龙马溪组海相页岩元素地球化学特征与有机质富集的关系[J]. 石油学报, 2015, 36(12): 1470-1483.LI Yanfang, SHAO Deyong, LV Haigang, et al. A relationship between elemental geochemical characteristics and organic matter enrichment in marine shale of Wufeng Formation-Longmaxi Formation, Sichuan Basin[J]. Acta Petrolei Sinica, 2015, 36(12): 1470-1483. [43] 遇昊, 陈代钊, 韦恒叶, 等. 二叠纪末期海洋缺氧: 来自黄铁矿形态的证据[J]. 地质科学, 2011, 46(1): 83-91.YU Hao, CHEN Daizhao, WEI Hengye, et al. Oceanic anoxia during the Late Permian: evidence from pyrite morphology[J]. Chinese Journal of Geology, 2011, 46(1): 83-91. [44] 聂海宽, 张金川. 页岩气聚集条件及含气量计算: 以四川盆地及其周缘下古生界为例[J]. 地质学报, 2012, 86(2): 349-361.NIE Haikuan, ZHANG Jinchuan. Shale gas accumulation conditions and gas content calculation: a case study of Sichuan Basin and its periphery in the Lower Paleozoic[J]. Acta Geologica Sinica, 2012, 86(2): 349-361. [45] 刘春莲, 董艺辛, 车平, 等. 三水盆地古近系心组黑色页岩中黄铁矿的形成及其控制因素[J]. 沉积学报, 2006, 24(1): 75-80.LIU Chunlian, DONG Yixin, CHE Ping, et al. Pyrite Formation and its controls in black shales of the Buxin Formation(Lower Eocene) from the Sanshui Basin, Guangdong[J]. Acta Sedimentologica Sinica, 2006, 24(1): 75-80. -