Source-to-sink pattern and sand body distribution in the first member of Permian Lower Shihezi Formation in Fuxian area, Ordos Basin
-
摘要: 鄂尔多斯盆地东南部富县地区作为上古生界天然气勘探的重要接替阵地,其主力勘探层段——二叠系下石盒子组1段(盒1段)受复杂构造—沉积作用影响显著,导致沉积充填的源—汇分布格局与砂体分布规律仍不明确。因此,深入开展多物源体系下的沉积充填交汇关系、砂体成因类型及其分布规律研究对该地区天然气的高效勘探与规模增储具有重要意义。基于野外露头和岩心观察,结合岩石薄片、重矿物以及测井资料的综合分析,系统开展了富县地区盒1段沉积物源分析,并总结了砂体成因类型、结构特征及其分布与演化规律。富县地区盒1段沉积期主要发育南部陆源碎屑充填区及南北陆源碎屑混源充填区。在盒1段共识别出9种岩相类型和3类岩相组合,其中主要砂体成因类型为辫状河相辫状河道充填和心滩砂坝两类。沿物源方向,岩相组合由指示南物源区下切、加积、侧积沉积充填作用逐渐演化为南北物源混源区侧积充填作用。盒1段经历了从沉积初始阶段洪水期富陆源粗碎屑供给到沉积晚期枯水期泥质沉积为主的沉积演化过程。其中,盒1-1、盒1-3小层沉积期是辫状复合河道砂体发育的有利阶段,尤其是盒1-1小层沉积期,优势砂体主要发育于富县地区中东部南物源沉积充填区及北部的物源混合充填的主力区。Abstract: The Fuxian area in the southeastern Ordos Basin is a crucial area for natural gas exploration in the Upper Paleozoic. The primary exploration target, the first member of the Permian Shihezi Formation (He 1 Member), is significantly influenced by complex tectonic and sedimentary processes, resulting in an unclear understanding of the source-to-sink distribution pattern and sand body distribution. Therefore, in-depth research on the sedimentary fillings, the genetic types of sand bodies, and their distribution patterns under multiple provenance systems is of significant importance for efficient natural gas exploration and large-scale storage enhancement in this region. The study employed field outcrop survey, core analysis, thin-section observation, heavy mineral analysis, and well logging data to systematically analyze the sedimentary provenance of the He 1 Member in the Fuxian area. The study summarized the genetic types, structural characteristics, and the distribution and evolution patterns of sand bodies. During the sedimentary periods, the He 1 Member in the Fuxian area primarily developed a terrigenous clastic debris filling zone in the southern region and a mixed-provenance terrigenous clastic debris filling zone in the northern and southern region. Nine lithofacies types and three lithofacies assemblages were identified within the He 1 Member, with the main sand body genetic types being braided river facies channel filling in braided rivers and channel bars. Along the provenance direction, lithofacies assemblages evolved from incision, aggradation, and lateral accretion in the southern provenance zone to lateral accretion in the mixed-provenance zone of the northern and southern region. The He 1 Member experienced a sedimentary evolution process from terrigenous coarse clastic debris sedimentation during flood periods at an initial stage to muddy sedimentation during low water periods at a later stage. In addition, the sedimentary periods of He 1-1 and He 1-3 sublayers were favorable stages for the development of braided composite channel sand bodies, especially during the sedimentary period of the He 1-1 sublayer. The dominant sand bodies were mainly developed in the southern provenance sedimentary filling area in the central and eastern Fuxian area and the primary mixed-provenance filling area in the northern Fuxian area.
-
Key words:
- heavy mineral /
- lithofacies type /
- sand body genesis /
- source-to-sink pattern /
- He 1 Member /
- Permian /
- Fuxian area /
- Ordos Basin
-
图 6 鄂尔多斯盆地富县地区二叠系下石盒子组1段岩心岩相类型与野外剖面岩相组合
a.Gm,新富5井,2 894.0 m;b.Gst,牛2井,2 821.2 m;c-d.St,新富5井,2 718.4 m,新富5井,2 696.3 m;e.Sp,富古6井,2 569.9 m;f.Sh,新富5井,2 702.6 m;g.Fh,任5井,2 963.5 m;h.Fr,新富3井,2 697.6 m;i.M,富古4井,2 876.1 m; j.大型冲刷不整合构造,含砾粗砂岩,淳化冶域河剖面,盒1段; k.黄绿色、紫红色粉砂质泥岩夹薄层粉砂岩,盒1段,韩城涺水河剖面。
Figure 6. Core lithofacies types and lithofacies assemblages of field profiles from the first member of Permian Lower Shihezi Formation in Fuxian area, Ordos Basin
表 1 鄂尔多斯盆地富县地区主要钻井二叠系下石盒子组1段砂岩碎屑成分组成
Table 1. Sandstone clastic debris components in the first member of Permian Lower Shihezi Formation in key drilling wells of Fuxian area, Ordos Basin
地区 井名 骨架颗粒含量/% 岩屑成分含量/% 石英 长石 岩屑 火成岩屑 变质岩屑 沉积岩屑 北部混源区 富古2 49.4 0.0 21.7 2.2 19.3 0.1 富古4 39.6 0.0 39.9 2.1 37.8 0.0 富古7 47.2 0.1 23.3 1.5 21.3 0.4 新富4 43.5 0.3 16.8 2.5 14.1 0.3 新富12 60.5 0.1 13.4 1.4 12.0 0.0 新富14 56.2 0.0 19.2 2.0 17.0 0.2 牛1 47.7 0.0 16.9 2.9 13.9 0.2 牛2 58.3 0.0 13.2 1.5 11.0 0.8 南部物源区 富古6 38.7 0.1 31.8 2.2 29.4 0.3 新富5 54.2 0.2 19.3 0.8 18.5 0.1 新富8 44.8 0.6 21.4 1.4 19.7 0.3 任203 43.4 0.3 24.8 4.0 20.5 0.3 任201 43.2 0.1 28.8 2.7 26.0 0.1 任1 52.2 0.1 24.5 0.6 23.9 0.1 表 2 陆源碎屑重矿物稳定性划分据参考文献[22]修改。
Table 2. Stability classification of heavy minerals in terrigenous clastic debris
稳定性 重矿物 超稳定 金红石、锆石、电气石、锐钛矿 稳定 磷灰石、石榴石(含铁少)、十字石、独居石、黑云母、钛铁矿、磁铁矿 中等稳定 绿帘石、蓝晶石、石榴石(富含铁)、硅线石、榍石、黝帘石 不稳定 角闪石、阳起石、辉石、透辉石、紫苏辉石、红柱石 极不稳定 橄榄石 表 3 鄂尔多斯盆地富县地区重点井二叠系下石盒子组1段砂岩重矿物组成
Table 3. Heavy mineral components in sandstone of the first member of Permian Lower Shihezi Formation in key wells of Fuxian area, Ordos Basin
井名 重矿物含量/(mg/kg) 锆石 金红石 电气石 磷灰石 磁铁矿 白钛石 石榴子石 方铅矿 辉石 角闪石 富古4 17.21 0.30 1.20 0.30 7.50 0.9 929.2 富古6 67.54 0.01 0.53 6.26 0.57 富古7 75.81 0.77 4.99 3.33 2.81 新富4 49.96 0.33 7.14 32.57 新富12 76.60 0.02 13.18 0.08 新富14 74.00 1.72 11.81 1.22 牛1 80.32 0.66 0.75 1.23 任203 0.08 76.45 任201 51.66 0.98 0.52 0.05 0.03 35.83 任1 53.78 0.89 14.13 12.59 -
[1] 虎建玲, 王琳霖, 陈琴, 等. 鄂尔多斯盆地西南部早—中二叠世源—汇充填过程及构造—沉积格局[J]. 天然气地球科学, 2024, 35(1): 41-58.HU Jianling, WANG Linlin, CHEN Qin, et al. The Early-Middle Permian source to sink filling process and its tectonic-sedimentary response in the southwestern Ordos Basin[J]. Natural Gas Geoscience, 2024, 35(1): 41-58. [2] 贺敬聪, 朱筱敏, 李明瑞, 等. 鄂尔多斯盆地陇东地区二叠系山西组—石盒子组母岩类型和构造背景[J]. 古地理学报, 2017, 19(2): 285-298.HE Jingcong, ZHU Xiaomin, LI Mingrui, et al. Parent rock types and tectonic setting of the Permian Shanxi and Shihezi formations in Longdong area, Ordos Basin[J]. Journal of Palaeogeography, 2017, 19(2): 285-298. [3] 闫建萍, 刘池洋, 张卫刚, 等. 鄂尔多斯盆地南部上古生界低孔低渗砂岩储层成岩作用特征研究[J]. 地质学报, 2010, 84(2): 272-279.YAN Jianping, LIU Chiyang, ZHANG Weigang, et al. Diagenetic characteristics of the lower porosity and permeability sandstones of the Upper Paleozoic in the south of Ordos Basin[J]. Acta Geologica Sinica, 2010, 84(2): 272-279. [4] 王香增, 周进松. 鄂尔多斯盆地东南部下二叠统山西组二段物源体系及沉积演化模式[J]. 天然气工业, 2017, 37(11): 9-17.WANG Xiangzeng, ZHOU Jinsong. Provenance system and sedimentary evolution model of the second member of Lower Permian Shanxi Fm in the southeastern Ordos Basin[J]. Natural Gas Industry, 2017, 37(11): 9-17. [5] 屈红军, 马强, 高胜利, 等. 鄂尔多斯盆地东南部二叠系物源分析[J]. 地质学报, 2011, 85(6): 979-986.QU Hongjun, MA Qiang, GAO Shengli, et al. On provenance of the Permian in the southeastern Ordos Basin[J]. Acta Geologica Sinica, 2011, 85(6): 979-986. [6] 马强. 鄂尔多斯盆地延长油区上古生界物源及沉积相研究[D]. 西安: 西北大学, 2009.MA Qiang. Sediment source and sedimentary system study in Upper Paleozoic in Yanchang oil region of Ordos Basin[D]. Xi'an: Northwest University, 2009. [7] 刘锐娥, 肖红平, 范立勇, 等. 鄂尔多斯盆地二叠系"洪水成因型"辫状河三角洲沉积模式[J]. 石油学报, 2013, 34(S1): 120-127.LIU Ruie, XIAO Hongping, FAN Liyong, et al. A depositional mode of flood-induced braided river delta in Permian of Ordos Basin[J]. Acta Petrolei Sinica, 2013, 34(S1): 120-127. [8] 田景春, 吴琦, 王峰, 等. 鄂尔多斯盆地下石盒子组盒8段储集砂体发育控制因素及沉积模式研究[J]. 岩石学报, 2011, 27(8): 2403-2412.TIAN Jingchun, WU Qi, WANG Feng, et al. Research on development factors and the deposition model of large area reservoir sandstones of He 8 section of Xiashihezi Formation of Permian in Ordos Basin[J]. Acta Petrologica Sinica, 2011, 27(8): 2403-2412. [9] 王超勇, 陈孟晋, 汪泽成, 等. 鄂尔多斯盆地南部二叠系山西组及下石盒子组盒8段沉积相[J]. 古地理学报, 2007, 9(4): 369-378.WANG Chaoyong, CHEN Mengjin, WANG Zecheng, et al. Sedimentary facies of the Shanxi Formation and member 8 of Xiashihezi Formation of Permian in southern Ordos Basin[J]. Journal of Palaeogeography, 2007, 9(4): 369-378. [10] 陈全红. 鄂尔多斯盆地上古生界沉积体系及油气富集规律研究[D]. 西安: 西北大学, 2007.CHEN Quanhong. Research on sedimentary systems and hydrocarbons enrichment of the Upper Palaeozoic of the Ordos Basin[D]. Xi'an: Northwest University, 2007. [11] 陈孟晋, 汪泽成, 郭彦如, 等. 鄂尔多斯盆地南部晚古生代沉积特征与天然气勘探潜力[J]. 石油勘探与开发, 2006, 33(1): 1-5.CHEN Mengjin, WANG Zecheng, GUO Yanru, et al. Late Paleozoic sedimentary systems and gas potential in the south Ordos Basin[J]. Petroleum Exploration and Development, 2006, 33(1): 1-5. [12] 魏红红. 鄂尔多斯地区石炭—二叠系沉积体系及层序地层学研究[D]. 西安: 西北大学, 2002.WEI Honghong. Research on Permian-Carboniferous depositional systems and the sequence stratigraphy of Ordos area[D]. Xi'an: Northwest University, 2002. [13] 郭艳琴, 李文厚, 郭彬程, 等. 鄂尔多斯盆地沉积体系与古地理演化[J]. 古地理学报, 2019, 21(2): 293-320.GUO Yanqin, LI Wenhou, GUO Bincheng, et al. Sedimentary systems and palaeogeography evolution of Ordos Basin[J]. Journal of Palaeogeography (Chinese Edition), 2019, 21(2): 293-320. [14] 肖建新, 孙粉锦, 何乃祥, 等. 鄂尔多斯盆地二叠系山西组及下石盒子组盒8段南北物源沉积汇水区与古地理[J]. 古地理学报, 2008, 10(4): 341-354.XIAO Jianxin, SUN Fenjin, HE Naixiang et al. Permian Shanxi Formation and member 8 of Xiashihezi Formation in Ordos Basin: palaeogeography and catchment area for sediments derived from north and south provenances[J]. Journal of Palaeogeography, 2008, 10(4): 341-354. [15] 朱筱敏, 康安, 王贵文, 等. 鄂尔多斯盆地西南部上古生界层序地层和沉积体系特征[J]. 石油实验地质, 2002, 24(4): 327-333.ZHU Xiaomin, KANG An, WANG Guiwen, et al. The Upper Paleozoic sequence stratigraphic and sedimentary system characteristics of the southwest Ordos Basin[J]. Petroleum Geology & Experiment, 2002, 24(4): 327-333. [16] 肖红平, 刘锐娥, 李文厚, 等. 鄂尔多斯盆地上古生界碎屑岩相对高渗储集层成因及分布[J]. 古地理学报, 2012, 14(4): 543-552.XIAO Hongping, LIU Ruie, LI Wenhou, et al. Origin and distribution of higher permeable reservoir of the Upper Paleozoic in Ordos Basin[J]. Journal of Palaeogeography, 2012, 14(4): 543-552. [17] 王卫红, 田景春, 张锦泉. 鄂尔多斯盆地二叠系盒8段沉积特征再研究[J]. 成都理工大学学报(自然科学版), 2016, 43(2): 224-232.WANG Weihong, TIAN Jingchun, ZHANG Jinquan. Research on sedimentary environment of the member 8 of Middle Permian Xiashihezi Formation in Ordos Basin, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2016, 43(2): 224-232. [18] 翟咏荷, 何登发, 开百泽. 鄂尔多斯盆地及邻区早二叠世构造—沉积环境与原型盆地演化[J]. 地学前缘, 2023, 30(2): 139-153.ZHAI Yonghe, HE Dengfa, KAI Baize. Tectono-depositional environment and prototype basin evolution in the Ordos Basin during the Early Permian[J]. Earth Science Frontiers, 2023, 30(2): 139-153. [19] 申博恒, 沈树忠, 吴琼, 等. 华北板块石炭纪—二叠纪地层时间框架[J]. 中国科学(地球科学), 2022, 52(7): 1181-1212.SHEN Boheng, SHEN Shuzhong, WU Qiong, et al. Carboniferous and Permian integrative stratigraphy and timescale of North China block[J]. Science China (Earth Sciences), 2022, 65(6): 983-1011. [20] 吴柘锟, 李琦, 张迎朝, 等. 东海陆架盆地丽水凹陷古新统物源分析及地质意义[J]. 石油实验地质, 2023, 45(1): 122-134. doi: 10.11781/sysydz202301122WU Zhekun, LI Qi, ZHANG Yingzhao, et al. Provenance analysis and geological significance of Paleocene in Lishui Sag, East China Sea Shelf Basin[J]. Petroleum Geology & Experiment, 2023, 45(1): 122-134. doi: 10.11781/sysydz202301122 [21] 许苗苗, 魏晓椿, 杨蓉, 等. 重矿物分析物源示踪方法研究进展[J]. 地球科学进展, 2021, 36(2): 154-171.XU Miaomiao, WEI Xiaochun, YANG Rong, et al. Research progress of provenance tracing method for heavy mineral analysis[J]. Advances in Earth Science, 2021, 36(2): 154-171. [22] PETTIJOHN F J, POTTER P E, SIEVER R. Sand and sandstone[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1988, 25(4): A160. [23] 朱卫红, 吴胜和, 尹志军, 等. 辫状河三角洲露头构型: 以塔里木盆地库车坳陷三叠系黄山街组为例[J]. 石油勘探与开发, 2016, 43(3): 482-489.ZHU Weihong, WU Shenghe, YIN Zhijun, et al. Braided river delta outcrop architecture: a case study of Triassic Huangshanjie Formation in Kuche Depression, Tarim Basin, NW China[J]. Petroleum Exploration and Development, 2016, 43(3): 482-489. [24] 张泓, 沈光隆, 何宗莲. 华北板块晚古生代古气候变化对聚煤作用的控制[J]. 地质学报, 1999, 73(2): 131-139.ZHANG Hong, SHEN Guanglong, HE Zonglian. Control of palaeoclimatic change on Late Palaeozoic coal accumulation of the North China Plate[J]. Acta Geologica Sinica, 1999, 73(2): 131-139. -