Simulation and zoning evaluation of in-situ stress field within ultra-deep tight sandstone reservoirs in thrust-nappe structures of Bozi-Dabei area, Tarim Basin
-
摘要: 塔里木盆地博孜—大北地区白垩系致密砂岩储层是我国超深层致密砂岩气勘探开发的重点层系。受逆冲推覆构造及盐构造双重影响,该地区发育了叠瓦状褶皱构造及一系列断距大、倾角变化显著的断裂,导致地应力场分布复杂多变,难以准确预测,严重制约了该区的勘探开发进程。为揭示其应力分布规律,建立了一套适用于逆冲推覆构造特征的地应力场模拟方法,并结合储层地质特征与工程改造需求对研究区进行了应力分级分区评价。基于岩心测试、测井资料、矿场试验数据,标定了单井地应力方向和大小,系统分析了研究区地应力方向与大小的分布特征;通过探讨地应力对储层物性、脆性、工程改造难度的影响,建立了研究区应力分级评价标准;对博孜—大北地区重点开发的B1井区进行了精细三维非均质地应力场建模,明确了B1井区应力分布规律,完成了分区评价。地应力场数值模拟结果与单井地应力解释结果平均误差率小于10%,B1井区地应力方向主要为N170°—190°E,断裂附近地应力方向沿断裂走向发生20°~60°的偏转。地应力大小受埋深影响,呈现由北向南递增的趋势,背斜高点及断裂带内地应力与应力差减小;断裂级次越高,其对地应力的断裂扰动范围及强度越大。以最小主应力145 MPa、水平应力差34 MPa为界,将地应力状态由好到差分为4类:低应力差—低地应力、高应力差—低地应力、低应力差—高地应力、高应力差—高地应力。B1井区有利于压裂改造的低应力差—低地应力区主要分布于白垩系巴什组断裂上盘和构造变形高部位。Abstract: The Cretaceous tight sandstone reservoirs in the Bozi-Dabei area of the Tarim Basin are key targets for ultra-deep tight sandstone gas exploration and development in China. Influenced by thrust-nappe structures and salt structures, the region has formed imbricate folding structures and a series of faults with large displacements and varying dip angles, resulting in a complex and highly variable in-situ stress field that is difficult to predict, severely restricting exploration and development in the area. To clarify the stress distribution pattern, an in-situ stress field simulation method, suitable for the characteristics of thrust-nappe structures was developed. Moreover, a stress grading and zoning evaluation was conducted, combining with the geological and engineering modification characteristics of the reservoirs. Core testing, well logging, and mining field test data were used to calibrate the in-situ stress direction and magnitude for individual wells, and their distribution characteristics were analyzed. By examining the impact of in-situ stress on reservoir physical properties, brittleness, and engineering modification difficulty, stress grading evaluation standards for the study area were established. A detailed three-dimensional heterogeneous in-situ stress field model was constructed for well B1, a key development area in the Bozi-Dabei area, to clarify the stress distribution characteristics and conduct zoning evaluations. The average error rate between the numerical simulation results and single-well in-situ stress interpretations was less than 10%. In well B1, the in-situ stress direction was primarily between N170°-190°E, and the stress direction near the faults deflected along the fault strike with deflection angles ranging from 20° to 60°. The magnitude of in-situ stress increased from north to south with burial depth, with reduced in-situ stress and stress differences at the high point of the anticline and within the fault zone. The higher the fault order, the greater the disturbance range and intensity. Based on a minimum principal stress of 145 MPa and a horizontal stress difference of 34 MPa, the in-situ stress state was classified into four categories: low stress difference with low in-situ stress, high stress difference with low in-situ stress, low stress difference with high in-situ stress, and high stress difference with high in-situ stress. The low stress difference and low in-situ stress areas in well B1, which are favorable for fracturing modification, are mainly developed in the hanging wall of the faults in the Cretaceous Bashijiqike Formation (K1bs) and the high structural deformation areas.
-
图 1 塔里木盆地博孜—大北地区构造位置及研究区地震剖面
a.克拉苏构造带位置;b.博孜—大北地区构造位置;c.博孜—大北地区A6-A13地震剖面,据参考文献[25]修改。
Figure 1. Structural location of Bozi-Dabei area of Tarim Basin and seismic profile of study area
表 1 现今地应力方向解释方法原理及适用性汇总
Table 1. Summary of principles and applicability of present in-situ stress direction interpretation methods
现今地应力方向解释方法 原理 单井解释示例 偶极声波测井分析 电成像影响分析 多井径测井分析 表 2 现今地应力大小解释方法原理及适用性汇总
Table 2. Summary of principles and applicability of present in-situ stress magnitude interpretation methods
现今地应力方向解释方法 原理 单井解释示例 井壁崩落反演法 水力压裂法 表 3 地应力分级评价标准
Table 3. Grading evaluation standard for in-situ stress
分类 应力分级评价 水平两向应力差/MPa 最小水平主应力/MPa Ⅰ类(低应力差—低地应力) < 34 < 145 Ⅱ类(高应力差—低地应力) ≥34 < 145 Ⅲ类(低应力差—高地应力) < 34 ≥145 不利区(高应力差—高地应力) ≥34 ≥145 -
[1] 戴金星, 倪云燕, 吴小奇. 中国致密砂岩气及在勘探开发上的重要意义[J]. 石油勘探与开发, 2012, 39(3): 257-264.DAI Jinxing, NI Yunyan, WU Xiaoqi. Tight gas in China and its significance in exploration and exploitation[J]. Petroleum Exploration and Development, 2012, 39(3): 257-264. [2] 关晓东, 郭磊. 深层—超深层油气成藏研究新进展及展望[J]. 石油实验地质, 2023, 45(2): 203-209. doi: 10.11781/sysydz202302203GUAN Xiaodong, GUO Lei. New progress and prospect of oil and gas accumulation research in deep to ultra-deep strata[J]. Petroleum Geology & Experiment, 2023, 45(2): 203-209. doi: 10.11781/sysydz202302203 [3] 赵金海, 张洪宁, 王恒, 等. 中国石化超深层钻完井关键技术挑战及展望[J]. 钻采工艺, 2024, 47(2): 28-34.ZHAO Jinhai, ZHANG Hongning, WANG Heng, et al. Key technical challenges and prospect of drilling and completion in ultra-deep reservoirs, SINOPEC[J]. Drilling and Production Technology, 2024, 47(2): 28-34. [4] 曾庆鲁, 莫涛, 赵继龙, 等. 7 000m以深优质砂岩储层的特征、成因机制及油气勘探意义: 以库车坳陷下白垩统巴什基奇克组为例[J]. 天然气工业, 2020, 40(1): 38-47.ZENG Qinglu, MO Tao, ZHAO Jilong, et al. Characteristics, genetic mechanism and oil & gas exploration significance of high-quality sandstone reservoirs deeper than 7 000 m: a case study of the Bashijiqike Formation of Lower Cretaceous in the Kuqa Depression[J]. Natural Gas Industry, 2020, 40(1): 38-47. [5] 张家维, 李瑞雪, 邓虎成, 等. 超深层逆冲推覆构造致密砂岩储层地应力场扰动特征: 以塔里木盆地博孜—大北地区白垩系储层为例[J]. 石油实验地质, 2024, 46(4): 760-774. doi: 10.11781/sysydz202404760ZHANG Jiawei, LI Ruixue, DENG Hucheng, et al. Disturbance characteristics of in-situ stress field within ultra-deep tight sandstone reservoirs in thrust-nappe structures: a case study from Cretaceous reservoirs in Bozi-Dabei area, Tarim Basin[J]. Petroleum Geology & Experiment, 2024, 46(4): 760-774. doi: 10.11781/sysydz202404760 [6] 杨海军, 孙雄伟, 潘杨勇, 等. 塔里木盆地克拉苏构造带西部构造变形规律与油气勘探方向[J]. 天然气工业, 2020, 40(1): 31-37.YANG Haijun, SUN Xiongwei, PAN Yangyong, et al. Structural deformation laws and oil & gas exploration direction in the western Kelasu tectonic zone of the Tarim Basin[J]. Natural Gas Industry, 2020, 40(1): 31-37. [7] 王春生, 王哲, 张权, 等. 塔里木油田超深层钻井技术进展及难题探讨[J]. 钻采工艺, 2024, 47(2): 59-69.WANG Chunsheng, WANG Zhe, ZHANG Quan, et al. Progress and obstacles of ultra-deep drilling technology in Tarim Oilfield[J]. Drilling and Production Technology, 2024, 47(2): 59-69. [8] 徐珂, 田军, 杨海军, 等. 深层致密砂岩储层现今地应力场预测及应用: 以塔里木盆地克拉苏构造带克深10气藏为例[J]. 中国矿业大学学报, 2020, 49(4): 708-720.XU Ke, TIAN Jun, YANG Haijun, et al. Prediction of current in-situ stress filed and its application of deeply buried tight sandstone reservoir: a case study of Keshen 10 gas reservoir in Kelasu structural belt, Tarim Basin[J]. Journal of China University of Mining & Technology, 2020, 49(4): 708-720. [9] 鲜成钢. 页岩气地质工程一体化建模及数值模拟: 现状、挑战和机遇[J]. 石油科技论坛, 2018, 37(5): 24-34.XIAN Chenggang. Shale gas geological engineering integrated modeling and numerical simulation: present conditions, challenges and opportunities[J]. Petroleum Science and Technology Forum, 2018, 37(5): 24-34. [10] 廖新武, 刘奇, 李超, 等. 渤中25-1低渗透油田地应力分布特征及对开发的影响[J]. 地质力学学报, 2015, 21(1): 30-37.LIAO Xinwu, LIU Qi, LI Chao, et al. Distribution of the present stress in low permeability oilfield of Bozhong 25-1 and its effect on development[J]. Journal of Geomechanics, 2015, 21(1): 30-37. [11] 吕志凯, 张建业, 张永宾, 等. 超深层裂缝性致密砂岩气藏储层连通性及开发启示: 以塔里木盆地库车坳陷克深2气藏为例[J]. 断块油气田, 2023, 30(1): 31-37.LÜ Zhikai, ZHANG Jianye, ZHANG Yongbin, et al. Reservoir connectivity of ultra-deep fractured tight sandstone gas reservoir and development enlightenment: taking Keshen 2 gas reservoir in Kuqa Depression of Tarim Basin as an example[J]. Fault-Block Oil & Gas Field, 2023, 30(1): 31-37. [12] ZOBACK M D. Reservoir geomechanics[M]. Cambridge: Cambridge University Press, 2007: 206-265. [13] 周云秋, 贺锡雷, 林凯, 等. 基于动态有效应力系数的地层压力估算方法[J]. 新疆石油地质, 2023, 44(2): 245-251.ZHOU Yunqiu, HE Xilei, LIN Kai, et al. Formation pressure estimation method based on dynamic effective stress coefficient[J]. Xinjiang Petroleum Geology, 2023, 44(2): 245-251. [14] 桑树勋, 郑司建, 王建国, 等. 岩石力学地层新方法在深部煤层气勘探开发"甜点"预测中的应用[J]. 石油学报, 2023, 44(11): 1840-1853.SANG Shuxun, ZHENG Sijian, WANG Jianguo, et al. Application of new rock mechanical stratigraphy in sweet spot prediction for deep coalbed methane exploration and development[J]. Acta Petrolei Sinica, 2023, 44(11): 1840-1853. [15] 王斌, 张景臣, 董景锋, 等. 巨厚砾岩油藏水力压裂三维诱导应力数值模拟[J]. 断块油气田, 2024, 31(5): 836-842.WANG Bin, ZHANG Jingchen, DONG Jingfeng, et al. Numerical simulation of three-dimensional induced stress in hydraulic fracturing of giant thick conglomerate oil reservoirs[J]. Fault-Block Oil & Gas Field, 2024, 31(5): 836-842. [16] 刘敬寿, 丁文龙, 杨海盟, 等. 鄂尔多斯盆地华庆地区天然裂缝与岩石力学层演化: 基于数值模拟的定量分析[J]. 地球科学(中国地质大学学报), 2023, 48(7): 2572-2588.LIU Jingshou, DING Wenlong, YANG Haimeng, et al. Natural fractures and rock mechanical stratigraphy evaluation in Huaqing area, Ordos Basin: a quantitative analysis based on numerical simulation[J]. Earth Science(Journal of China University of Geosciences)2023, 48(7): 2572-2588. [17] 徐珂, 杨海军, 张辉, 等. 基于地质力学方法的深层致密气藏高效勘探技术: 以库车坳陷迪北气藏为例[J]. 地球科学: 中国地质大学学报, 2023, 48(2): 621-639.XU Ke, YANG Haijun, ZHANG Hui, et al. Efficient exploration technology of deep tight gas reservoir based on geomechanics method: a case study of Dibei gas reservoir in Kuqa Depression[J]. Earth Science: Journal of China University of Geosciences, 2023, 48(2): 621-639. [18] 陈珂, 于志豪, 王守毅, 等. 断层附近非均匀应力场页岩压裂缝网扩展模拟[J]. 断块油气田, 2023, 30(2): 213-221.CHEN Ke, YU Zhihao, WANG Shouyi, et al. Shale fracture network propagation simulation in non-uniform stress field near fault[J]. Fault-Block Oil & Gas Field, 2023, 30(2): 213-221. [19] JU Wei, XU Ke, SHEN Jian, et al. A workflow to predict the present-day in-situ stress field in tectonically stable regions[J]. Journal of Environmental & Earth Sciences, 2019, 1(2): 42-47. [20] 黄耀光, 王连国, 陈家瑞, 等. 平台巴西劈裂试验确定岩石抗拉强度的理论分析[J]. 岩土力学, 2015, 36(3): 739-748.HUANG Yaoguang, WANG Lianguo, CHEN Jiarui, et al. Theoretical analysis of flattened Brazilian splitting test for determining tensile strength of rocks[J]. Rock and Soil Mechanics, 2015, 36(3): 739-748. [21] 张广明, 熊春明, 刘合, 等. 复杂断块地应力场数值模拟方法研究[J]. 断块油气田, 2011, 18(6): 710-713.ZHANG Guangming, XIONG Chunming, LIU He, et al. Numerical simulation method for in-situ stress field in complex fault block[J]. Fault-Block Oil & Gas Field, 2011, 18(6): 710-713. [22] 漆立新, 丁勇. 塔里木盆地顺北地区东西部海相油气成藏差异[J]. 石油实验地质, 2023, 45(1): 20-28. doi: 10.11781/sysydz202301020QI Lixin, DING Yong. Differences in marine hydrocarbon accumulation between the eastern and western parts of Shunbei area, Tarim Basin[J]. Petroleum Geology & Experiment, 2023, 45(1): 20-28. doi: 10.11781/sysydz202301020 [23] 郭宏辉, 冯建伟, 赵力彬. 塔里木盆地博孜—大北地区被动走滑构造特征及其对裂缝发育的控制作用[J]. 石油与天然气地质, 2023, 44(4): 962-975.GUO Honghui, FENG Jianwei, ZHAO Libin. Characteristics of passive strike-slip structure and its control effect on fracture development in Bozi-Dabei area, Tarim Basin[J]. Oil & Gas Geology, 2023, 44(4): 962-975. [24] 杨学文, 王清华, 李勇, 等. 库车前陆冲断带博孜—大北万亿方大气区的形成机制[J]. 地学前缘, 2022, 29(06): 175-187.YANG Xuewen, WANG Qinghua, LI Yong, et al. Formation mechanism of the Bozi-Dabei trillion cubic natural gas field Kuga foreland thrust belt, Earth Science Frontiers, 2022, 29(6): 175-187. [25] 魏国齐, 张荣虎, 智凤琴, 等. 库车坳陷东部中生界构造—岩性地层油气藏形成条件与勘探方向[J]. 石油学报, 2021, 42(9): 1113-1125.WEI Guoqi, ZHANG Ronghu, ZHI Fengqin, et al. Formation conditions and exploration directions of Mesozoic structural-lithologic stratigraphic reservoirs in the eastern Kuqa Depression[J]. Acta Petrolei Sinica, 2021, 42(9): 1113-1125. [26] 黄少英, 杨文静, 卢玉红, 等. 塔里木盆地天然气地质条件、资源潜力及勘探方向[J]. 天然气地球科学, 2018, 29(10): 1497-1505.HUANG Shaoying, YANG Wenjing, LU Yuhong, et al. Geological conditions, resource potential and exploration direction of natural gas in Tarim Basin[J]. Natural Gas Geoscience, 2018, 29(10): 1497-1505. [27] 徐振平, 杨宪彰, 能源, 等. 库车前陆冲断带构造分层变形特征[J]. 新疆石油地质, 2024, 45(5): 505-515.XU Zhenping, YANG Xianzhang, NENG Yuan, et al. Layered structural deformation characteristics of Kuqa foreland thrust belt[J]. Xinjiang Petroleum Geology, 2024, 45(5): 505-515. [28] 杨海军, 陈永权, 田军, 等. 塔里木盆地轮探1井超深层油气勘探重大发现与意义[J]. 中国石油勘探, 2020, 25(2): 62-72.YANG Haijun, CHEN Yongquan, TIAN Jun, et al. Great discovery and its significance of ultra-deep oil and gas exploration in well Luntan-1 of the Tarim Basin[J]. China Petroleum Exploration, 2020, 25(2): 62-72. [29] 孔政, 曾溅辉, 左名圣. Kaiser效应点识别方法及储层地应力预测[J]. 油气地质与采收率, 2023, 30(6): 54-60.KONG Zheng, ZENG Jianhui, ZUO Mingsheng. Kaiser effect point identification method and in-situ stress prediction of reservoirs[J]. Petroleum Geology and Recovery Efficiency, 2023, 30(6): 54-60. [30] 侯冰, 潘泳君, 陈勉, 等. 页岩储层岩心地应力方向古地磁实验研究[J]. 钻采工艺, 2017, 40(5): 1-4.HOU Bing, PAN Yongjun, CHEN Mian, et al. Paleomagnetic experimental research on how to determine geographic orientation of in-situ stress by shale reservoir cores[J]. Drilling & Production Technology, 2017, 40(5): 1-4. [31] 闵建, 马辉运, 彭钧亮, 等. 波速各向异性结合古地磁测试地应力方向研究[J]. 钻采工艺, 2020, 43(S1): 17-19.MIN Jian, MA Huiyun, PENG Junliang, et al. Study on determination of in-situ stress direction using wave velocity anisotropy method combined with paleomagnetism method[J]. Drilling & Production Technology, 2020, 43(S1): 17-19. [32] 李勇, 何建华, 邓虎成, 等. 深层页岩储层现今地应力场特征及其对页岩储层改造的影响: 以川南永川页岩气区块五峰—龙马溪组为例[J]. 中国矿业大学学报, 2024, 53(3): 546-563.LI Yong, HE Jianhua, DENG Hucheng, et al. The present-day in-situ stress filed characteristic of deep shale reservoirs and its effect on the reconstruction of shale reservoirs: a case study of the Yongchuan shale gas field in south Sichuan Basin[J]. Journal of China University of Mining & Technology, 2024, 53(3): 546-563. [33] 黄滔, 刘岩, 何建华, 等. 川西孝泉—丰谷地区须二段深层致密砂岩储层地应力大小评价方法及其工程应用[J]. 中国地质, 2024, 51(1): 89-104.HUANG Tao, LIU Yan, HE Jianhua, et al. Evaluation method and engineering application of in-situ stress of deep tight sandstone reservoir in the second member of Xujiahe Formation in Xiaoquan-Fenggu area, western Sichuan[J]. Geology in China, 2024, 51(1): 89-104. [34] 李勇, 何建华, 邓虎成, 等. 深层页岩储层天然裂缝连通性表征及力学有效性分析: 以川东南盆缘丁山—东溪地区五峰组—龙马溪组为例[J]. 天然气地球科学, 2024, 35(2): 230-244.LI Yong, HE Jianhua, DENG Hucheng, et al. Analysis of connectivity characterization and mechanical effectiveness of natural fracture in deep shale reservoirs: a case study of the Wufeng-Longmaxi formations in the Dingshan-Dongxi area, southeastern margin of Sichuan Basin[J]. Natural Gas Geoscience, 2024, 35(2): 230-244. [35] 姜永东, 鲜学福, 许江. 岩石声发射Kaiser效应应用于地应力测试的研究[J]. 岩土力学, 2005, 26(6): 946-950.JIANG Yongdong, XIAN Xuefu, XU Jiang. Research on application of Kaiser effect of acoustic emission to measuring initial stress in rock mass[J]. Rock and Soil Mechanics, 2005, 26(6): 946-950. [36] 王璞, 王成虎, 杨汝华, 等. 基于应力多边形与震源机制解的深部岩体应力状态预测方法初探[J]. 岩土力学, 2019, 40(11): 4486-4496.WANG Pu, WANG Chenghu, YANG Ruhua, et al. Preliminary investigation on the deep rock stresses prediction method based on stress polygon and focal mechanism solution[J]. Rock and Soil Mechanics, 2019, 40(11): 4486-4496. [37] 张小菊, 何建华, 徐庆龙, 等. 合川地区须二段现今地应力场分布特征与扰动机制研究[J]. 矿物岩石, 2022, 42(4): 71-82.ZHANG Xiaoju, HE Jianhua, XU Qinglong, et al. Distribution characteristics and disturbance mechanism of present in-situ stress field in the second member of Xujiahe Formation in Hechuan area[J]. Journal of Mineralogy and Petrology, 2022, 42(4): 71-82. [38] YIN Shuai, DING Wenlong, ZHOU Wen, et al. In situ stress field evaluation of deep marine tight sandstone oil reservoir: a case study of Silurian strata in northern Tazhong area, Tarim Basin, NW China[J]. Marine and Petroleum Geology, 2017, 80: 49-69. [39] 曹峰, 何建华, 王园园, 等. 合川地区须二段低各向异性储层现今地应力方向评价方法[J]. 地球科学进展, 2022, 37(7): 742-755.CAO Feng, HE Jianhua, WANG Yuanyuan, et al. Methods to evaluate present-day in-situ stress direction for low anisotropic reservoirs in the second member of the Xujiahe Formation in Hechuan area[J]. Advances in Earth Science, 2022, 37(7): 742-755. [40] 何建华, 曹峰, 邓虎成, 等. 四川盆地HC地区须二段致密砂岩储层地应力评价及其在致密气开发中的应用[J]. 中国地质, 2023, 50(4): 1107-1121.HE Jianhua, CAO Feng, DENG Hucheng, et al. Evaluation of in-situ stress in dense sandstone reservoirs in the second member of Xujiahe Formation of the HC area of the Sichuan Basin and its application to dense sandstone gas development[J]. Geology in China, 2023, 50(4): 1107-1121. -