Characteristics and genesis of carbonate micropores in the first member of Lower Cambrian Canglangpu Formation in north and central Sichuan Basin
-
摘要: 直径小于10 μm的微孔隙是目前深埋藏致密储层研究的热点。四川盆地下寒武统沧浪铺组具有良好的天然气勘探潜力,沧浪铺组一段(沧一段)白云岩中发育的大量微孔隙是天然气的主要储集空间,因此明确微孔隙的发育特征及成因机制是寻找有利勘探区的关键。通过铸体薄片鉴定、扫描电镜分析和岩心CT扫描,开展了川中北部地区寒武系沧一段白云岩微孔隙表征,并结合沉积环境与成岩作用探讨了微孔隙的成因机制。研究区沧一段鲕粒白云岩样品平均孔隙度为3.44%,最大孔隙度达9.44%,铸体薄片鉴定显示孔隙发育差,但扫描电镜分析、CT扫描等结果均显示存在大量微孔隙,表明研究区沧一段鲕粒白云岩储层孔隙度主要由微孔隙贡献。研究区沧一段储集空间以颗粒内广泛发育的晶间微孔隙为主,形态呈三角形、多边形,孔径分布主要集中在3~9 μm,呈点状或团状分布,宏观上呈现为鲕粒的轮廓,指示微孔隙主要分布在颗粒内部。研究区沧一段白云岩微孔隙的形成与沉积早期海平面变化导致的鲕粒滩被大气淡水选择性溶蚀密切相关,埋藏期的白云石化作用更是微孔隙形成的关键,而宏孔的消失则主要受压实、压溶作用及下伏地层油气充注的影响。Abstract: Micropores with diameters under 10 μm are a current research focus in deeply buried tight reservoirs. The Lower Cambrian Canglangpu Formation in the Sichuan Basin shows considerable potential for natural gas exploration. The abundant micropores in the dolomite of the first member of Canglangpu Formation (Cang 1) serve as the main storage space for natural gas. Therefore, clarifying the development characteristics and genesis mechanisms of micropores is key to identifying favorable exploration areas. Through cast thin-section identification, scanning electron microscopy (SEM) analysis, and core computed tomography (CT) scanning, the study characterized the micropores in the dolomite of the Cang 1 member in the north and central Sichuan Basin. Additionally, the genesis mechanisms were explored considering the sedimentary environments and diagenesis processes. The oolitic dolomite samples from the Cang 1 member in the study area had an average porosity of 3.44%, with a maximum porosity of 9.44%. Cast thin-section analysis indicated poor pore development. However, SEM and CT scanning images revealed the presence of abundant micropores, demonstrating that micropores were the primary contributors to porosity in the oolitic dolomite reservoirs of the Cang 1 member. The reservoir space in the study area is dominated by intercrystalline pores extensively developed in particles. These micropores exhibit triangular or polygonal shapes, with pore diameters mainly ranging from 3 to 9 μm, and are abundant, displaying a dot-like or clustered distribution. On a macroscopic scale, the micropores outline the contours of oolites, indicating that micropores are primarily distributed within particles. The development of micropores in the dolomite of the Cang 1 member was intimately linked to the selective dissolution of oolitic beaches by meteoric freshwater due to sea-level changes in early sedimentary stages. The dolomitization at the burial stage was crucial for micropore formation. The loss of macropores was mainly influenced by compaction, pressure solution, and hydrocarbon charging from the underlying formations.
-
Key words:
- dolomite /
- oolite /
- micropores /
- genesis mechanism /
- first member of Canglangpu Formation /
- Lower Cambrian /
- Sichuan Basin
-
图 4 川中北部地区下寒武统沧一段典型岩性样品铸体薄片照片
a.PS7井,6 770.75 m,残余鲕粒细晶白云岩,孔隙度5.35%,单偏光;b.PS7井,6 753.45 m,残余鲕粒细晶白云岩,孔隙度2.62%,单偏光;c.PS7井,6 781.00 m,残余鲕粒灰质白云岩,孔隙度4.39%,单偏光;d.PS9井,6 530.21 m,残余鲕粒灰质白云岩,孔隙度3.82%,单偏光;e.PS9井,6 521.13 m,残余鲕粒灰质白云岩,单偏光,孔隙度3.07%;f.PS7井,6 763.61 m,残余鲕粒细晶白云岩,孔隙度3.12%,单偏光;g.PS7井,6 774.23 m,残余鲕粒细晶白云岩,孔隙度4.65%,单偏光;h.PS7井,6 771.56 m,残余鲕粒细晶白云岩,见微孔隙,孔隙度5.7%,单偏光;i.CT1井,6 265.61 m,残余鲕粒细晶白云岩,见粒内微孔隙,孔隙度3.41%,单偏光。
Figure 4. Cast thin-section images of samples with typical lithologies from the first member of Lower Cambrian Canglangpu Formationin in north and central Sichuan Basin
图 5 川中北部地区下寒武统沧一段鲕粒白云岩微孔隙扫描电镜照片
a.PS7井,6 772.48 m,残余鲕粒细晶白云岩,孔隙度5.03%;b.PS7井,6 783.34 m,残余鲕粒细晶白云岩,孔隙度6.30%;c.PS7井,6 778.15 m,残余鲕粒细晶白云岩,孔隙成环带状分布,孔隙度4.56%;d.PS7井,6 772.48 m,残余鲕粒细晶白云岩,孔隙成环带状分布,孔隙度5.03%;e.PS7井,6 772.48 m,残余鲕粒细晶白云岩,孔隙边缘平直、有棱角,孔隙度5.03%;f.PS7井,6 783.34 m,残余鲕粒细晶白云岩,孔隙边缘平直、有棱角,孔隙度6.30%。
Figure 5. Scanning electron microscope images of micropores in oolitic dolomite from the first member of Lower Cambrian Canglangpu Formationin in north and central Sichuan Basin
图 7 川中北部地区下寒武统沧一段成岩作用特征
a.PS9井,6 530.21 m,灰质残余鲕粒细晶白云岩,见不同期次方解石胶结,单偏光;b.PS7井,5 763.61 m,残余鲕粒细晶白云岩,沥青充填大孔隙,单偏光;c.PS7井,6 783.34 m,残余鲕粒细晶白云岩,孔隙边缘平直,受到白云石晶体限制,SEM;d.PS7井,6 763.61 m,砂质残余鲕粒细晶白云岩,雾心亮边结构,单偏光。
Figure 7. Diagenesis characteristics of the first member of Lower Cambrian Canglangpu Formationin in north and central Sichuan Basin
图 8 川中北部地区下寒武统沧一段鲕粒白云岩碳氧同位素特征
腕足类化石数据引自参考文献[41]。
Figure 8. Characteristics of carbon and oxygen isotopes in oolitic dolomite from the first member of Lower Cambrian Canglangpu Formationin in north and central Sichuan Basin
表 1 川中北部地区下寒武统沧一段鲕粒白云岩代表性样品面孔率—孔隙度对应表
Table 1. Relationship between surface porosity and porosity of representative oolitic dolomite samples from the first member of Lower Cambrian Canglangpu Formationin in north and central Sichuan Basin
序号 井号 深度/m 岩性 孔隙度/% 面孔率/% 渗透率/10-3 μm2 1 PS7井 6 753.05 残余鲕粒细晶白云岩 7.47 0.0 0.006 0 2 PS7井 6 755.97 残余鲕粒细晶白云岩 6.46 0.0 0.005 5 3 PS7井 6 756.20 残余鲕粒细晶白云岩 2.81 0.4 0.024 4 4 PS7井 6 763.02 残余鲕粒细晶白云岩 3.12 0.0 0.004 4 5 PS7井 6 767.64 残余鲕粒细晶白云岩 3.46 0.0 0.000 8 6 PS7井 6 771.22 残余鲕粒细晶白云岩 5.35 0.6 0.002 3 7 PS7井 6 772.13 残余鲕粒细晶白云岩 5.69 0.0 0.004 1 8 PS7井 6 774.23 残余鲕粒细晶白云岩 4.65 1.0 0.028 1 9 PS7井 6 776.35 残余鲕粒细晶白云岩 2.81 0.0 0.358 5 10 PS7井 6 781.00 残余鲕粒灰质白云岩 4.39 0.0 11 PS7井 6 784.20 残余鲕粒灰质白云岩 6.62 0.0 12 PS9井 6 509.28 残余鲕粒细晶白云岩 3.11 0.5 13 PS9井 6 514.61 残余鲕粒细晶白云岩 4.71 0.0 14 PS9井 6 518..97 残余鲕粒细晶白云岩 4.88 0.0 15 PS9井 6 521.57 残余鲕粒灰质白云岩 3.11 0.0 16 PS9井 6 523.20 残余鲕粒灰质白云岩 3.95 0.0 17 PS9井 6 525.80 残余鲕粒灰质白云岩 5.49 0.0 18 PS9井 6 527.39 残余鲕粒灰质白云岩 5.29 0.0 19 PS9井 6 530.21 残余鲕粒灰质白云岩 3.82 0.5 0.001 1 20 PS9井 6 532.25 残余鲕粒灰质白云岩 4.21 0.0 0.049 3 -
[1] DUAN Wei, GAO Zhiqian, ZHANG Chi, et al. Characterization of the deeply buried microporous limestone: case study from the Shunnan area, Tarim Basin, NW China[J]. Geological Journal, 2020, 55(7): 4920-4935. http://www.zhangqiaokeyan.com/journal-foreign-detail/0704023656652.html [2] 夏青松, 陆江, 杨鹏, 等. 柴达木盆地英西地区渐新统下干柴沟组上段储层微观孔隙结构特征[J]. 岩性油气藏, 2023, 35(1): 132-144.XIA Qingsong, LU Jiang, YANG Peng, et al. Microscopic pore structure characteristics of the upper member of Oligocene Xiaganchaigou Formation in Yingxi area, Qaidam Basin[J]. Lithologic Reservoirs, 2023, 35(1): 132-144. [3] 叶德胜. 塔里木盆地北部上丘里塔格群致密灰岩微孔储层的发现及意义[J]. 石油实验地质, 1993, 15(2): 174-184. doi: 10.11781/sysydz199302174YE Desheng. The discovery of compacted limestone microporous reservoir in the upper Qiulitage Group, the northern Tarim Basin and its significance[J]. Petroleum Geology & Experiment, 1993, 15(2): 174-184. doi: 10.11781/sysydz199302174 [4] 尤东华, 韩俊, 胡文瑄, 等. 超深层灰岩孔隙—微孔隙特征与成因: 以塔里木盆地顺南7井和顺托1井一间房组灰岩为例[J]. 石油与天然气地质, 2017, 38(4): 693-702.YOU Donghua, HAN Jun, HU Wenxuan, et al. Characteristics and genesis of pores and micro-pores in ultra-deep limestones: a case study of Yijianfang Formation limestones from Shunnan-7 and Shuntuo-1 wells in Tarim Basin[J]. Oil & Gas Geology, 2017, 38(4): 693-702. [5] WANG Guangwei, HAO Fang, ZHANG Wenbo, et al. Characterization and origin of micropores in tight gas grainstones of the Lower Triassic Feixianguan Formation in the Jiannan gas field, Sichuan Basin[J]. Marine and Petroleum Geology, 2022, 139: 105609. http://www.sciencedirect.com/science/article/pii/S0264817222000873 [6] ABOUELRESH M O, MAHMOUD M, RADWAN A E, et al. Characterization and classification of the microporosity in the unconventional carbonate reservoirs: a case study from Hanifa Formation, Jafurah Basin, Saudi Arabia[J]. Marine and Petroleum Geology, 2022, 145: 105921. doi: 10.1016/j.marpetgeo.2022.105921 [7] MORAD D, PAGANONI M, AL HARTHI A, et al. Origin and evolution of microporosity in packstones and grainstones in a Lower Cretaceous carbonate reservoir, United Arab Emirates[M]//ARMITAGE P J, BUTCHER A R, CHURCHILL J M, et al. Reservoir quality of clastic and carbonate rocks: analysis, modelling and prediction. London: Geological Society, 2018: 47-66. [8] LAMBERT L, DURLET C, LOREAU J P, et al. Burial dissolution of micrite in Middle East carbonate reservoirs (Jurassic-Cretaceous): keys for recognition and timing[J]. Marine and Petroleum Geology, 2006, 23(1): 79-92. doi: 10.1016/j.marpetgeo.2005.04.003 [9] HASHIM M S, KACZMAREK S E. A review of the nature and origin of limestone microporosity[J]. Marine and Petroleum Geology, 2019, 107: 527-554. doi: 10.1016/j.marpetgeo.2019.03.037 [10] 刘禹, 郑剑锋, 曾溅辉, 等. 塔里木盆地柯坪露头区震旦系微生物白云岩储层微观表征[J]. 天然气地球科学, 2022, 33(1): 49-62.LIU Yu, ZHENG Jianfeng, ZENG Jianhui, et al. Micro-characterization of microbial dolomite reservoir of Upper Sinian Qigeblak Formation in Keping area, Tarim Basin[J]. Natural Gas Geoscience, 2022, 33(1): 49-62. [11] ZOU Bing, QU Haizhou, ZHAO Rongrong, et al. Diagenesis of the first member of Canglangpu Formation of the Cambrian series 2 in northern part of the central Sichuan Basin and its influence on porosity[J]. Frontiers in Earth Science, 2023, 10: 1059838. doi: 10.3389/feart.2022.1059838 [12] 屈海洲, 郭新宇, 徐伟, 等. 碳酸盐岩微孔隙的分类、成因及对岩石物理性质的影响[J]. 石油与天然气地质, 2023, 44(5): 1102-1117.QU Haizhou, GUO Xingyu, XU Wei, et al. Classification and origin of micropores in carbonates and their effects on physical properties of rocks[J]. Oil & Gas Geology, 2023, 44(5): 1102-1117. [13] 何登发, 李德生, 张国伟, 等. 四川多旋回叠合盆地的形成与演化[J]. 地质科学, 2011, 46(3): 589-606.HE Dengfa, LI Desheng, ZHANG Guowei, et al. Formation and evolution of multi-cycle superposed Sichuan Basin, China[J]. Chinese Journal of Geology, 2011, 46(3): 589-606. [14] 孙自明, 刘光祥, 卞昌蓉, 等. 四川盆地东部寒武系油气跨层成藏及天然气勘探意义[J]. 石油实验地质, 2023, 45(3): 504-516. doi: 10.11781/sysydz202303504SUN Ziming, LIU Guangxiang, BIAN Changrong, et al. Cross-formational hydrocarbon accumulation of Cambrian sequences and its significance for natural gas exploration in eastern Sichuan Basin[J]. Petroleum Geology & Experiment, 2023, 45(3): 504-516. doi: 10.11781/sysydz202303504 [15] 黄博宇. 四川盆地震旦纪—早寒武世岩相古地理与裂陷槽演化[D]. 北京: 中国石油大学(北京), 2018.HUANG Boyu. The evolution of paleogeographic and rift trough during Sinian-Early Cambrian in Sichuan Basin[D]. Beijing: China University of Petroleum (Beijing), 2018. [16] 吴晓智, 柳庄小雪, 王建, 等. 我国油气资源潜力、分布及重点勘探领域[J]. 地学前缘, 2022, 29(6): 146-155.WU Xiaozhi, LIUZHUANG Xiaoxue, WANG Jian, et al. Petroleum resource potential, distribution and key exploration fields in China[J]. Earth Science Frontiers, 2022, 29(6): 146-155. [17] 孙自明, 张荣强, 孙炜, 等. 四川盆地东部海相下组合油气勘探领域与有利勘探方向[J]. 现代地质, 2021, 35(3): 798-806.SUN Ziming, ZHANG Rongqiang, SUN Wei, et al. Petroleum exploration domains and favorable directions of the Lower Marine Assemblage in eastern Sichuan Basin[J]. Geoscience, 2021, 35(3): 798-806. [18] 郑定业, 庞雄奇, 张可, 等. 四川盆地上三叠系须家河组油气资源评价[J]. 特种油气藏, 2017, 24(4): 67-72.ZHENG Dingye, PANG Xiongqi, ZHANG Ke, et al. Oil & gas resource evaluation for Xujiahe Formation in Upper Triassic Series in Sichuan Basin [J]. Special Oil & Gas Reservoirs, 2017, 24(4): 67-72. [19] 孙自明, 卞昌蓉, 张荣强, 等. 四川盆地东南部震旦系灯影组四段台缘带天然气勘探前景[J]. 现代地质, 2022, 36(4): 979-987.SUN Ziming, BIAN Changron, ZHANG Rongqiang, et al. Natural gas exploration prospect of the platform marginal zone of the fourth member of Sinian Dengying Formation in southeastern Sichuan Basin[J]. Geoscience, 2022, 36(4): 979-987. [20] 刘树根, 马永生, 王国芝, 等. 四川盆地震旦系—下古生界优质储层形成与保存机理[J]. 油气地质与采收率, 2008, 15(1): 1-5.LIU Shugen, MA Yongsheng, WANG Guozhi, et al. Formation and conservation mechanism of the high-quality reservoirs in Sinian-Lower Palaeozoic in Sichuan Basin[J]. Petroleum Geology & Recovery Efficiency, 2008, 15(1): 1-5. [21] 李亚丁, 陈友莲, 严威, 等. 四川盆地寒武系沧浪铺组沉积演化特征[J]. 天然气地球科学, 2021, 32(9): 1334-1346.LI Yading, CHEN Youlian, YAN Wei, et al. Research on sedimentary evolution characteristics of Cambrian Canglangpu Formation, Sichuan Basin[J]. Natural Gas Geoscience, 2021, 32(9): 1334-1346. [22] 严威, 罗冰, 周刚, 等. 川中古隆起寒武系沧浪铺组下段天然气地质特征及勘探方向[J]. 石油勘探与开发, 2021, 48(2): 290-302.YAN Wei, LUO Bing, ZHOU Gang, et al. Natural gas geology and exploration direction of the Cambrian Lower Canglangpu Member in central Sichuan paleo-uplift, Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2021, 48(2): 290-302. [23] 乐宏, 赵路子, 杨雨, 等. 四川盆地寒武系沧浪铺组油气勘探重大发现及其启示[J]. 天然气工业, 2020, 40(11): 11-19.YUE Hong, ZHAO Luzi, YANG Yu, et al. Great discovery of oil and gas exploration in Cambrian Canglangpu Formation of the Sichuan Basin and its implications[J]. Natural Gas Industry, 2020, 40(11): 11-19. [24] 马石玉, 谢武仁, 杨威, 等. 四川盆地及其周缘下寒武统沧浪铺组下段岩相古地理特征[J]. 天然气地球科学, 2021, 32(9): 1324-1333.MA Shiyu, XIE Wuren, YANG Wei, et al. Lithofacies and paleogeography of the Lower Canglangpu Formation of the Lower Cambrian in Sichuan Basin and its periphery[J]. Natural Gas Geoscience, 2021, 32(9): 1324-1333. [25] 李强, 柳广弟, 宋泽章, 等. 川中古隆起北斜坡构造演化及其对震旦系—寒武系油气成藏的控制[J]. 石油实验地质, 2022, 44(6): 997-1007. doi: 10.11781/sysydz202206997LI Qiang, LIU Guangdi, SONG Zezhang, et al. Influence of tectonic evolution of the northern slope in the central Sichuan paleo-uplift on the Sinian-Cambrian hydrocarbon accumulations[J]. Petroleum Geology & Experiment, 2022, 44(6): 997-1007. doi: 10.11781/sysydz202206997 [26] 魏国齐, 贾承造, 杨威. 安岳—奉节地区上震旦统—下寒武统陆架镶边台地地质特征及其对大气田(区)形成的控制作用[J]. 石油学报, 2023, 44(2): 223-240.WEI Guoqi, JIA Chengzao, YANG Wei. Geological characteristics of shelf-rimmed platform from Upper Sinian to Lower Cambrian and its control on formation of large gas fields in Anyue-Fengjie area[J]. Acta Petrolei Sinica, 2023, 44(2): 223-240. [27] 彭军, 褚江天, 陈友莲, 等. 四川盆地高石梯—磨溪地区下寒武统沧浪铺组沉积特征[J]. 岩性油气藏, 2020, 32(4): 12-22.PENG Jun, CHU Jiangtian, CHEN Youlian, et al. Sedimentary characteristics of Lower Cambrian Canglangpu Formation in Gaoshiti-Moxi area, Sichuan Basin[J]. Lithologic Reservoirs, 2020, 32(4): 12-22. [28] 文舰, 彭军, 陈友莲, 等. 四川盆地中部—北部地区沧浪铺组层序地层研究[J]. 断块油气田, 2020, 27(4): 424-431.WEN Jian, PENG Jun, CHEN Youlian, et al. Study on sequence stratigraphy of Canglangpu Formation in the central-northern Sichuan Basin[J]. Fault-Block Oil & Gas Field, 2020, 27(4): 424-431. [29] 李璐萍, 梁金同, 刘四兵, 等. 川中地区寒武系洗象池组白云岩储层成岩作用及孔隙演化[J]. 岩性油气藏, 2022, 34(3): 39-48.LI Luping, LIANG Jingtong, LIU Sibing, et al. Diagenesis and pore evolution of dolomite reservoirs of Cambrian Xixiangchi Formation in central Sichuan Basin[J]. Lithologic Reservoirs, 2022, 34(3): 39-48. [30] 唐松, 岳大力, 谭磊, 等. 川中北斜坡地区沧浪铺组一段颗粒滩特征及分布[J]. 断块油气田, 2023, 30(5): 822-830.TANG Song, YUE Dali, TAN Lei, et al. Characteristics and distribution of grain shoal in the first member of Canglangpu Formation in the north slope area of central Sichuan Basin[J]. Fault-Block Oil & Gas Field, 2023, 30(5): 822-830. [31] 田兴旺, 杨岱林, 钟佳倚, 等. 基于CT成像技术的白云岩储层微观表征: 以川中磨溪—龙女寺台内地区震旦系灯影组四段为例[J]. 沉积学报, 2021, 39(5): 1264-1274.TIAN Xingwang, YANG Dailin, ZHONG Jiayi, et al. Microscopic characterization of dolomite reservoirs by CT imaging: a case study of the Dengsi Formation in Moxi-Longnvsi area, central Sichuan[J]. Acta Sedimentologica Sinica, 2021, 39(5): 1264-1274. [32] 李云, 胡作维, 詹旗胜, 等. 浅海微孔泥晶碳酸盐岩储层研究进展[J]. 沉积学报, 2021, 39(6): 1580-1592.LI Yun, HU Zuowei, ZHAN Qisheng, et al. Research progress on shallow-sea microporous micritic carbonate reservoirs[J]. Acta Sedimentologica Sinica, 2021, 39(6): 1580-1592. [33] 夏威, 蔡潇, 丁安徐, 等. 南川地区栖霞—茅口组碳酸盐岩储集空间研究[J]. 油气藏评价与开发, 2021, 11(2): 63-69.XIA Wei, CAI Xiao, DING Anxu, et al. Reservoir spaces of carbonate rocks in Qixia-Maokou Formation of Nanchuan area[J]. Reservoir Evaluation & Development, 2021, 11(2): 63-69. [34] 郭彤楼. 四川盆地碳酸盐岩源岩气地质特征与勘探前景[J]. 西南石油大学学报(自然科学版), 2021, 43(1): 1-16.GUO Tonglon. Geological Characteristics and exploration prospect of carbonate source rock gas in Sichuan Basin[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2021, 43(1): 1-16. [35] 柳娜, 南珺祥, 刘伟, 等. 鄂尔多斯盆地西部长8储层胶结物特征[J]. 复杂油气藏, 2015, 8(1): 15-20.LIU Na, NAN Junxiang, LIU Wei, et al. Characteristics of the cements in Chang 8 reservoir in western Ordos Basin[J]. Complex Hydrocarbon Reservoirs, 2015, 8(1): 15-20. [36] 杨雨, 罗冰, 张本健, 等. 四川盆地下寒武统筇竹寺组烃源岩有机质差异富集机制与天然气勘探领域[J]. 石油实验地质, 2021, 43(4): 611-619. doi: 10.11781/sysydz202104611YANG Yu, LUO Bing, ZHANG Benjian, et al. Differential mechanisms of organic matter accumulation of source rocks in the Lower Cambrian Qiongzhusi Formation and implications for gas exploration fields in Sichuan Basin[J]. Petroleum Geology & Experiment, 2021, 43(4): 611-619. doi: 10.11781/sysydz202104611 [37] 熊亮, 邓虎成, 吴冬, 等. 四川盆地及其周缘下寒武统筇竹寺组细粒沉积特征与影响因素[J]. 石油实验地质, 2023, 45(5): 857-871. doi: 10.11781/sysydz202305857XIONG Liang, DENG Hucheng, WU Dong, et al. Fine-grained sedimentary characteristics and influencing factors of the Lower Cambrian Qiongzhusi Formation in Sichuan Basin and on its periphery[J]. Petroleum Geology & Experiment, 2023, 45(5): 857-871. doi: 10.11781/sysydz202305857 [38] 张涛, 宋世骏, 周国晓, 等. 川中龙王庙组气藏多期充注特征及对寒武纪早期海相烃源岩发育的指示意义[J]. 地质论评, 2022, 68(4): 1544-1554.ZHANG Tao, SONG Shijun, ZHOU Guoxiao, et al. Multi-stage charging characteristics of Longwangmiao Formation gas reservoir in central Sichuan and its implications for the development of marine source rocks in Early Cambrian[J]. Geological Review, 2022, 68(4): 1544-1554. [39] EHRENBERG S N, MORAD S, LIU Yaxin, et al. Stylolites and porosity in a Lower Cretaceous limestone reservoir, onshore Abu Dhabi, U.A.E. [J]. Journal of Sedimentary Research, 2016, 86(10): 1228-1247. http://www.onacademic.com/detail/journal_1000039673293710_53f2.html [40] 李峰峰, 叶禹, 余义常, 等. 碳酸盐岩成岩作用研究进展[J]. 地质科技通报, 2023, 42(1): 170-190.LI Fengfeng, YE Yu, YU Yichang, et al. Research progress of carbonate rock diagenesis[J]. Bulletin of Geological Science and Technology, 2023, 42(1): 170-190. [41] GROSSMAN E L, JOACHIMSKI M M. Chapter 10 - Oxygen isotope stratigraphy[J]. Geologic Time Scale 2020, 1: 279-307. [42] 马腾霄, 和源, 朱利东, 等. 川中地区下寒武统沧浪铺组下段碳氧同位素特征及其地质意义[J]. 成都理工大学学报(自然科学版), 2023, 50(2): 187-199.MA Tengxiao, HE Yuan, ZHU Lidong, et al. Carbon and oxygen isotope characteristics of Lower Cambrian Canglangpu Formation in central Sichuan and their geological significance[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2023, 50(2): 187-199. [43] MCKENZIE J A. Holocene dolomitization of calcium carbonate sediments from the coastal Sabkhas of Abu Dhabi, U.A. E: a stable isotope study[J]. The Journal of Geology, 1981, 89(2): 185-198. doi: 10.1086/628579 [44] 李文奇, 刘汇川, 李平平, 等. 四川灯影组白云石化流体多样化特征及白云岩差异性成因[J]. 地球科学, 2023, 48(9): 3360-3377.LI Wenqi, LIU Huichuan, LI Pingping, et al. Diverse fluids in dolomitization and petrogenesis of the Dengying Formation dolomite in the Sichuan Basin, SW China[J]. Earth Science, 2023, 48(9): 3360-3377. [45] 孙海涛, 张玉银, 柳慧林, 等. 四川盆地东部下寒武统龙王庙组白云岩类型及其成因[J]. 石油与天然气地质, 2018, 39(2): 318-329.SUN Haitao, ZHANG Yuyin, LIU Huilin, et al. Typological analysis and genetic mechanism of dolomite in the Lower Cambrian Longwangmiao Formation, eastern Sichuan Basin[J]. Oil & Gas Geology, 2018, 39(2): 318-329. [46] 薛时雨, 付斯一, 侯明才, 等. 鄂尔多斯盆地天环坳陷北段桌子山组白云岩碳氧同位素特征及意义[J]. 石油实验地质, 2017, 39(6): 842-848. doi: 10.11781/sysydz201706842XUE Shiyu, FU Siyi, HOU Mingcai, et al. Characteristics and implications of carbon and oxygen isotopes in dolomites of the Ordovician Zhuozishan Formation in northern Tianhuan Depression, Ordos Basin[J]. Petroleum Geology & Experiment, 2017, 39(6): 842-848. doi: 10.11781/sysydz201706842 [47] 裴森奇, 王兴志, 李荣容, 等. 台地边缘滩相埋藏白云石化作用及其油气地质意义: 论四川盆地西北部中二叠统栖霞组白云岩的成因[J]. 天然气工业, 2021, 41(4): 22-29.PEI Senqi, WANG Xingzhi, LI Rongrong, et al. Burial dolomitization of marginal platform bank facies and its petroleum geological implications: the genesis of Middle Permian Qixia Formation dolostones in the northwestern Sichuan Basin[J]. Natural Gas Industry, 2021, 41(4): 22-29. [48] 孔悦, 高晓鹏, 石开波, 等. 塔北地区奥陶系鹰山组斑状白云岩成因及储层意义[J]. 石油学报, 2023, 44(4): 598-611.KONG Yue, GAO Xiaopeng, SHI Kaibo, et al. Genesis and reservoir significance of patchy dolostone of the Ordovician Yingshan Formation in Tabei area[J]. Acta Petrolei Sinica, 2023, 44(4): 598-611. -