Geochemical oil and source correlation between crude oil of well Fusha 8 and source rocks of Permian Pusige Formation in southern margin, piedmont of southwestern Tarim Basin
-
摘要: 为进一步拓展塔西南山前南缘油气勘探领域,以该区甫沙克里阳构造带甫沙2井、阳1井二叠系普司格组烃源岩和新发现井——甫沙8井原油为主要研究对象,开展了有机地球化学亲缘关系研究。通过岩石热解、镜质体反射率测试、气相色谱、气相色谱—质谱、正构烷烃单体烃同位素分析,从烃源岩基础地球化学性质、分子标志化合物和单体烃碳同位素组成等方面刻画普司格组不同层段源岩地球化学特征,揭示不同层段烃源岩生烃潜力的差异性,初步探讨甫沙8井原油的来源。研究区普司格组上段上部和中段有机质丰度较低,为Ⅲ型有机质,难以作为有效源岩,同时可能存在深部运移烃侵染;普司格组上段下部和下段有机质丰度相对较高,为Ⅱ1—Ⅲ型有机质,处于低熟—成熟阶段。普司格组上段下部沉积于偏氧化的浅湖环境,有机质为陆源高等植物和水生生物混合来源;下段沉积于还原性较强的深湖—半深湖环境,水生生物贡献相对较高。甫沙8井下侏罗统产出原油的Pr/Ph、C24Te/C26TT和甾烷/藿烷比值较高,C19-C23TT/C30H比值较低,相对富含C29规则甾烷、芴和氧芴,正构烷烃单体碳同位素值介于-32.0‰~-29.0‰之间,这与普司格组上段下部源岩生物标志化合物和单体烃碳同位素组成相一致,证实两者具有较好的亲缘关系。Abstract: To further expand the oil and gas exploration in the southern margin of the piedmont of the southwestern Tarim Basin, this study focuses on the newly discovered oil from well Fusha 8 and source rocks from wells Fusha 2 and Yang 1 in the Permian Pusige Formation of the Fusha-Keliyang structural belt. Organic geochemical oil and source correlation research was conducted. Through pyrolysis, vitrinite reflectance testing, gas chromatography (GC), GC-Mass Spectrometry (MS), and n-alkane monomer hydrocarbon isotope analysis, the geochemical characteristics of different layers of source rocks in the Permian Pusige Formation were characterized from aspects such as basic geochemical properties, molecular biomarkers, and monomer hydrocarbon carbon isotope compositions. The study revealed variations in hydrocarbon generation potential across different layers of source rocks from the Pusige Formation. Also, oil sources in well Fusha 8 were preliminarily explored. Results showed that the upper part of the upper section and the middle section of the Pusige Formation had low organic matter abundance, containing type Ⅲ organic matter, and were unlikely to serve as effective source rocks. Also, these source rocks may be contaminated by migrated hydrocarbons from the deeply buried reservoirs. The lower part of the upper section and lower section of the Pusige Formation had relatively higher organic matter abundance, featuring type Ⅱ1 to Ⅲ organic matter in the low mature to mature stages. The lower part of the upper section of the Pusige Formation was deposited in a mildly oxidizing shallow lake environment, and the organic matter inputs were mixtures of terrestrial higher plants and aquatic organisms. Its lower section was deposited in a more reducing deep to semi-deep lake environment, with a higher content of aquatic organisms as inputs. The crude oil from the Lower Jurassic of well Fusha 8 had higher Pr/Ph, C24Te/C26TT, and sterane/hopane ratios and lower C19-C23TT/C30H ratios. It was rich in C29 regular steranes, fluorene, and dibenzofuran, with n-alkane monomer carbon isotope values ranging from -32.0‰ to -29.0‰. These characteristics are consistent with the biomarker and monomer hydrocarbon carbon isotope compositions of the lower part of the upper section of source rocks in the Pusige Formation, confirming a strong geochemical oil and source correlation between them.
-
Key words:
- biomarkers /
- stable carbon isotopes /
- Pusige Formation /
- Permian /
- Kekeya Oilfield /
- Tarim Basin
-
图 1 塔西南山前南缘构造单元及井位分布(a)、昆仑山前冲断带剖面(b)及研究区地层综合柱状图(c)
a图据文献[9]修改;b图据文献[1]修改;c图据文献[7]修改。
Figure 1. Structural units and well locations in the southern margin of piedmont of southwestern Tarim Basin (a), cross-section of thrust belt in piedmont of Kunlun Mountains (b), and comprehensive stratigraphic column of study area (c)
图 3 塔西南山前南缘甫沙克里阳构造带普司格组烃源岩和甫沙8井原油典型样品全油色谱(a)、m/z 191萜烷(b)和m/z 217甾烷(c)质谱图
Figure 3. Total oil chromatograms (a), m/z 191 terpanes (b), and m/z 217 steranes (c) mass spectra of typical samples of source rocks from Permian Pusige Formation and crude oil from well Fusha 8 in Fusha-Keliyang structural zone, southern margin of piedmont of southwestern Tarim Basin
图 6 塔西南山前南缘研究区二叠系普司格组烃源岩和原油地球化学特征相关参数交会图
a.F-SF-OF三角图;b.C24Te/C26TT与Pr/Ph交会图;c.9-MP/1-MP与Pr/Ph交会图;d.9-MP/1-MP与甾烷/藿烷交会图。
Figure 6. Cross plots of geochemical characteristics-related parameters for source rocks and crude oil from Permian Pusige Formation in study area, southern margin of piedmont of southwestern Tarim Basin
图 7 塔西南山前南缘研究区二叠系普司格组烃源岩和原油指示成熟度相关参数交会图
a.C29ββ/(αα+ββ)和C29ααα-20S/(20S+20R)交会图;b.C29ββ/(αα+ββ)与Ts/(Ts+Tm)交会图;c.TA[C20/(C20+C28)-20R]和Ts/(Ts+Tm);d.F1与F2交会图。
Figure 7. Cross plots of maturity-related parameters for source rocks and crude oil from Permian Pusige Formation in study area, southern margin of piedmont of southwestern Tarim Basin
表 1 塔西南山前南缘甫沙克里阳构造带二叠系普司格组烃源岩岩石热解和镜质体反射率测试数据
Table 1. Pyrolysis and vitrinite reflectance data for source rocks from Permian Pusige Formation in Fusha-Keliyang structural belt, southern margin of piedmont of southwestern Tarim Basin
井位 层位 深度/m 岩性 ω(TOC)/% S1/(mg/g) S2/(mg/g) S1+S2/(mg/g) IH/(mg/g) 有机质类型 Tmax/℃ Ro/% 甫沙2 P2-3p 5 350.4 黑色泥岩 0.33 0.02 0.04 0.06 37.00 Ⅲ 433 甫沙2 P2-3p 5 353.8 黑色泥岩 0.27 0.01 0.03 0.04 11.00 Ⅲ 443 甫沙2 P2-3p 5 354.9 灰黑色泥岩 0.33 0.01 0.01 0.02 3.00 Ⅲ 440 甫沙2 P2-3p 5 356.5 灰色泥岩 0.24 0.01 0.02 0.03 8.00 Ⅲ 424 甫沙2 P2-3p 5 500.1 黑色泥岩 0.37 0.03 0.33 0.36 89.00 Ⅲ 433 甫沙2 P2-3p 5 503.3 黑色泥岩 0.61 0.06 0.99 1.05 164.00 Ⅱ2 438 甫沙2 P2-3p 5 504.5 黑色泥岩 0.57 0.08 0.78 0.86 137.00 Ⅲ 436 甫沙2 P2-3p 5 506.1 黑色泥岩 0.37 0.05 0.37 0.42 99.00 Ⅲ 435 甫沙2 P2-3p 5 507.7 灰色泥岩 0.30 0.04 0.32 0.36 105.00 Ⅲ 436 0.97 阳1 P2-3p 2 140.4 灰色泥岩 0.33 0.07 0.80 0.87 243.16 Ⅱ2 442 0.69 阳1 P2-3p 2 546.1 灰黑色泥岩 0.40 0.06 0.25 0.31 63.29 Ⅲ 440 阳1 P2-3p 2 548.6 灰黑色泥岩 0.51 0.05 0.75 0.80 146.77 Ⅱ2 444 阳1 P2-3p 2 549.6 灰黑色泥岩 0.68 0.09 1.59 1.68 234.51 Ⅱ2 445 0.68 阳1 P2-2p 2 801.7 红褐色泥岩 0.08 0.01 0.02 0.03 23.98 Ⅲ 440 阳1 P2-2p 2 969.3 红褐色泥岩 0.02 0.01 0.02 0.03 95.69 Ⅲ 446 阳1 P2-2p 2 969.5 灰黑色泥岩 0.45 0.10 0.76 0.86 107.37 Ⅱ2 449 0.75 阳1 P2-2p 3 698.4 红褐色泥岩 0.18 0.01 0.03 0.04 17.05 Ⅲ 448 阳1 P2-1p 3 985.3 红褐色泥岩 0.42 0.11 0.63 0.74 151.08 Ⅱ2 445 0.96 阳1 P2-1p 4 143.6 灰黑色泥岩 0.72 0.09 2.45 2.54 340.75 Ⅱ1 446 0.80 阳1 P2-1p 4 146.6 灰黑色泥岩 1.01 0.16 3.35 3.51 331.68 Ⅱ1 450 0.96 表 2 塔西南山前南缘甫沙克里阳构造带二叠系普司格组烃源岩和甫沙8井原油饱和烃生物标志化合物组成
Table 2. Composition of saturated hydrocarbon biomarkers of source rocks in Permian Pusige Formation and crude oil from well Fusha 8 in Fusha-Keliyang structural zone, southern margin of piedmont of southwestern Tarim Basin
井位 深度/m 层位 主峰碳数 碳优势指数 奇偶优势 Pr/n-C17 Ph/n-C18 Pr/Ph C19-20 TT/C21TT C19-23 TT/C30H C24Te/C26TT Ts/(Ts+ Tm) C30 RAH/C29Ts Ga/C31H C27/C29 ααα C2920S/(20S+20R) C29ββ/(ββ+αα) 甾烷/藿烷 甫沙2 5 350.4 P2-3p n-C16 1.2 0.4 0.6 0.5 0.5 1.3 3.9 1.3 0.2 0.4 0.5 1.0 0.5 0.4 0.6 甫沙2 5 353.8 P2-3p n-C18 1.1 0.4 0.7 0.6 0.4 1.4 2.2 1.3 0.3 0.4 0.3 0.5 0.4 0.4 0.5 甫沙2 5 354.9 P2-3p n-C18 1.2 0.6 1.8 0.9 0.9 2.0 0.4 2.5 0.1 1.1 0.4 0.4 0.4 0.3 0.2 甫沙2 5 356.5 P2-3p n-C16 1.1 0.3 0.7 0.7 0.6 1.6 2.4 1.7 0.2 0.4 0.3 0.6 0.4 0.4 0.4 甫沙2 5 500.1 P2-3p n-C18 1.3 0.8 2.9 1.5 1.1 1.9 0.2 3.1 0.1 1.2 0.8 0.3 0.4 0.2 0.5 甫沙2 5 503.3 P2-3p n-C17 1.3 1.0 3.5 3.8 0.9 3.0 0.1 3.0 0.4 0.6 0.7 0.4 0.5 0.3 1.2 甫沙2 5 504.5 P2-3p n-C18 1.2 0.8 2.8 3.1 0.7 1.7 0.1 3.3 0.4 0.6 1.6 0.3 0.4 0.3 1.1 甫沙2 5 506.1 P2-3p n-C16 1.8 0.5 0.7 0.4 1.2 4.1 0.5 1.1 0.1 2.6 0.0 0.1 0.2 0.4 0.4 甫沙2 5 507.7 P2-3p n-C18 1.3 0.7 1.4 0.9 1.0 1.5 0.4 1.4 0.1 1.1 0.6 0.1 0.4 0.2 0.6 阳1 1 912.3 P2-3p n-C18 1.1 0.5 0.5 0.4 0.6 1.5 0.8 2.9 0.4 0.4 0.2 0.4 0.5 0.3 2.3 阳1 2 140.4 P2-3p n-C21 1.2 1.0 0.3 0.3 0.7 1.3 0.6 3.4 0.4 0.5 0.1 0.3 0.5 0.4 2.9 阳1 2 546.1 P2-3p n-C16 1.1 0.7 0.4 0.4 1.0 1.9 0.5 2.0 0.8 0.6 0.4 0.2 0.6 0.5 6.1 阳1 2 548.6 P2-3p n-C19 1.2 1.0 0.2 0.2 0.9 1.6 0.6 3.1 0.7 0.9 0.1 0.2 0.6 0.5 6.9 阳1 2 549.6 P2-3p n-C19 1.3 1.0 0.3 0.3 0.9 1.6 0.5 1.6 0.8 0.9 0.2 0.3 0.6 0.5 3.2 阳1 2 801.7 P2-2p n-C18 1.1 0.6 0.4 0.4 0.5 1.1 4.4 0.6 0.5 0.6 0.3 0.8 0.4 0.4 1.3 阳1 2 969.3 P2-2p n-C18 1.2 0.6 0.6 0.6 0.6 0.9 5.6 0.7 0.5 0.6 0.3 0.6 0.4 0.4 1.8 阳1 2 969.5 P2-2p n-C21 1.2 1.0 0.1 0.1 0.9 0.9 6.6 1.8 0.5 1.4 0.6 0.6 0.6 0.3 1.6 阳1 3 698.4 P2-2p n-C16 1.0 0.4 0.4 0.5 0.7 1.4 5.4 0.6 0.5 0.7 0.3 0.6 0.4 0.4 1.7 阳1 3 985.3 P2-1p n-C18 1.1 1.0 0.3 0.5 0.7 1.8 2.3 1.4 0.8 1.3 0.3 0.2 0.6 0.5 4.8 阳1 4 143.6 P2-1p n-C20 1.1 1.0 0.3 0.4 0.7 1.4 0.2 4.9 0.3 0.4 0.1 0.4 0.5 0.3 2.9 阳1 4 146.6 P2-1p n-C21 1.2 1.2 0.2 0.2 0.8 1.2 0.3 3.3 0.3 0.6 0.1 0.2 0.5 0.3 4.7 甫沙8 3 881.8 J1s n-C21 1.1 0.9 0.1 0.1 1.0 1.1 0.3 3.0 0.5 1.0 0.1 0.2 0.5 0.5 5.6 甫沙8 3 899.0 J1s n-C21 1.1 0.9 0.1 0.1 1.0 1.1 0.3 3.0 0.5 0.9 0.1 0.2 0.5 0.5 5.2 注:碳优势指数为{(C25+C27+C29+C31+C33)[1/(C24+C26+C28+C30+C32)+1/(C26+C28+C30+C32+C34)]}/2;奇偶优势为[(Ci+6Ci+2+Ci+4)/4(Ci+1+Ci+3)]m,其中m=(-1)i+1,i+1为主峰碳数;Pr为姥鲛烷;Ph为植烷;TT为三环萜烷;Te为四环萜烷;H为霍烷;Ts为三降新藿烷;Tm为三降藿烷;RAH为重排霍烷;Ga为伽马蜡烷;C27/C29 ααα为C27 ααα-胆甾烷(20R)/C29 ααα-甾烷(20R);C29 20S为C29 ααα-甾烷(20S);C29 20R为C29 ααα-甾烷(20R);C29 ββ为C29 αββ-甾烷(20R+20S);C29 αα为C29 ααα-甾烷(20R+20S)。 表 3 塔西南山前南缘甫沙克里阳构造带二叠系普司格组烃源岩和甫沙8井原油芳烃地球化学组成
Table 3. Geochemical composition of aromatic hydrocarbons in source rocks from Permian Pusige Formation and crude oil from well Fusha 8 in Fusha-Keliyang structural zone, southern margin of piedmont of southwestern Tarim Basin
井位 深度/m 层位 ITMNr ITeMNr IMPR Rc F1 F2 9-MP/1-MP F/% OF/% SF/% DBT/P TA[C20/(C20+ C28)-20R] N/% P/% DBT/% TAS/% 甫沙2 5 350.4 P2-3p 0.7 0.6 1.6 1.2 0.6 0.4 0.9 3.0 17.3 79.7 0.1 0.2 13.76 81.97 3.49 0.79 甫沙2 5 353.8 P2-3p 0.6 0.6 1.5 1.2 0.6 0.4 0.9 4.0 44.8 51.2 0.1 0.1 5.21 89.29 3.78 1.72 甫沙2 5 354.9 P2-3p 0.2 0.1 1.0 0.9 0.5 0.3 1.3 23.0 52.7 24.3 0.1 0.1 11.56 51.73 0.95 35.76 甫沙2 5 356.5 P2-3p 0.6 1.0 1.6 1.2 0.6 0.4 0.9 2.8 20.4 76.8 0.0 0.2 10.25 85.56 2.82 1.37 甫沙2 5 500.1 P2-3p 0.2 0.1 1.0 0.9 0.5 0.3 1.5 55.4 30.9 13.7 0.0 0.1 10.09 35.05 0.95 53.91 甫沙2 5 503.3 P2-3p 0.2 0.2 1.0 0.9 0.5 0.3 1.2 53.6 13.3 33.1 0.1 0.1 26.01 19.21 0.42 54.35 甫沙2 5 504.5 P2-3p 0.2 0.2 1.1 1.0 0.5 0.3 1.2 49.9 14.1 36.0 0.0 0.1 24.64 32.04 0.65 42.67 甫沙2 5 506.1 P2-3p 0.4 0.2 0.8 0.8 0.4 0.2 1.6 26.4 6.0 67.6 0.0 0.2 38.69 59.84 0.79 0.68 甫沙2 5 507.7 P2-3p 0.3 0.2 1.1 1.0 0.5 0.3 1.4 47.0 20.2 32.8 0.1 0.0 15.73 42.15 1.24 40.88 阳1 1 912.3 P2-3p 0.5 0.7 1.0 0.9 0.5 0.3 1.3 5.6 8.9 85.5 0.0 0.6 35.69 62.71 0.84 0.77 阳1 2 140.4 P2-3p 0.4 0.5 0.7 0.7 0.4 0.2 1.4 7.0 8.4 84.6 0.0 0.2 35.98 54.33 0.39 9.29 阳1 2 546.1 P2-3p 0.4 0.5 0.7 0.7 0.4 0.2 1.4 11.0 16.0 73.0 0.0 0.6 34.75 64.24 0.42 0.59 阳1 2 548.6 P2-3p 0.4 0.4 0.5 0.6 0.4 0.2 1.5 23.7 66.5 9.8 0.2 0.7 49.33 49.63 0.35 0.69 阳1 2 549.6 P2-3p 0.4 0.4 0.6 0.6 0.4 0.2 1.4 41.8 5.8 52.4 0.0 0.7 67.65 32.14 0.17 0.04 阳1 2 801.7 P2-2p 0.5 1.1 1.6 1.2 0.6 0.4 0.9 3.3 85.5 11.2 0.1 0.5 6.36 89.24 4.20 0.20 阳1 2 969.3 P2-2p 0.5 1.1 1.3 1.1 0.6 0.3 1.0 5.4 43.1 51.5 0.1 0.6 24.46 71.56 3.78 0.19 阳1 2 969.5 P2-2p 0.4 0.5 0.3 0.3 0.3 0.1 1.4 9.3 20.5 70.2 0.0 0.9 50.72 48.78 0.36 0.15 阳1 3 698.4 P2-2p 0.7 2.2 1.6 1.2 0.6 0.4 0.8 0.9 7.6 91.5 0.1 0.3 13.77 82.56 3.61 0.06 阳1 3 985.3 P2-1p 0.5 0.6 0.6 0.6 0.4 0.2 1.3 7.5 4.8 87.7 0.0 0.8 49.75 49.69 0.16 0.41 阳1 4 143.6 P2-1p 0.3 0.5 0.7 0.7 0.4 0.2 1.7 17.1 18.8 64.1 0.0 0.1 38.88 36.63 0.23 24.26 阳1 4 146.6 P2-1p 0.4 0.6 0.8 0.8 0.5 0.3 1.3 14.5 9.0 76.5 0.0 0.6 53.88 44.83 0.30 1.00 甫沙8 3 881.8 J1s 0.6 1.1 0.8 1.2 0.4 0.2 1.6 44.5 29.0 36.5 0.1 0.3 50.80 43.90 0.90 4.40 甫沙8 3 899.0 J1s 0.6 0.9 0.8 1.2 0.5 0.2 1.6 43.4 30.3 36.3 0.1 0.3 50.60 44.10 0.85 4.90 注:ITMNr为三甲基萘指数;ITMNr=1, 3, 7-TMN/(1, 3, 7+1, 2, 5)-TMN;ITeMNr为四甲基萘指数,ITeMNr=1, 3, 6, 7-TeMN/(1, 3, 6, 7-+1, 2, 5, 6-+1, 2, 3, 5)-TMN;IMPR为甲基菲指数,IMPR=(2+3)-MP/(1+9)-MP;Rc=0.6(MPI-1) +0.40;F1=(2+3)-MP/(1+2+3+9)-MP;F2=2-MP/(1+2+3+9)-MP;MP为甲基菲;F为芴;OF为氧芴;SF为硫芴;DBT为二苯并噻吩;P为菲;N为萘;TAS为三芳甾烷。 -
[1] 黄文宇, 潘长春, 于双, 等. 塔里木盆地塔西南坳陷柯东构造带甫沙4井原油来源及充注过程[J]. 天然气地球科学, 2022, 33(11): 1836-1847.HUANG Wenyu, PAN Changchun, YU Shuang, et al. Oil source and charging process of well FS4 in the Kedong structural belt, Southwest Tarim Depression, Tarim Basin[J]. Natural Gas Geoscience, 2022, 33(11): 1836-1847. [2] 杨宪彰, 能源, 徐振平, 等. 塔里木盆地三大构造旋回油气成藏特征[J]. 现代地质, 2024, 38(2): 287-299.YANG Xianzhang, NENG Yuan, XU Zhenping et al. Characteristics of the hydrocarbon accumulation formed through the three structural cycles in Tarim Basin[J]. Geoscience, 2024, 38(2): 287-299. [3] 何登发, 李德生, 何金有, 等. 塔里木盆地库车坳陷和西南坳陷油气地质特征类比及勘探启示[J]. 石油学报, 2013, 34(2): 201-218.HE Dengfa, LI Desheng, HE Jinyou, et al. Comparison in petroleum geology between Kuqa Depression and Southwest Depression in Tarim Basin and its exploration significance[J]. Acta Petrolei Sinica, 2013, 34(2): 201-218. [4] 黄礼, 赵颖, 吕惠贤, 等. 塔里木盆地西南山前坳陷恰探1井二叠系天然气成因和来源[J]. 石油实验地质, 2024, 46(6): 1286-1297. doi: 10.11781/sysydz2024061286HUANG Li, ZHAO Ying, LÜ Huixian, et al. Genesis and source of Permian natural gas in well Qiatan-1 of piedmont depression, southwestern Tarim Basin[J]. Petroleum Geology & Experiment, 2024, 46(6): 1286-1297. doi: 10.11781/sysydz2024061286 [5] 孙迪, 谢小敏, 屈洋, 等. 塔里木盆地柯克亚地区侏罗系湖相烃源岩地球化学特征: 对古环境和有机质富集的指示意义[J]. 石油实验地质, 2024, 46(6): 1312-1322. doi: 10.11781/sysydz2024061312SUN Di, XIE Xiaomin, QU Yang, et al. Geochemical characteristics of Jurassic lacustrine source rocks in Kekeya area, Tarim Basin: implications for paleoenvironments and organic matter enrichment[J]. Petroleum Geology & Experiment, 2024, 46(6): 1312-1322. doi: 10.11781/sysydz2024061312 [6] LI Maowen, LIN Renzi, LIAO Yongsheng, et al. Organic geochemistry of oils and condensates in the Kekeya Field, Southwest Depression of the Tarim Basin (China)[J]. Organic Geochemistry, 1999, 30(1): 15-37. http://www.sciencedirect.com/science/article/pii/S0146638098002010 [7] HUANG Wenyu, YU Shuang, ZHANG Haizhu, et al. Diamondoid fractionation and implications for the Kekeya condensate field in the Southwestern Depression of the Tarim Basin, NW China[J]. Marine and Petroleum Geology, 2022, 138: 105551. http://www.sciencedirect.com/science/article/pii/S0264817222000290 [8] 王静彬, 高志前, 康志宏, 等. 塔里木盆地塔西南坳陷和田凹陷普司格组烃源岩沉积环境及有机地球化学特征[J]. 天然气地球科学, 2017, 28(11): 1723-1734.WANG Jingbin, GAO Zhiqian, KANG Zhihong, et al. The sedimentary environment and geochemical characteristics of the source rocks in the Pusige Formation in Hetian Sag, southwestern Tarim Basin, China[J]. Natural Gas Geoscience, 2017, 28(11): 1723-1734. [9] 孟苗苗, 康志宏, 刘俊杰, 等. 塔西南坳陷叶城—和田地区二叠系沉积特征研究[J]. 重庆科技学院学报(自然科学版), 2013, 15(2): 39-44.MENG Miaomiao, KANG Zhihong, LIU Junjie, et al. Research on the sedimentary characteristics of Permian in Yecheng-Hetian area of southwest Tarim Basin[J]. Journal of Chongqing University of Science and Technology (Natural Science Edition), 2013, 15(2): 39-44. [10] XIAO Qilin, SUN Yongge, ZHANG Yongdong, et al. Stable carbon isotope fractionation of individual light hydrocarbons in the C6-C8 range in crude oil as induced by natural evaporation: experimental results and geological implications[J]. Organic Geochemistry, 2012, 50: 44-56. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4479994/pdf/bmjopen-2014-006927.pdf [11] XIAO Qilin, CAI Suyang, LIU Jinzhong. Microbial and thermogenic hydrogen sulfide in the Qianjiang Depression of Jianghan Basin: insights from sulfur isotope and volatile organic sulfur compounds measurements[J]. Applied Geochemistry, 2021, 126: 104865. doi: 10.1016/j.apgeochem.2020.104865 [12] 孙超, 侯读杰, 张小涛, 等. 板桥—北大港地区部分原油地球化学特征及成因分析[J]. 石油天然气学报, 2012, 34(11): 26-30.SUN Chao, HOU Dujie, ZHANG Xiaotao, et al. The geochemical characteristics and its genesis of some of the oil from Banqiao-Beidagang area[J]. Journal of Oil and Gas Technology, 2012, 34(11): 26-30. [13] 李艳, 宋之光, 曹新星, 等. 辽西下白垩统义县组单体烃碳同位素组成变化的物源及环境意义[J]. 地球化学, 2015, 44(6): 571-580.LI Yan, SONG Zhiguang, CAO Xinxing, et al. The effect of source on carbon isotopic composition of individual hydrocabons in Lower Cretaceous Yixian Formation of western Liaoning and its environmental significance[J]. Geochimica, 2015, 44(6): 571-580. [14] TISSOT B P, WELTE D H. Petroleum formation and occurrence[M]. Berlin, Heidelberg: Springer, 1978. [15] CONNAN J. Biodegradation of crude oils in reservoirs[M]//BROOKS J, WELTE D. Advances in petroleum geochemistry: volume 1. Cambridge: Academic Press, 1984: 299-335. [16] PETERS K E, WALTERS C C, MOLDOWAN J M. The biomarker guide: volume 2: biomarkers and isotopes in petroleum systems and earth history[M]. Cambridge: Cambridge University Press, 2004. [17] RADKE M, WELTE D H, WILLSCH H. Geochemical study on a well in the western Canada Basin: relation of the aromatic distribution pattern to maturity of organic matter[J]. Geochimica et Cosmochimica Acta, 1982, 46(1): 1-10. http://www.sciencedirect.com/science/article/pii/001670378290285X [18] HUGHES W B, HOLBA A G, DZOU L I P. The ratios of dibenzothiophene to phenanthrene and pristane to phytane as indicators of depositional environment and lithology of petroleum source rocks[J]. Geochimica et Cosmochimica Acta, 1995, 59(17): 3581-3598. http://www.sciencedirect.com/science/article/pii/001670379500225O [19] ZHANG Min, PHILP P. Geochemical characterization of aromatic hydrocarbons in crude oils from the Tarim, Qaidam and Turpan Basins, NW China[J]. Petroleum Science, 2010, 7(4): 448-457. doi: 10.1007/s12182-010-0097-6 [20] PHILP R P, GILBERT T D. Biomarker distributions in Australian oils predominantly derived from terrigenous source material[J]. Organic Geochemistry, 1986, 10(1/3): 73-84. http://www.onacademic.com/detail/journal_1000035332055810_a185.html [21] 包建平, 王铁冠. 甲基菲比值与有机质热演化的关系[J]. 江汉石油学院学报, 1992, 14(4): 8-13, 19.BAO Jianping, WANG Tieguan. The relationship between methyl phenanthrene ratios and the evolution of organic matter[J]. Journal of Jianghan Petroleum Institute, 1992, 14(4): 8-13, 19. [22] QIAN Yu, ZHANG Ting, WANG Zuodong, et al. Organic geochemical characteristics and generating potential of source rocks from the Lower-Middle Jurassic coal-bearing strata in the East Junggar Basin, NW China[J]. Marine and Petroleum Geology, 2018, 93: 113-126. http://www.sciencedirect.com/science?_ob=ShoppingCartURL&_method=add&_eid=1-s2.0-S0264817218300825&originContentFamily=serial&_origin=article&_ts=1519868409&md5=9cd20bb7249f7c767acf89c5146cff5d [23] 杜治利, 曾昌民, 邱海峻, 等. 塔西南叶城凹陷二叠系两套烃源岩特征及柯东1井油源分析[J]. 吉林大学学报(地球科学版), 2016, 46(3): 651-660.DU Zhili, ZENG Changmin, QIU Haijun, et al. Key formations of the Permian hydrocarbon source rocks and oil-source correlation of well KD1 in Yecheng Depression of southwestern Tarim Basin[J]. Journal of Jilin University (Earth Science Edition), 2016, 46(3): 651-660. -