留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

南川常压页岩气田注CO2吞吐矿场实践

高玉巧 郑永旺 张莉娜 任建华 张耀祖 房大志

高玉巧, 郑永旺, 张莉娜, 任建华, 张耀祖, 房大志. 南川常压页岩气田注CO2吞吐矿场实践[J]. 石油实验地质, 2025, 47(2): 395-405. doi: 10.11781/sysydz2025020395
引用本文: 高玉巧, 郑永旺, 张莉娜, 任建华, 张耀祖, 房大志. 南川常压页岩气田注CO2吞吐矿场实践[J]. 石油实验地质, 2025, 47(2): 395-405. doi: 10.11781/sysydz2025020395
GAO Yuqiao, ZHENG Yongwang, ZHANG Lina, REN Jianhua, ZHANG Yaozu, FANG Dazhi. Field tests of CO2 huff-n-puff technology in Nanchuan normal-pressure shale gas field[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2025, 47(2): 395-405. doi: 10.11781/sysydz2025020395
Citation: GAO Yuqiao, ZHENG Yongwang, ZHANG Lina, REN Jianhua, ZHANG Yaozu, FANG Dazhi. Field tests of CO2 huff-n-puff technology in Nanchuan normal-pressure shale gas field[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2025, 47(2): 395-405. doi: 10.11781/sysydz2025020395

南川常压页岩气田注CO2吞吐矿场实践

doi: 10.11781/sysydz2025020395
基金项目: 

国家科技重大专项“彭水地区常压页岩气勘探开发示范工程” 2016ZX05061

中国石化“十条龙”重大科技攻关项目“南川复杂构造带页岩气勘探开发关键技术研究” P19017-3

中国石化科技部项目“渝东南地区浅层页岩气勘探开发关键技术” P24115

详细信息
    作者简介:

    高玉巧(1978—),女,博士,研究员,从事非常规油气藏勘探开发工作。E-mail: gaoyq.hdsj@sinopec.com

    通讯作者:

    张莉娜(1989—),女,硕士,副研究员,从事非常规油气藏开发工作。E-mail: 1273323406@qq.com

  • 中图分类号: TE357

Field tests of CO2 huff-n-puff technology in Nanchuan normal-pressure shale gas field

  • 摘要: 受吸附态甲烷占比高、地层能量弱等影响,常压页岩气藏采收率普遍不足30%。中国石化率先在四川盆地南川常压页岩气田开展注CO2吞吐矿场试验,验证了海相页岩气注CO2提高采收率的可行性。为推广该技术,以南川常压页岩气田为研究对象,开展室内实验—数值模拟—吞吐动态分析全链条研究,分析CO2在不同页岩储层中竞争吸附差异性,探究矿场CO2注入、吞吐特征,明确页岩气注CO2吞吐提高采收率技术“增能+置换+解水锁”多机制协同机理,进而指导选井及方案优化。综合利用电镜扫描、测井解释、等温吸附实验等方法,揭示南川地区上奥陶统五峰组—下志留统龙马溪组常压页岩储层随埋深变浅、地层压力减小以及孔隙度、TOC和黏土矿物含量的增加,CO2竞争吸附能力增强,超临界态CO2吸附量最高可达CH4的6~7倍。现场页岩气井注CO2吞吐后,日产气可提高3.5~6.5倍,采收率提升1.9%~3.1%。根据2井3轮次注入—焖井阶段压力监测,CO2主要集中在近井地带微裂缝中,扩散距离与地层压力、压裂缝网导流能力有关,一般不超过70 m。CO2吞吐可划分为初期CO2快速返排、早期提产和中后期稳产3个阶段,增产机理分别为早期增能补能、中期膨胀助排+解水锁、后期吸附置换+分压促解吸。吞吐提产的主要影响因素为储层改造程度和采出程度。中深层压裂效果较差的井在吞吐中早期换气率高,浅层采出程度较高的井在吞吐中后期累增气量高。结合数值模拟,建议优选吸附能力强、采出程度20%~30%、携液能力较差且关井压力尽可能达到7 MPa的井开展矿场先导试验。在低压低产阶段,中深层井可开展小规模多轮次注CO2吞吐以增能助排,浅层井可开展大规模注CO2吞吐以补充地层能量、吸附置换实现采收率提升。

     

  • 图  1  南川气田研究区奥陶系五峰组—志留系龙马溪组页岩孔隙特征

    Figure  1.  Pore characteristics of shales in Ordovician Wufeng and Silurian Longmaxi formations in study area of Nanchuan gas field

    图  2  南川气田JY201井区和JY10-10井区吸附气含量散点图

    Figure  2.  Scattered plots of adsorbed gas content in JY201 and JY10-10 well blocks of Nanchuan gas field

    图  3  南川气田JY201井区(a)和JY10-10井区(b)CH4、CO2等温吸附曲线

    Figure  3.  Isothermal adsorption curves of CH4 and CO2 in JY201 well block (a) and JY10-10 well block (b) of Nanchuan gas field

    图  4  南川气田JY201-3HF井CO2注入量、注入压力及井底压力监测

    Figure  4.  CO2 injection volume, injection pressure, and bottom hole pressure monitoring in well JY201-3HF of Nanchuan gas field

    图  5  南川气田试验井注CO2吞吐典型生产曲线及吞吐阶段划分

    Figure  5.  Typical production curves and stage divisions of CO2 huff-n-puff in test wells of Nanchuan gas field

    图  6  南川气田试验井注CO2吞吐与压恢生产归一化生产曲线对比

    Figure  6.  Comparison of normalized production curves between CO2 huff-n-puff and pressure recovery production in test wells of Nanchuan gas field

    图  7  南川气田试验井注CO2吞吐前后采出水矿化度柱状图

    Figure  7.  Bar chart of produced water salinity before and after CO2 huff-n-puff in test wells of Nanchuan gas field

    图  8  南川气田JY201-3HF井注CO2吞吐后井底流压变化

    Figure  8.  Variations of bottom hole pressure after CO2 huff-n-puff production in well JY201-3HF of Nanchuan gas field

    图  9  南川气田试验井注CO2吞吐前后生产拟合曲线

    Figure  9.  Fitting curves of production before and after CO2 huff-n-puff in test wells of Nanchuan gas field

    图  10  不同采出程度注CO2吞吐日产气曲线及地层压力恢复

    Figure  10.  Daily gas production curves and formation pressure recovery of reservoirs at different recovery degrees after CO2 huff-n-puff operations

    表  1  南川气田试验井注CO2前后压力变化

    Table  1.   Pressure changes before and after CO2 injection in test wells of Nanchuan gas field

    井号(轮次) 注气前 裂缝半长/m CO2注入量/t 注入压力/MPa 焖井阶段 扩散距离/m
    采出程度/% 地层压力/MPa 套压/MPa 平衡时间/d 套压/MPa 井底压力/MPa
    JY201-3HF(第1轮) 18.3 27.6 1.18 89 708.3 11.0 10 9.8 12.8 20
    JY201-3HF(第2轮) 21.7 23.8 1.20 89 1 307.7 8.9 15 8.0 10.0 35
    JY10-10HF(第1轮) 26.2 12.5 0.70 113 2 009.8 3.8 2 3.4 4.2 70
    下载: 导出CSV

    表  2  南川气田试验井注CO2前后生产指标对比

    Table  2.   Comparison of production indicators before and after CO2 injection in test wells of Nanchuan gas field

    井号(轮次) 吞吐前 吞吐后
    套压/MPa 日产气/104 m3 累产气/104 m3 套压/MPa 日产气/104m3 累产气/104 m3 累增气/104 m3
    JY201-3HF(第1轮) 1.18 0.96 3 006 5.8 3.3 359 116
    JY201-3HF(第2轮) 1.20 1.02 3 429 5.6 4.2 336 195
    JY10-10HF(第1轮) 0.70 0.90 4 375 2.7 5.8 615 278
    下载: 导出CSV

    表  3  常压页岩气井注CO2吞吐选井评价指标

    Table  3.   Well selection evaluation criteria for CO2 huff-n-puff operations in normal-pressure shale gas wells

    评价原则 评价指标 适用范围
    可注入性 孔隙度/% ≥3.5
    渗透率/10-3 μm2 ≥2×10-4
    压裂改造效果 效果好,裂缝半长大于100 m
    可增产性 吸附气 含量大于2.5 m3/t,或占比大于30%
    生产特征 初产高、递减快、低产期长,或存在应力敏感现象
    最佳注入阶段 低压低产,采出程度介于20%~30%之间
    可封存性 顶底板岩性 致密,有效盖层厚度大于10 m
    压裂对盖层影响
    断层发育水平 开启性断层不发育或断层封闭
    裂缝发育情况 压裂沟通天然裂缝,形成大型、复杂缝网系统
    最佳注入阶段 生产末期,采出程度大于70%
    下载: 导出CSV
  • [1] 蔡勋育, 周德华, 赵培荣, 等. 中国石化深层、常压页岩气勘探开发进展与展望[J]. 石油实验地质, 2023, 45(6): 1039-1049. doi: 10.11781/sysydz2023061039

    CAI Xunyu, ZHOU Dehua, ZHAO Peirong, et al. Development progress and outlook of deep and normal pressure shale gas of SINOPEC[J]. Petroleum Geology & Experiment, 2023, 45(6): 1039-1049. doi: 10.11781/sysydz2023061039
    [2] 张培先, 聂海宽, 何希鹏, 等. 渝东南地区古生界天然气成藏体系及立体勘探[J]. 地球科学, 2023, 48(1): 206-222.

    ZHANG Peixian, NIE Haikuan, HE Xipeng, et al. Paleozoic gas accumulation system and stereoscopic exploration in southeastern Chongqing[J]. Earth Science, 2023, 48(1): 206-222.
    [3] 姚红生, 王伟, 何希鹏, 等. 南川复杂构造带常压页岩气地质工程一体化开发实践[J]. 油气藏评价与开发, 2023, 13(5): 537-547.

    YAO Hongsheng, WANG Wei, HE Xipeng, et al. Development practices of geology-engineering integration in complex structural area of Nanchuan normal pressure shale gas field[J]. Petroleum Reservoir Evaluation and Development, 2023, 13(5): 537-547.
    [4] 周德华, 何希鹏, 张培先. 渝东南常压与高压页岩气典型差异性分析及效益开发对策[J]. 石油实验地质, 2023, 45(6): 1109-1120. doi: 10.11781/sysydz2023061109

    ZHOU Dehua, HE Xipeng, ZHANG Peixian. Typical difference analysis and benefit-oriented development countermeasures of normal and high pressure shale gas in southeastern Chongqing[J]. Petroleum Geology & Experiment, 2023, 45(6): 1109-1120. doi: 10.11781/sysydz2023061109
    [5] 何希鹏, 张培先, 任建华, 等. 渝东南南川地区东胜构造带常压页岩气勘探开发实践[J]. 石油实验地质, 2023, 45(6): 1057-1066. doi: 10.11781/sysydz2023061057

    HE Xipeng, ZHANG Peixian, REN Jianhua, et al. Exploration and development practice of normal pressure shale gas in Dongsheng structural belt, Nanchuan area, southeast Chongqing[J]. Petroleum Geology & Experiment, 2023, 45(6): 1057-1066. doi: 10.11781/sysydz2023061057
    [6] 王光付, 李凤霞, 王海波, 等. 四川盆地不同类型页岩气压裂难点和对策[J]. 石油与天然气地质, 2023, 44(6): 1378-1392.

    WANG Guangfu, LI Fengxia, WANG Haibo, et al. Difficulties and countermeasures for fracturing of various shale gas reservoirs in the Sichuan Basin[J]. Oil & Gas Geology, 2023, 44(6): 1378-1392.
    [7] 王纪伟, 宋丽阳, 康玉柱, 等. 中美典型常压页岩气开发对比与启示[J]. 特种油气藏, 2024, 31(4): 1-9.

    WANG Jiwei, SONG Liyang, KANG Yuzhu, et al. Comparison and implications of typical normal pressure shale gas development between China and the United States[J]. Special Oil & Gas Reservoirs, 2024, 31(4): 1-9.
    [8] 邓佳, 吕子健, 张奇, 等. 页岩储层纳微米孔隙CO2/CH4吸附及驱替特性研究进展[J]. 力学学报, 2021, 53(10): 2880-2890.

    DENG Jia, LÜ Zijian, ZHANG Qi, et al. Review on CO2/CH4 adsorption and displacement characteristics of micro-nano pores in shale reservoir[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(10): 2880-2890.
    [9] KLEWIAH I, BERAWALA D S, WALKER H C A, et al. Review of experimental sorption studies of CO2 and CH4 in shales[J]. Journal of Natural Gas Science and Engineering, 2020, 73: 103045.
    [10] SUN Ying, LI Shuxia, SUN Renyuan, et al. Study of CO2 enhancing shale gas recovery based on competitive adsorption theory[J]. ACS Omega, 2020, 5(36): 23429-23436. doi: 10.1021/acsomega.0c03383
    [11] 郑永旺, 崔轶男, 李鑫, 等. 深层高阶煤层CO2-ECBM技术研究与应用启示: 以沁水盆地晋中地区为例[J]. 石油实验地质, 2025, 47(1): 143-152. doi: 10.11781/sysydz2025010143

    ZHENG Yongwang, CUI Yinan, LI Xin, et al. Research and insights for application of CO2-ECBM technology in deep high-rank coal seams: a case study of Jinzhong block, Qinshui Basin[J]. Petroleum Geology & Experiment, 2025, 47(1): 143-152. doi: 10.11781/sysydz2025010143
    [12] 贾连超, 刘鹏飞, 袁丹, 等. 注CO2提高页岩吸附气采收率实验: 以鄂尔多斯盆地延长组长7页岩气为例[J]. 大庆石油地质与开发, 2021, 40(2): 153-159.

    JIA Lianchao, LIU Pengfei, YUAN Dan, et al. Experiment of enhancing the recovery of the shale adsorbed gas by CO2 injection: taking Yanchang-Formation Chang-7 shale gas in Ordos Basin as an example[J]. Petroleum Geology & Oilfield Development in Daqing, 2021, 40(2): 153-159.
    [13] 张添锦, 王延峰, 李军, 等. 注CO2提高页岩吸附甲烷采收率核磁共振实验[J]. 特种油气藏, 2023, 30(5): 113-120.

    ZHANG Tianjin, WANG Yanfeng, LI Jun, et al. Nuclear magnetic resonance experiment for enhanced recovery of adsorbed methane from shale through carbon dioxide injection[J]. Special Oil & Gas Reservoirs, 2023, 30(5): 113-120.
    [14] WANG Yingnan, JIN Zhehui. Hydrocarbon mixture and CO2 adsorptions in a nanopore-bulk multiscale system in relation to CO2 enhanced shale gas recovery[J]. Chemical Engineering Journal, 2021, 415: 128398. doi: 10.1016/j.cej.2020.128398
    [15] 周宇, 孙乾, 张娜, 等. 页岩油-CO2、CH4、N2混合物界面性质的分子动力学模拟研究[J]. 油气地质与采收率, 2024, 31(6): 109-117.

    ZHOU Yu, SUN Qian, ZHANG Na, et al. Molecular dynamics simulations of interfacial properties of shale oil-CO2, CH4, N2 mixtures[J]. Petroleum Geology and Recovery Efficiency, 2024, 31(6): 109-117.
    [16] 赵玉龙, 黄义书, 张涛, 等. 页岩气藏超临界CO2压裂—提采—封存研究进展[J]. 天然气工业, 2023, 43(11): 109-119.

    ZHAO Yulong, HUANG Yishu, ZHANG Tao, et al. Research progress on supercritical CO2 fracturing, enhanced gas recovery and storage in shale gas reservoirs[J]. Natural Gas Industry, 2023, 43(11): 109-119.
    [17] MANSI M, ALMOBARAK M, LAGAT C, et al. Statistical analysis of controlling factors on enhanced gas recovery by CO2 injection in shale gas reservoirs[J]. Energy & Fuels, 2023, 37(2): 965-976.
    [18] QIN Chao, JIANG Yongdong, CAO Mengyao, et al. Experimental study on the methane desorption-diffusion behavior of Longmaxi shale exposure to supercritical CO2[J]. Energy, 2023, 262: 125456. doi: 10.1016/j.energy.2022.125456
    [19] 刘军. 四川盆地页岩储层初步评价及注CO2提高采收率潜力评价[D]. 北京: 中国地质大学(北京), 2018.

    LIU Jun. Preliminary evaluation on shales in Sichuan Basin and potential for enhancing gas recovery by CO2 injection[D]. Beijing: China University of Geosciences (Beijing), 2018.
    [20] KELES C, TANG X, SCHLOSSER C, et al. Sensitivity and history match analysis of a carbon dioxide 'huff-and-puff' injection test in a horizontal shale gas well in Tennessee[J]. Journal of Natural Gas Science and Engineering, 2020, 77: 103226. doi: 10.1016/j.jngse.2020.103226
    [21] YU Wei, AL-SHALABI E W, SEPEHRNOORI K. A sensitivity study of potential CO2 injection for enhanced gas recovery in Barnett shale reservoirs[C]//SPE Unconventional Resources Conference. The Woodlands: SPE, 2014: SPE-169012-MS.
    [22] PRASAD S K, SANGWAI J S, BYUN H S. A review of the supercritical CO2 fluid applications for improved oil and gas production and associated carbon storage[J]. Journal of CO2 Utilization, 2023, 72: 102479. doi: 10.1016/j.jcou.2023.102479
    [23] WANG Dong, LI Yongming, WANG Bo, et al. Re-fracturing vs. CO2 huff-n-puff injection in a tight shale reservoir for enhancing gas production[J]. Frontiers in Energy Research, 2023, 10: 922860. doi: 10.3389/fenrg.2022.922860
    [24] NUTTALL B C, EBLE C F, DRAHOVZAL J A, et al. Analysis of Devonian black shales in Kentucky for potential carbon dioxide sequestration and enhanced natural gas production[R]. Amsterdam: Elsevier Science Ltd, 2005.
    [25] LOUK K, RIPEPI N, LUXBACHER K, et al. Monitoring CO2 storage and enhanced gas recovery in unconventional shale reservoirs: results from the Morgan County, Tennessee injection test[J]. Journal of Natural Gas Science and Engineering, 2017, 45: 11-25.
    [26] 姚红生, 房大志, 卢义玉, 等. 南川常压海相页岩气注CO2吞吐提高采收率工程实践[J]. 天然气工业, 2024, 44(4): 83-92.

    YAO Hongsheng, FANG Dazhi, LU Yiyu, et al. Engineering practice of CO2 ESGR in Nanchuan normal-pressure marine shale gas reservoirs[J]. Natural Gas Industry, 2024, 44(4): 83-92.
    [27] 倪锋, 朱峰, 孟庆利. 渝东南地区南川区块膝折构造模式解析[J]. 油气藏评价与开发, 2024, 14(3): 373-381.

    NI Feng, ZHU Feng, MENG Qingli. Analysis of knee fold structure model in Nanchuan block of southeastern Chongqing[J]. Petroleum Reservoir Evaluation and Development, 2024, 14(3): 373-381.
    [28] 张培先, 高全芳, 何希鹏, 等. 南川地区龙马溪组页岩气地应力场特征及对产量影响分析[J]. 油气地质与采收率, 2023, 30(4): 55-65.

    ZHANG Peixian, GAO Quanfang, HE Xipeng, et al. Characteristics of in-situ stress field and its influence on shale gas production from Longmaxi Formation in Nanchuan area[J]. Petroleum Geology and Recovery Efficiency, 2023, 30(4): 55-65.
    [29] 云露. 四川盆地东南缘浅层常压页岩气聚集特征与勘探启示[J]. 石油勘探与开发, 2023, 50(6): 1140-1149.

    YUN Lu. Accumulation characteristics and exploration enlightenment of shallow normal-pressure shale gas in southeastern Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2023, 50(6): 1140-1149.
    [30] 侯大力, 韩鑫, 唐洪明, 等. 龙马溪组页岩干酪根表征初探及干酪根吸附特征研究[J]. 油气藏评价与开发, 2023, 13(5): 636-646.

    HOU Dali, HAN Xin, TANG Hongming, et al. Primary research on expression of kerogen in Longmaxi shale and its adsorption characteristics[J]. Petroleum Reservoir Evaluation and Development, 2023, 13(5): 636-646.
    [31] 汤勇, 胡世莱, 汪勇, 等. "注入—压裂—返排"全过程的CO2相态特征: 以鄂尔多斯盆地神木气田致密砂岩气藏SH52井为例[J]. 天然气工业, 2019, 39(9): 58-64.

    TANG Yong, HU Shilai, WANG Yong, et al. Phase behaviors of CO2 in the whole process of injection-fracturing-flowback: a case study of well SH52 in a fight sandstone gas reservoir of the Shenmu Gas Field, Ordos Basin[J]. Natural Gas Industry, 2019, 39(9): 58-64.
    [32] 卓亭妤. 二氧化碳在页岩上的吸附动力学及驱替页岩气的研究[D]. 重庆: 重庆大学, 2020.

    ZHUO Tingyu. Study on adsorption kinetics of carbon dioxide on shale and the shale gas displacement by carbon dioxide[D]. Chonqing: Chongqing University, 2020.
    [33] 朱维耀, 沙玉博, 孔德彬, 等. 深层致密气藏气体扩散渗流数学模型及影响因素[J]. 天然气地球科学, 2021, 32(5): 695-702.

    ZHU Weiyao, SHA Yubo, KONG Debin, et al. Mathematical diffusion-filtration model of gas in deep and tight gas reservoir and analysis of influencing factors[J]. Natural Gas Geoscience, 2021, 32(5): 695-702.
    [34] 商慧敏. 页岩气藏注CO2提高采收率可行性实验研究[D]. 青岛: 中国石油大学(华东), 2017.

    SHANG Huimin. Feasibility experimental studies of potential CO2 injection for enhanced gas recovery in shale gas reservoirs[D]. Qingdao: China University of Petroleum (East China), 2017.
    [35] 张莉娜, 任建华, 胡春锋. 常压页岩气立体开发特征及缝网干扰规律研究[J]. 石油钻探技术, 2023, 51(5): 149-155.

    ZHANG Lina, REN Jianhua, HU Chunfeng. Three-dimensional development characteristics and fracture network interference of atmospheric shale gas reservoir[J]. Petroleum Drilling Techniques, 2023, 51(5): 149-155.
    [36] 张志超, 柏明星, 杜思宇. 页岩油藏注CO2驱孔隙动用特征研究[J]. 油气藏评价与开发, 2024, 14(1): 42-47.

    ZHANG Zhichao, BAI Mingxing, DU Siyu. Characteristics of pore dynamics in shale reservoirs by CO2 flooding[J]. Petroleum Reservoir Evaluation and Development, 2024, 14(1): 42-47.
    [37] KUANG Nianjie, ZHOU Junping, TIAN Shifeng, et al. Fluid-solid coupling model with the multiple flow mechanism for CO2-enhanced shale gas recovery and CO2 sequestration[J]. Energy & Fuels, 2024, 38(8): 7068-7084.
    [38] 王志坚. CO2相态变化致裂对煤层吸附性影响机理研究[J]. 油气藏评价与开发, 2024, 14(6): 967-974.

    WANG Zhijian. Mechanism study on effect of CO2 phase transition fracturing on methane adsorption in coal[J]. Petroleum Reservoir Evaluation and Development, 2024, 14(6): 967-974.
    [39] 周敏琪. 页岩气注CO2吞吐的研究[D]. 重庆: 重庆大学, 2021.

    ZHOU Minqi. Research on huff and puff of shale gas CO2 injection[D]. Chonqing: Chongqing University, 2021.
    [40] ZHAO Peng, XIE Lingzhi, HE Bo, et al. Anisotropic permeability influencing the performance of free CH4 and free CO2 during the process of CO2 sequestration and enhanced gas recovery (CS-EGR) from shale[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(2): 914-926.
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  38
  • HTML全文浏览量:  9
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-08-27
  • 修回日期:  2025-02-26
  • 刊出日期:  2025-03-28

目录

    /

    返回文章
    返回