留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于水—热—化耦合数值模拟的地热田开发方案优化设计——以河北雄安新区岩溶热储为例

刘健 曹强 任小庆 卢星辰 刘一茗 杨宝林

刘健, 曹强, 任小庆, 卢星辰, 刘一茗, 杨宝林. 基于水—热—化耦合数值模拟的地热田开发方案优化设计——以河北雄安新区岩溶热储为例[J]. 石油实验地质, 2025, 47(2): 406-416. doi: 10.11781/sysydz2025020406
引用本文: 刘健, 曹强, 任小庆, 卢星辰, 刘一茗, 杨宝林. 基于水—热—化耦合数值模拟的地热田开发方案优化设计——以河北雄安新区岩溶热储为例[J]. 石油实验地质, 2025, 47(2): 406-416. doi: 10.11781/sysydz2025020406
LIU Jian, CAO Qiang, REN Xiaoqing, LU Xingchen, LIU Yiming, YANG Baolin. Optimization design of geothermal field development schemes based on hydraulic, thermal and chemical coupled numerical simulation: a case study of karst thermal reservoir in Xiong'an New Area, Hebei Province[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2025, 47(2): 406-416. doi: 10.11781/sysydz2025020406
Citation: LIU Jian, CAO Qiang, REN Xiaoqing, LU Xingchen, LIU Yiming, YANG Baolin. Optimization design of geothermal field development schemes based on hydraulic, thermal and chemical coupled numerical simulation: a case study of karst thermal reservoir in Xiong'an New Area, Hebei Province[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2025, 47(2): 406-416. doi: 10.11781/sysydz2025020406

基于水—热—化耦合数值模拟的地热田开发方案优化设计——以河北雄安新区岩溶热储为例

doi: 10.11781/sysydz2025020406
基金项目: 

中国地质大学(武汉)构造与油气资源教育部重点实验室开放基金 TR-2022-09

详细信息
    作者简介:

    刘健(1987—),男,博士生,从事地热资源勘探开发、资源与环境工程研究。E-mail:liujian.xxsy@sinopec.com

    通讯作者:

    曹强(1983—),男,博士,副教授,从事油气成藏动力学、低渗—致密砂岩油气充注机理、超压及断裂控藏机理、油气及地热资源评价研究。E-mail: qcao@cug.edu.cn

  • 中图分类号: TE132.1

Optimization design of geothermal field development schemes based on hydraulic, thermal and chemical coupled numerical simulation: a case study of karst thermal reservoir in Xiong'an New Area, Hebei Province

  • 摘要: 为优化河北雄安新区岩溶热储的地热资源开发方案,在构建三维地质模型的基础上,对地热田开采状态进行水—热—化多场耦合数值模拟。通过敏感性分析,探讨开采时间、采灌流量、井距、回灌温度和回灌率等关键参数对地热田开发效果的影响。结果表明,地热井开采时间延长会导致温度下降和热突破现象,在现有开发场景下,100年开采周期内雄县及容城地区部分地热井温度下降可达4 ℃。减少开采流量或增加井距能有效延缓热突破,延长地热田寿命。在雄县地区,建议井距保持在500~600 m。回灌温度对地热田整体温度场影响不大,但降低回灌温度可提高热利用率。回灌率对地下水位影响显著,100%回灌率能维持地下水位稳定,而90%回灌率会导致地下水位持续下降。总之,合理调整开采周期、采灌流量、井距和回灌策略,可以有效延长地热田的使用寿命,并提高资源利用效率。

     

  • 图  1  河北雄安新区区域地质概况据参考文献[10]修改。

    Figure  1.  Geological map of Xiong'an New Area, Hebei Province

    图  2  技术路线

    Figure  2.  Technical route

    图  3  河北雄安新区三维构造模型

    Figure  3.  Three-dimensional structural model of Xiong'an New Area, Hebei Province

    图  4  河北雄安新区热采区雾迷山组孔隙度三维物性模型

    Figure  4.  Three-dimensional porosity model of Wumishan Formation in thermal extraction zone of Xiong'an New area, Hebei Province

    图  5  河北雄安新区热采区雾迷山组渗透率三维物性模型

    Figure  5.  Three-dimensional permeability model of Wumishan Formation in thermal extraction zone of Xiong'an New area, Hebei Province

    图  6  河北雄安新区实测温度与计算模拟结果对比

    Figure  6.  Comparison between measured temperatures and simulation results in Xiong'an New Area, Hebei Province

    图  7  河北雄安新区开采100年后1 500 m深度储层温度分布模拟

    Figure  7.  Temperature distribution simulation in deep reservoirs(1 500 m) after 100 years of extraction in Xiong'an New Area, Hebei Province

    图  8  河北雄安新区所有开采井在现有采灌情景下100年之后开采温度的变化模拟

    Figure  8.  Simulation of changes in extraction temperatures of all wells after 100 years under current extraction and recharge scenario in Xiong'an New Area, Hebei Province

    图  9  河北雄安新区所有开采井在现有采灌情景下100年之后开采井水位的变化模拟

    Figure  9.  Simulation of changes in water levels of all extraction wells after 100 years under current extraction and recharge scenario in Xiong'an New Area, Hebei Province

    图  10  河北雄安新区盛唐2井在不同流量下100年开采周期内温度演变模拟

    Figure  10.  Simulation of temperature evolution in well Shengtang 2 at different flow rates over a 100-year extraction cycle in Xiong'an New Area, Hebei Province

    图  11  河北雄安新区盛唐2井在不同流量下100年开采周期内井底压力演变

    Figure  11.  Well bottom pressure evolution in well Shengtang 2 at different flow rates over a 100-year extraction cycle in Xiong'an New Area, Hebei Province

    图  12  河北雄安新区不同井距对开采井温度的影响

    Figure  12.  Influence of different well spacing on extraction well temperature in Xiong'an New Area, Hebei Province

    图  13  河北雄安新区不同井距对开采井水位的影响

    Figure  13.  Influence of different well spacing on extraction well water levels in Xiong'an New Area, Hebei Province

    图  14  河北雄安新区绿港地热井不同回灌水温度情景下开采井井底温度变化

    Figure  14.  Temperature changes at extraction well bottom under different recharge water temperature scenarios in Lügang geothermal well of Xiong'an New Area, Hebei Province

    图  15  回灌率为90%时各开采井在100年开采周期内井底压力的演变

    Figure  15.  Well bottom pressure evolution in each extraction well over a 100-year extraction cycle with a 90% recharge rate

    图  16  回灌率为90%和100%时河北雄安新区世纪城1井在50年开采周期内温度的演变

    Figure  16.  Temperature evolution in well Shijicheng 1 over a 50-year extraction cycle with 90% and 100% recharge rates in Xiong'an New Area, Hebei Province

  • [1] 汪集暘, 邱楠生, 胡圣标, 等. 中国油田地热研究的进展和发展趋势[J]. 地学前缘, 2017, 24(3): 1-12.

    WANG Jiyang, QIU Nansheng, HU Shengbiao, et al. Advancement and developmental trend in the geothermics of oil fields in China[J]. Earth Science Frontiers, 2017, 24(3): 1-12.
    [2] 多吉, 王贵玲, 郑克棪. 中国地热资源开发利用战略研究[M]. 北京: 科学出版社, 2017.

    DUO Ji, WANG Guilin, ZHENG Keyan. Research on the development and utilization strategy of geothermal resources in China[M]. Beijing: Science Press, 2017.
    [3] 周训, 陈明佑, 方斌, 等. 埋藏型岩溶地下水源地的三维数值模拟: 以天津市宁河北岩溶地下水源地为例[J]. 中国岩溶, 2006, 25(1): 6-11.

    ZHOU Xun, CHEN Mingyou, FANG Bin, et al. 3-D numerical modeling to groundwater wellhead in buried karst area: a case study to the Ninghebei karst wellhead in Tianjin[J]. Carsologica Sinica, 2006, 25(1): 6-11.
    [4] 宋美钰, 刘杰, 于彦, 等. 天津地区雾迷山组热储数值模拟研究[J]. 地质调查与研究, 2018, 41(4): 306-311.

    SONG Meiyu, LIU Jie, YU Yan, et al. Numerical simulation of Wumishan Formation thermal reservoir in Tianjin area[J]. Geological Survey and Research, 2018, 41(4): 306-311.
    [5] 李俊峰, 贾志, 张芬娜, 等. 天津市蓟县系雾迷山组热储层水位动态变化及趋势预测研究[J]. 地质调查与研究, 2013, 36(3): 221-225.

    LI Junfeng, JIA Zhi, ZHANG Fenna, et al. Research on the change and trend prediction of the water level of Wumishan geothermal reservoir in Jixian system, Tianjin[J]. Geological Survey and Research, 2013, 36(3): 221-225.
    [6] KIRYUKHIN A V, SHADRINA S V, PUZANKOV M Y. Modeling the thermohydrogeochemical conditions for the generation of productive reservoirs in volcanogenic rocks[J]. Journal of Volcanology and Seismology, 2013, 7(2): 170-183.
    [7] PANDEY S N, CHAUDHURI A, KELKAR S, et al. Investigation of permeability alteration of fractured limestone reservoir due to geothermal heat extraction using three-dimensional thermo-hydro-chemical (THC) model[J]. Geothermics, 2014, 51: 46-62. doi: 10.1016/j.geothermics.2013.11.004
    [8] PANDEY S N, CHAUDHURI A, KELKAR S. A coupled thermo-hydro-mechanical modeling of fracture aperture alteration and reservoir deformation during heat extraction from a geothermal reservoir[J]. Geothermics, 2017, 65: 17-31. doi: 10.1016/j.geothermics.2016.08.006
    [9] 陈继良, 黄文博, 曹文炅, 等. 增强型地热系统中液—岩化学作用数值模拟研究[J]. 新能源进展, 2016, 4(1): 48-55.

    CHEN Jiliang, HUANG Wenbo, CAO Wenjiong, et al. A numerical study on the effect of fluid-rock reaction during enhanced geothermal system heat extraction processes[J]. Advances in New and Renewable Energy, 2016, 4(1): 48-55.
    [10] 戴明刚, 马鹏鹏, 雷海飞, 等. 雄安新区雾迷山组岩溶热储特征与有利区[J]. 地质科学, 2020, 55(2): 487-505.

    DAI Minggang, MA Pengpeng, LEI Haifei, et al. Distribution characteristics and favorable targets of karst geothermal reservoir of Wumishan Formation in Xiong'an New Area[J]. Chinese Journal of Geology, 2020, 55(2): 487-505.
    [11] 刘峰, 王贵玲, 姜光政, 等. 我国陆区大地热流测量新进展与新认识[J]. 地学前缘, 2024, 31(6): 19-30.

    LIU Feng, WANG Guiling, JIANG Guangzheng, et al. Recent advances in heat flow measurement and new understanding of terrestrial heat flow distribution in terrestrial areas of China[J]. Earth Science Frontiers, 2024, 31(6): 19-30.
    [12] 王贵玲, 马峰, 张薇, 等. 华北古潜山优势传热机制研究: 以雄安新区为例[J]. 地学前缘, 2024, 31(6): 52-66.

    WANG Guiling, MA Feng, ZHANG Wei, et al. Dominant heat transfer mechanism in buried-hill reservoirs in North China: a case study in Xiong'an new area[J]. Earth Science Frontiers, 2024, 31(6): 52-66.
    [13] 孙焕泉, 毛翔, 吴陈冰洁, 等. 地热资源勘探开发技术与发展方向[J]. 地学前缘, 2024, 31(1): 400-411.

    SUN Huanquan, MAO Xiang, WU Chenbingjie, et al. Geothermal resources exploration and development technology: current status and development directions[J]. Earth Science Frontiers, 2024, 31(1): 400-411.
    [14] 李卫卫, 饶松, 唐晓音, 等. 河北雄县地热田钻井地温测量及地温场特征[J]. 地质科学, 2014, 49(3): 850-863.

    LI Weiwei, RAO Song, TANG Xiaoyin, et al. Borehole temperature logging and temperature field in the Xiongxian geothermal field, Hebei Province[J]. Chinese Journal of Geology, 2014, 49(3): 850-863.
    [15] HE Lijuan. Thermal regime of the North China Craton: implications for craton destruction[J]. Earth-Science Reviews, 2015, 140: 14-26.
    [16] 常健, 邱楠生, 赵贤正, 等. 渤海湾盆地冀中坳陷现今地热特征[J]. 地球物理学报, 2016, 59(3): 1003-1016.

    CHANG Jian, QIU Nansheng, ZHAO Xianzheng, et al. Present-day geothermal regime of the Jizhong Depression in Bohai Bay Basin, East China[J]. Chinese Journal of Geophysics, 2016, 59(3): 1003-1016.
    [17] 姜光政, 高堋, 饶松, 等. 中国大陆地区大地热流数据汇编(第四版)[J]. 地球物理报, 2016, 59(8): 2892-2910.

    JIANG Guangzheng, GAO Peng, RAO Song, et al. Compilation of heat flow data in the continental area of China (4th edition)[J]. Chinese Journal of Geophysics, 2016, 59(8): 2892-2910.
    [18] JIANG Guangzheng, HU Shengbiao, SHI Yizuo, et al. Terrestrial heat flow of continental China: updated dataset and tectonic implications[J]. Tectonophysics, 2019, 753: 36-48.
    [19] WANG Zhuting, RAO Song, XIAO Hongping, et al. Terrestrial heat flow of Jizhong Depression, China, western Bohai Bay Basin and its influencing factors[J]. Geothermics, 2021, 96: 102210.
    [20] 何登发, 单帅强, 张煜颖, 等. 雄安新区的三维地质结构: 来自反射地震资料的约束[J]. 中国科学: 地球科学, 2018, 48(9): 1207-1222.

    HE Dengfa, SHAN Shuaiqiang, ZHANG Yuying, et al. 3-D geologic architecture of Xiong'an New Area: constraints from seismic reflection data[J]. Science China: Earth Sciences, 2018, 61(8): 1007-1022.
    [21] 朱吉昌, 冯有良, 孟庆任, 等. 渤海湾盆地晚中生代构造地层划分及对比: 对燕山运动的启示[J]. 中国科学: 地球科学, 2020, 50(1): 28-49.

    ZHU Jichang, FENG Youliang, MENG Qingren, et al. Late Mesozoic tectonostratigraphic division and correlation of the Bohai Bay Basin: implications for the Yanshanian Orogeny[J]. Science China: Earth Sciences, 2019, 62(11): 1783-1804.
    [22] SUN Ziyong, MA Rui, WANG Yanxin, et al. Using isotopic, hydrogeochemical-tracer and temperature data to characterize recharge and flow paths in a complex karst groundwater flow system in northern China[J]. Hydrogeology Journal, 2016, 24(6): 1393-1412.
    [23] LI Jie, PANG Zhonghe, YANG Guomin, et al. Million-year-old groundwater revealed by krypton-81 dating in Guanzhong Basin, China[J]. Science Bulletin, 2017, 62(17): 1181-1184.
    [24] KONG Yanlong, PANG Zhonghe, PANG Jumei, et al. Fault-affected fluid circulation revealed by hydrochemistry and isotopes in a large-scale utilized geothermal reservoir[J]. Geofluids, 2020(24): 1-13.
    [25] PANG Jumei, PANG Zhonghe, LV Min, et al. Geochemical and isotopic characteristics of fluids in the Niutuozhen geothermal field, North China[J]. Environmental Earth Sciences, 2017, 77(1): 12.
    [26] GUO Sasa, ZHU Chuanqing, QIU Nansheng, et al. Present geothermal characteristics and influencing factors in the Xiong'an New Area, North China[J]. Energies, 2019, 12(20): 3884.
    [27] WANG Zhuting, JIANG Guangzheng, ZHANG Chao. Thermal regime of the lithosphere and geothermal potential in Xiong'an New Area[J]. Energy Exploration & Exploitation, 2019, 37(2): 787-810.
    [28] 庞忠和, 孔彦龙, 庞菊梅, 等. 雄安新区地热资源与开发利用研究[J]. 中国科学院院刊, 2017, 32(11): 1224-1230.

    PANG Zhonghe, KONG Yanlong, PANG Jumei, et al. Geothermal resources and development in Xiongan New Area[J]. Bulletin of Chinese Academy of Sciences, 2017, 32(11): 1224-1230.
    [29] KOLDITZ O, GÖRKE U J, SHAO Hua, et al. Thermo-hydro-mechanical-chemical processes in porous media: benchmarks and examples[M]. Berlin, Heidelberg: Springer, 2012.
    [30] 王树芳, 刘久荣, 林沛, 等. 岩溶热储回灌实验与示踪试验研究[J]. 水文地质工程地质, 2013, 40(6): 129-133.

    WANG Shufang, LIU Jiurong, LIN Pei, et al. A study of reinjection experiment and tracer test in a karst geothermal reservoir[J]. Hydrogeology & Engineering Geology, 2013, 40(6): 129-133.
    [31] KONG Yanlong, PANG Zhonghe, SHAO Haibin, et al. Optimization of well-doublet placement in geothermal reservoirs using numerical simulation and economic analysis[J]. Environmental Earth Sciences, 2017, 76(3): 118.
    [32] 马峰, 高俊, 王贵玲, 等. 雄安新区容城地热田碳酸盐岩热储采灌数值模拟[J]. 吉林大学学报(地球科学版), 2023, 53(5): 1534-1548.

    MA Feng, GAO Jun, WANG Guiling, et al. Numerical simulation of exploitation and reinjection of carbonate geothermal reservoir in Rongcheng geothermal field, Xiongan New Area[J]. Journal of Jilin University (Earth Science Edition), 2023, 53(5): 1534-1548.
  • 加载中
图(16)
计量
  • 文章访问数:  22
  • HTML全文浏览量:  12
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-01
  • 修回日期:  2025-02-01
  • 刊出日期:  2025-03-28

目录

    /

    返回文章
    返回