留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

致密油藏压裂吞吐动态渗吸产油贡献量化研究

刘红现 白雷 罗强 刘同敬 孙江飞 刘佳幸

刘红现, 白雷, 罗强, 刘同敬, 孙江飞, 刘佳幸. 致密油藏压裂吞吐动态渗吸产油贡献量化研究[J]. 石油实验地质, 2025, 47(2): 417-425. doi: 10.11781/sysydz2025020417
引用本文: 刘红现, 白雷, 罗强, 刘同敬, 孙江飞, 刘佳幸. 致密油藏压裂吞吐动态渗吸产油贡献量化研究[J]. 石油实验地质, 2025, 47(2): 417-425. doi: 10.11781/sysydz2025020417
LIU Hongxian, BAI Lei, LUO Qiang, LIU Tongjing, SUN Jiangfei, LIU Jiaxing. Quantitative study on contribution of dynamic imbibition to oil production during fracturing and huff-n-puff in tight reservoirs[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2025, 47(2): 417-425. doi: 10.11781/sysydz2025020417
Citation: LIU Hongxian, BAI Lei, LUO Qiang, LIU Tongjing, SUN Jiangfei, LIU Jiaxing. Quantitative study on contribution of dynamic imbibition to oil production during fracturing and huff-n-puff in tight reservoirs[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2025, 47(2): 417-425. doi: 10.11781/sysydz2025020417

致密油藏压裂吞吐动态渗吸产油贡献量化研究

doi: 10.11781/sysydz2025020417
基金项目: 

省部级基金新疆天山创新团队项目“油气高效管输技术研究与应用创新” 2022TSYCTD0002

详细信息
    作者简介:

    刘红现(1978—),男,博士,副教授,从事油气田开发工程方向的教学及研究。E-mail: liuhongxian@cup.edu.cn

    通讯作者:

    刘同敬(1972—),男,博士,副研究员,博士生导师,从事油气田开发工程方向的教学及研究。E-mail: ltjcup@cup.edu.cn

  • 中图分类号: TE357

Quantitative study on contribution of dynamic imbibition to oil production during fracturing and huff-n-puff in tight reservoirs

  • 摘要: 致密油藏压裂吞吐是一个动态渗吸过程,主要通过压差驱替作用和自发渗吸作用实现原油增产,但目前尚不清楚这两种增油机理对产油量量化的贡献程度。为研究致密砾岩油藏压裂吞吐采油过程中,动态渗吸增油机理对产油贡献的量化分析问题,借助高温高压多功能岩心驱替系统和高温高压在线驱替核磁共振成像系统,采用天然致密砾岩油藏岩心,开展室内物理模拟实验。首先通过不同类型压裂驱油剂的渗吸特征实验,筛选渗吸效果较好的压裂驱油剂类型;然后依据压裂吞吐采油效果评价实验,优选采油效果最好的压裂驱油剂;最后通过采油效果影响因素实验,对压裂吞吐采油的动态渗吸增油机理进行量化分析。实验结果显示:表面活性剂和流动控制剂的渗吸效果均较好,流动控制剂更有助于提高压裂吞吐的采油效果,渗吸作用和驱替作用在动态渗吸过程中对产油贡献的变化规律是相反的。当压裂驱油剂降低界面张力和改变湿润性的能力较强时,渗吸作用为主要增油机理,反之驱替作用为主要增油机理;表面活性剂和流动控制剂的渗吸效果都比较好,但前者对吞吐轮次的敏感程度较弱,后者的敏感程度较强;焖井时间是影响动态渗吸过程中渗吸/驱替贡献率的主要因素,但驱替贡献率始终大于渗吸贡献率。

     

  • 图  1  实验流程

    Figure  1.  Experiment flowchart

    图  2  密封岩心示意

    Figure  2.  Schematic diagram of sealed core

    图  3  不同压裂驱油剂微观孔隙动用分布比例

    Figure  3.  Distribution ratios of microscopic pore utilization using different fracturing displacement agents

    图  4  不同压裂驱油剂的渗吸效果对比

    Figure  4.  Comparison of imbibition effects of different fracturing displacement agents

    图  5  不同渗吸阶段的渗吸效率和渗吸速率

    Figure  5.  Imbibition efficiencies and rates at different imbibition stages

    图  6  不同压裂驱油剂多轮吞吐后的孔隙动用效率

    Figure  6.  Pore utilization efficiency after cycles of huff-n-puff using different fracturing displacement agents

    图  7  不同压裂驱油剂吞吐效果对比

    Figure  7.  Comparison of huff-n-puff effects using different fracturing displacement agents

    图  8  焖井15 min时多轮吞吐后的孔隙动用效率(岩心C)

    Figure  8.  Pore utilization efficiency after cycles of huff-n-puff with 15 minutes of shut-in time (core C)

    图  9  不同焖井时间第1轮吞吐后的孔隙动用效率

    Figure  9.  Pore utilization efficiency after the first cycle of huff-n-puff with different shut-in times

    图  10  不同焖井时间第1轮吞吐后的采出程度和渗吸、驱油贡献率

    Figure  10.  Oil recovery levels and contribution rates of imbibition and displacement after the first cycle of huff-n-puff with different shut-in times

    表  1  岩心物性参数

    Table  1.   Physical parameters of cores

    岩心
    编号
    长度/mm 直径/mm 孔隙度/% 渗透率/10-3 μm2 人造含油
    饱和度/%
    1 47.47 25.01 10.98 0.83 60.38
    2 44.78 24.97 16.16 0.43 50.39
    3 48.54 25.11 14.51 0.67 61.75
    4 49.32 24.91 12.30 1.57 54.21
    下载: 导出CSV

    表  2  压裂驱油剂质量分数及性能参数

    Table  2.   Mass fractions and performance parameters of fracturing displacement agents

    岩心
    编号
    压裂驱油剂
    类型
    质量
    分数/%
    界面张力/(mN/m) 降低界面
    张力能力
    改变
    湿润性能力
    1 表面活性剂 0.2 0.028
    2 纳米驱油剂 0.2 0.141 较强
    3 流度控制剂 0.2 8.875 一般 较弱
    4 KCl溶液 2.0 20.036
    下载: 导出CSV

    表  3  岩心物性参数和吞吐控制参数

    Table  3.   Core physical parameters and huff-n-puff control parameters

    岩心
    编号
    岩心物性参数 吞吐控制参数
    长度/mm 直径/mm 孔隙度/% 渗透率/10-3 μm2 压裂驱油剂 焖井时间/min 吞吐轮次
    A 71.02 25.02 15.3 0.698 表面活性剂 120 4
    B 71.17 24.88 15.2 0.689 流度控制剂 120 4
    下载: 导出CSV

    表  4  岩心物性参数和吞吐控制参数

    Table  4.   Core physical parameters and huff-n-puff control parameters

    岩心
    编号
    岩心物性参数 吞吐控制参数
    长度/mm 直径/mm 孔隙度/% 渗透率/10-3 μm2 压裂驱油剂 焖井时间/min 吞吐轮次
    C 67.97 25.05 15.2 0.608 流度控制剂 15 4
    D 71.17 24.88 14.8 0.457 流度控制剂 120 1
    E 72.10 25.02 16.1 0.923 流度控制剂 300 1
    F 70.09 25.00 15.9 0.742 流度控制剂 2 880 1
    下载: 导出CSV
  • [1] 胡泽根, 马宇奔, 李明峰, 等. 致密油提高采收率技术研究进展[J]. 石油化工应用, 2023, 42(3): 5-11.

    HU Zegen, MA Yuben, LI Mingfeng, et al. Research progress on enhanced oil recovery technology of tight oil[J]. Petrochemical Industry Application, 2023, 42(3): 5-11.
    [2] 郭建春, 马莅, 卢聪. 中国致密油藏压裂驱油技术进展及发展方向[J]. 石油学报, 2022, 43(12): 1788-1797.

    GUO Jianchun, MA Li, LU Cong. Progress and development directions of fracturing flooding technology for tight reservoirs in China[J]. Acta Petrolei Sinica, 2022, 43(12): 1788-1797.
    [3] 刘义坤, 王凤娇, 汪玉梅, 等. 中低渗透储集层压驱提高采收率机理[J]. 石油勘探与开发, 2022, 49(4): 752-759.

    LIU Yikun, WANG Fengjiao, WANG Yumei, et al. The mechanism of hydraulic fracturing assisted oil displacement to enhance oil recovery in low and medium permeability reservoirs[J]. Petroleum Exploration and Development, 2022, 49(4): 752-759.
    [4] 王凤娇, 孟详昊, 刘义坤, 等. 致密储层压驱焖井阶段渗吸机理分子模拟研究[J]. 力学学报, 2024, 56(6): 1624-1634.

    WANG Fengjiao, MENG Xianghao, LIU Yikun, et al. The shut-in imbibition mechanism of hydraulic fracturing-assisted oil displacement in tight reservoirs based on molecular simulation[J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(6): 1624-1634.
    [5] 孔祥伟, 许洪星, 张晓辉, 等. 低渗透薄互层油藏动态多级暂堵压裂技术优化[J]. 钻采工艺, 2023, 46(6): 66-71

    KONG Xiangwei, XU Hongxing, ZHANG Xiaohui, et al. Optimization of dynamic multistage temporary plugging fracturing technology for low permeability thin interbed reservoirs[J]. Drilling and Production Technology, 2023, 46(6): 66-71
    [6] 钱计安, 蒋裕强, 罗彤彤, 等. 页岩储层渗吸过程微观孔缝演变特征及影响因素: 以四川盆地渝西地区龙马溪组龙一1亚段为例[J]. 石油实验地质, 2024, 46(6): 1336-1348. doi: 10.11781/sysydz2024061336

    QIAN Ji'an, JIANG Yuqiang, LUO Tongtong, et al. Microscopic pore and fracture evolution characteristics and influencing factors during imbibition process of shale reservoirs: a case study of the first section of the first member of Longmaxi Formation, western Chongqing area, Sichuan Basin[J]. Petroleum Geology & Experiment, 2024, 46(6): 1336-1348. doi: 10.11781/sysydz2024061336
    [7] 余海棠, 何亚斌, 刘艳梅, 等. 超低渗透油藏高温高压动态吞吐渗吸驱油实验[J]. 大庆石油地质与开发, 2022, 41(5): 80-86.

    YU Haitang, HE Yabin, LIU Yanmei, et al. Experiment of high-temperature and high-pressure dynamic huff-n-puff imbibition displacement in ultra-low permeability reservoir[J]. Petroleum Geology & Oilfield Development in Daqing, 2022, 41(5): 80-86.
    [8] 王香增, 赵习森, 党海龙, 等. 基于核磁共振的致密油藏自发渗吸及驱替特征研究[J]. 地球物理学进展, 2020, 35(5): 1870-1877.

    WANG Xiangzeng, ZHAO Xisen, DANG Hailong, et al. Research on the characteristics of spontaneous imbibition and displacement of the tight reservoir with the NMR method[J]. Progress in Geophysics, 2020, 35(5): 1870-1877.
    [9] 党海龙, 王小锋, 崔鹏兴, 等. 基于核磁共振技术的低渗透致密砂岩油藏渗吸驱油特征研究[J]. 地球物理学进展, 2020, 35(5): 1759-1769.

    DANG Hailong, WANG Xiaofeng, CUI Pengxing, et al. Research on the characteristics of spontaneous imbibition oil displacement with the low permeability tight-sandstone oil reservoir using the Nuclear Magnetic Resonance (NMR) technology[J]. Progress in Geophysics, 2020, 35(5): 1759-1769.
    [10] 廖凯, 张士诚, 谢勃勃. 页岩油体积压裂后合理焖井时间模拟研究[J]. 油气藏评价与开发, 2024, 14(5): 749-755.

    LIAO Kai, ZHANG Shicheng, XIE Bobo. Simulation of reasonable shut-in time for shale oil after volume fracturing[J]. Petroleum Reservoir Evaluation and Development, 2024, 14(5): 749-755.
    [11] 周义博, 刘卫东, 郑晓波, 等. 低渗透油藏渗吸机理及研究状况综述[J]. 应用化工, 2018, 47(4): 825-829.

    ZHOU Yibo, LIU Weidong, ZHENG Xiaobo, et al. Summary about mechanism and application of imbibition in low-permeability reservoirs[J]. Applied Chemical Industry, 2018, 47(4): 825-829.
    [12] 李传亮, 毛万义, 吴庭新, 等. 渗吸驱油的机理研究[J]. 新疆石油地质, 2019, 40(6): 687-694.

    LI Chuanliang, MAO Wanyi, WU Tingxin, et al. A study on mechanism of oil displacement by imbibition[J]. Xinjiang Petroleum Geology, 2019, 40(6): 687-694.
    [13] 金智荣, 张华丽, 陈佳豪, 等. 低渗储层动静态渗吸采油效果实验研究[J]. 非常规油气, 2022, 9(5): 93-102.

    JIN Zhirong, ZHANG Huali, CHEN Jiahao, et al. Experimental study on oil displacement effect by dynamic and static imbibition in low permeability reservoir[J]. Unconventional Oil & Gas, 2022, 9(5): 93-102.
    [14] 王付勇, 曾繁超, 赵久玉. 低渗透/致密油藏驱替—渗吸数学模型及其应用[J]. 石油学报, 2020, 41(11): 1396-1405.

    WANG Fuyong, ZENG Fanchao, ZHAO Jiuyu. A mathematical model of displacement and imbibition of low-permeability/tight reservoirs and its application[J]. Acta Petrolei Sinica, 2020, 41(11): 1396-1405.
    [15] 杨宸, 杨二龙, 安艳明, 等. 致密储层孔隙结构对渗吸的影响研究进展[J]. 特种油气藏, 2024, 31(4): 10-18.

    YANG Chen, YANG Erlong, AN Yanming, et al. Research progress on the impact of tight oil reservoir pore structure on spontaneous imbibition[J]. Special Oil & Gas Reservoirs, 2024, 31(4): 10-18.
    [16] 石立华, 薛颖, 崔鹏兴, 等. 致密油藏自发静态渗吸实验及影响因素[J]. 科学技术与工程, 2023, 23(29): 12494-12503.

    SHI Lihua, XUE Ying, CUI Pengxing, et al. Spontaneous static imbibition experiment of tight reservoir and its influencing factors[J]. Science Technology and Engineering, 2023, 23(29): 12494-12503.
    [17] 曾慧勇, 陈立峰, 陈亚东, 等. 压裂—驱油一体化工作液研究进展[J]. 油气地质与采收率, 2022, 29(3): 162-170.

    ZENG Huiyong, CHEN Lifeng, CHEN Yadong, et al. Research progress on fracturing-oil displacement integrated working fluid[J]. Petroleum Geology and Recovery Efficiency, 2022, 29(3): 162-170.
    [18] 侯向前, 张福祥, 胡广军, 等. 渗吸驱油用表面活性剂研究现状及展望[J]. 化学工程师, 2024, 38(1): 70-74.

    HOU Xiangqian, ZHANG Fuxiang, HU Guangjun, et al. Research status and prospect of surfacants for imbibition flooding[J]. Chemical Engineer, 2024, 38(1): 70-74.
    [19] 金智荣, 侯晓蕊, 马巍, 等. 江苏某油田渗吸洗油剂性能评价[J]. 石油化工应用, 2023, 42(4): 28-33.

    JIN Zhirong, HOU Xiaorui, MA Wei, et al. Performance evaluation of imbibition oil displacement agent in an oilfield in Jiangsu[J]. Petrochemical Industry Application, 2023, 42(4): 28-33.
    [20] 王科, 卢双舫, 娄毅, 等. 压裂液渗吸与富气页岩气井典型生产规律关系剖析[J]. 特种油气藏, 2024, 31(3): 158-166.

    WANG Ke, LU Shuangfang, LOU Yi, et al. Analysis of the relationship between fracturing fluid imbibition and typical production rules of gasrich shale gas wells[J]. Special Oil & Gas Reservoirs, 2024, 31(3): 158-166.
    [21] 朱峰. 中国石化石油勘探开发研究院无锡石油地质研究所实验地质技术之核磁共振岩心分析技术[J]. 石油实验地质, 2023, 45(4): 590. https://www.sysydz.net/article/id/4f34f434-93dd-4dd4-8bda-97f9b91992d3

    ZHU Feng. Nuclear magnetic resonance core analysis technology of experimental geological techniques of Wuxi Research Institute of Petroleum Geology, SINOPEC Petroleum Exploration and Production Research Institute[J]. Petroleum Geology & Experiment, 2023, 45(4): 590. https://www.sysydz.net/article/id/4f34f434-93dd-4dd4-8bda-97f9b91992d3
    [22] 王学武, 杨正明, 李海波, 等. 核磁共振研究低渗透储层孔隙结构方法[J]. 西南石油大学学报(自然科学版), 2010, 32(2): 69-72.

    WANG Xuewu, YANG Zhengming, LI Haibo, et al. Expermental study on structure of low permeability core with NMR spectra[J]. Journal of Southwest Petroleum University (Science Technology Edition), 2010, 32(2): 69-72.
    [23] 宁传祥, 姜振学, 苏思远, 等. 泥页岩核磁共振T2谱换算孔隙半径方法[J]. 科学技术与工程, 2016, 16(27): 14-19.

    NING Chuanxiang, JIANG Zhenxue, SU Siyuan, et al. Method for calculating pore radius distribution in shale reservoirs from NMR T2 spectra[J]. Science Technology and Engineering, 2016, 16(27): 14-19.
  • 加载中
图(10) / 表(4)
计量
  • 文章访问数:  18
  • HTML全文浏览量:  13
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-08-18
  • 修回日期:  2025-02-08
  • 刊出日期:  2025-03-28

目录

    /

    返回文章
    返回