留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

准西北缘哈山地区白垩系油气成藏新认识及其油气勘探意义

曲彦胜 钟宁宁 王圣柱 王斌 于洪洲 周健 吴倩倩 鲁红利

曲彦胜, 钟宁宁, 王圣柱, 王斌, 于洪洲, 周健, 吴倩倩, 鲁红利. 准西北缘哈山地区白垩系油气成藏新认识及其油气勘探意义[J]. 石油实验地质, 2025, 47(3): 517-529. doi: 10.11781/sysydz2025030517
引用本文: 曲彦胜, 钟宁宁, 王圣柱, 王斌, 于洪洲, 周健, 吴倩倩, 鲁红利. 准西北缘哈山地区白垩系油气成藏新认识及其油气勘探意义[J]. 石油实验地质, 2025, 47(3): 517-529. doi: 10.11781/sysydz2025030517
QU Yansheng, ZHONG Ningning, WANG Shengzhu, WANG Bin, YU Hongzhou, ZHOU Jian, WU Qianqian, LU Hongli. New insights into Cretaceous hydrocarbon accumulation and its significance for hydrocarbon exploration in Hashan area, northwestern margin of Junggar Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2025, 47(3): 517-529. doi: 10.11781/sysydz2025030517
Citation: QU Yansheng, ZHONG Ningning, WANG Shengzhu, WANG Bin, YU Hongzhou, ZHOU Jian, WU Qianqian, LU Hongli. New insights into Cretaceous hydrocarbon accumulation and its significance for hydrocarbon exploration in Hashan area, northwestern margin of Junggar Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2025, 47(3): 517-529. doi: 10.11781/sysydz2025030517

准西北缘哈山地区白垩系油气成藏新认识及其油气勘探意义

doi: 10.11781/sysydz2025030517
基金项目: 

中国石化科技部重大攻关项目“准噶尔盆地山前构造带勘探潜力及突破方向研究” P22079

详细信息
    作者简介:

    曲彦胜(1986—),男,副研究员,研究方向为石油地质学、油气地球化学。E-mail: quyansheng@163.com

  • 中图分类号: TE122.3

New insights into Cretaceous hydrocarbon accumulation and its significance for hydrocarbon exploration in Hashan area, northwestern margin of Junggar Basin

  • 摘要: 针对准噶尔盆地西北缘哈山地区白垩系油气成藏规律不清、勘探成效受限的问题,为揭示白垩系与侏罗系成藏模式的差异性,明确白垩系油气富集的关键控制因素,拓展盆缘超剥带勘探阵地,综合岩心、薄片、生物标志化合物、包裹体等数据,采用地质与地球化学多学科结合方法,开展了精细油源对比、油气运移路径示踪及输导体系配置研究。重点分析烃源岩特征、原油物性、成藏期次及走滑断层—砂体耦合关系,结合三维地震解释与钻井资料验证,建立白垩系成藏模式。取得了以下几个方面的认识:(1)油源差异: 白垩系原油源自哈山洼陷二叠系风城组碱盐质岩相烃源岩(C28/C29甾烷比值为0.6~1.1,伽马蜡烷/C30藿烷比值为1.58~2.02);侏罗系原油则主要来自半咸水云质岩相烃源岩。(2)输导体系: 白垩系成藏受“走滑断层—朵叶砂体联合输导”控制,走滑断层(如哈浅23—浅34断裂)垂向沟通深部烃源岩与浅层砂体(孔隙度大于20%,渗透率大于200×10-3 μm2),形成7套含油层;侏罗系以“断—毯”横向输导为主。(3)成藏期次:包裹体均一温度(110~140 ℃)及芳烃成熟度参数(Rc=1.21%~1.56%)表明,白垩系为晚白垩世高成熟油气单期充注,侏罗系为两期混合充注。基于成藏新认识,发现哈浅23—浅10等多个含油区块,预测哈浅24北潜力区储量规模达4 500万吨,白垩系有望形成5 000万吨级勘探阵地。白垩系油气成藏模式突破传统“断—毯”理论束缚,提出“近源垂向供烃—走滑断层与朵叶砂体耦合输导”新机制。走滑断层高效输导与砂体沿“沟槽”分布的先天性配置是成藏的关键,指导勘探由兼探层转向区域规模聚集区,显著拓展了准噶尔盆地西北缘勘探空间。

     

  • 图  1  准噶尔盆地北缘哈山构造带构造单元划分(a)及哈山地区地层综合柱状图(b)

    Figure  1.  Structural unit division of Hashan tectonic belt in northern margin of Junggar Basin (a) and comprehensive stratigraphic histogram in Hashan area (b)

    图  2  准噶尔盆地哈山地区过夏72—哈浅23—浅10井地震解释剖面

    剖面位置见图 1

    Figure  2.  Seismic interpretation profile of wells connecting through Xia 72, Haqian 23, and Haqian 10 in Hashan area, Junggar Basin

    图  3  准噶尔盆地哈山地区侏罗系—白垩系原油与二叠系风城组烃源岩生物标志化合物谱图

    Figure  3.  Spectra of biomarker compounds in Permian Fengcheng Formation source rocks and Jurassic and Cretaceous crude oils in Hashan area, Junggar Basin

    图  4  准噶尔盆地哈山地区侏罗系、白垩系典型烃类包裹体镜下特征

    a.哈浅2—浅2井,156.7 m,K1h,灰褐色细砂岩,矿物裂隙中蓝白色荧光包裹体;b.哈浅22—浅3井,805.1 m,J1b,灰色砂砾岩,矿物裂隙中黄褐色荧光包裹体,少量蓝白色荧光包裹体;c.哈浅21—浅8井,465.5 m,K1h,灰色砂砾岩,少量蓝白色荧光包裹体;d.哈浅23—浅9井,131.06 m,K1h,灰色细砂岩,少量蓝白色荧光包裹体;e.哈浅22—浅1井,634.1 m,J2x,灰色砂砾岩,少量黄褐色荧光包裹体;f.哈浅22—浅1井,648.2 m,J2x,灰色砂砾岩,少量黄色荧光包裹体和大量线状排列蓝色荧光包裹体。

    Figure  4.  Microscopic characteristics of typical hydrocarbon inclusions of Jurassic and Cretaceous in Hashan area, Junggar Basin

    图  5  准噶尔盆地哈山地区烃类伴生盐水包裹体均一温度直方图

    Figure  5.  Histograms of homogenization temperatures of hydrocarbon- associated type saltwater inclusions in Hashan area, Junggar Basin

    图  6  准噶尔盆地哈山地区不同层位原油运移分馏特征

    Figure  6.  Characteristics of oil migration and fractionation at different layers in Hashan area, Junggar Basin

    图  7  准噶尔盆地哈山地区哈浅23—浅49井白垩系综合柱状图

    Figure  7.  Comprehensive histogram of Cretaceous in well Haqian 23-Qian 49 in Hashan area, Junggar Basin

    图  8  准噶尔盆地哈山地区白垩系相干图(a)及浅层高密度三维区白垩系走滑断层(b)

    a.哈浅216走滑断裂; b.哈浅216走滑断裂; c.北浅2走滑断裂; d.夏12走滑断裂; e.哈浅23—浅58走滑断裂;f.哈浅23—浅10走滑断裂; g.北浅3走滑断裂; h.哈浅23—浅20走滑断裂; i.哈浅23—浅20走滑断裂。剖面位置见图 1

    Figure  8.  Coherent map of Cretaceous (a) and Cretaceous strike-slip faults in shallow high-density 3D area (b) of Hashan area, Junggar Basin

    图  9  准噶尔盆地哈山地区浅钻井岩心及沥青村断层露头剖面走滑断层典型特征

    a-c.观察点1、2、3, 走滑断层面波状弯曲; d.观察点4, 油气沿走滑断层及伴生裂缝充注运移; e.观察点4局部放大,沥青侵染带宽度为30~50 cm,伴生裂缝充填串珠状沥青脉以及原油侵染灰褐色沥青砂岩; f.观察点4, 走滑断层面沥青; g.观察点5, 走滑断层断裂带内沥青脉采完后断裂带空腔,宽度为1.5~2.0 m; h.观察点6, 滑断层断裂带内沥青脉采完后断裂带空腔, 宽度为50~60 cm; i.哈浅23—浅34井, 179.55 m, 走滑断层裂缝充填稠油; j.哈浅23—浅20井, 162.33 m, 走滑断层裂缝充填稠油。

    Figure  9.  Typical characteristics of strike-slip faults in shallow drilling cores and outcrops of Liqingcun faults in Hashan area, Junggar Basin

    图  10  准噶尔盆地哈山地区侏罗系—白垩系油气成藏模式

    Figure  10.  Hydrocarbon accumulation model of Jurassic and Cretaceous in Hashan area, Junggar Basin

    表  1  准噶尔盆地哈山地区典型井烃源岩指标

    Table  1.   Source rock indicators of typical wells in Hashan area, Junggar Basin

    井名 深度/m 岩性 ω(TOC)/% 氯仿沥青“A”/% 有机质类型 镜质体反射率/%
    哈浅6 1 562.30 灰色灰质泥岩 0.92 0.112 8 1 0.94
    哈浅6 2 540.60 深灰色泥岩 1.32 0.278 8 1.13
    哈浅6 2 678.00 深灰色泥岩 1.38 0.208 5 1.09
    哈山1 2 099.90 深灰色泥岩 2.06 0.066 0 0.82
    哈山1 2 154.71 灰色泥岩 0.51 0.306 5 1 0.83
    哈山1 2 216.00 灰色泥岩 1.19 0.436 2 0.82
    哈深斜1 3 327.50 深灰色泥岩 0.93 0.752 5 0.84
    哈深斜1 3 347.79 灰色泥岩 1.40 0.313 6
    哈山5 4 459.30 深灰色粉砂质泥岩 0.84 0.065 9 2 1.33
    哈山5 4 640.82 深灰色白云质泥岩 0.95 1 1.30
    风城1 3 068.00 深灰色粉砂质泥岩 1.03 0.101 1
    玛页1 4 594.17 深灰色荧光泥岩 1.52
    玛页2 4 435.22 深灰色荧光灰质泥岩 0.97
    下载: 导出CSV

    表  2  准噶尔盆地哈山地区典型井烃源岩碳同位素数据

    Table  2.   Source rock carbon isotope data of typical wells in Hashan area, Junggar Basin

    井号 深度/m 岩性 δ13C/‰
    饱和烃 芳烃 非烃 沥青质
    哈浅6 1 918.20 灰色灰质泥岩 -29.1 -28.6 -28.1 -27.0
    哈浅6 1 920.70 深灰色泥岩 -28.6 -28.3 -27.4 -26.3
    哈浅6 2 540.00 深灰色泥岩 -32.9 -32.0 -31.4 -30.1
    哈山1 2 099.90 深灰色泥岩 -28.2 -27.4 -25.8 -24.0
    哈深斜1 3 333.70 灰色泥岩 -29.1 -27.2 -26.7 -24.8
    哈深斜1 3 942.40 灰色白云质泥岩 -31.0 -29.4 -29.0 -26.9
    哈山5 4 460.90 深灰色白云质泥岩 -30.7 -29.3 -28.8 -27.5
    哈山5 4 637.47 深灰色白云质泥岩 -31.7 -30.5 -28.9 -28.6
    哈山5 4 800.85 深灰色含盐泥岩 -32.0 -30.6 -29.1 -27.8
    下载: 导出CSV
  • [1] 王圣柱, 张奎华, 肖雄飞, 等. 准北缘哈山地区斜坡带网毯式油气成藏规律[J]. 西安石油大学学报(自然科学版), 2012, 27(6): 19-24. doi: 10.3969/j.issn.1673-064X.2012.06.004

    WANG Shengzhu, ZHANG Kuihua, XIAO Xiongfei, et al. Study on meshwork-carpet hydrocarbon pool-forming features in Hashan area, the sloping zone, the northern border of Junggar Basin[J]. Journal of Xi'an Shiyou University (Natural Science Edition), 2012, 27(6): 19-24. doi: 10.3969/j.issn.1673-064X.2012.06.004
    [2] 王圣柱, 张奎华, 金强. 准噶尔盆地哈拉阿拉特山地区原油成因类型及风城组烃源岩的发现意义[J]. 天然气地球科学, 2014, 25(4): 595-602.

    WANG Shengzhu, ZHANG Kuihua, JIN Qiang. The genetic types of crude oils and the petroleum geological significance of the Fengcheng Formation source rock in Hashan area, Junggar Basin[J]. Natural Gas Geoscience, 2014, 25(4): 595-602.
    [3] 王圣柱, 林会喜, 张奎华, 等. 准北缘哈山斜坡带侏罗系原油稠化机理及充注特征[J]. 天然气地球科学, 2015, 26(3): 477-485.

    WANG Shengzhu, LIN Huixi, ZHANG Kuihua, et al. Formation mechanism and Hydrocarbon charging of Jurassic reservoirs in Hashan area northern sloping zone of Junggar Basin[J]. Natural Gas Geoscience, 2015, 26(3): 477-485.
    [4] 王圣柱, 吴倩倩, 程世伟, 等. 准噶尔盆地北缘哈山构造带油气输导系统与运聚规律[J]. 沉积学报, 2017, 35(2): 405-412.

    WANG Shengzhu, WU Qianqian, CHENG Shiwei, et al. Hydrocarbon transmission system and accumulation in Hala'alat Mountain structural belt in the northern margin of Junggar Basin[J]. Acta Sedimentologica Sinica, 2017, 35(2): 405-412.
    [5] 鲁红利. 准噶尔盆地哈山南缘浅层超剥带圈闭识别方法[J]. 新疆石油天然气, 2013, 9(1): 12-16. doi: 10.3969/j.issn.1673-2677.2013.01.003

    LU Hongli. Method of trap identification in overlapping denudation belt of shallow layer of south Hashan Junggar Basin[J]. Xinjiang Oil & Gas, 2013, 9(1): 12-16. doi: 10.3969/j.issn.1673-2677.2013.01.003
    [6] 赵永强, 宋振响, 王斌, 等. 准噶尔盆地油气资源潜力与中国石化常规—非常规油气一体化勘探策略[J]. 石油实验地质, 2023, 45(5): 872-881. doi: 10.11781/sysydz202305872

    ZHAO Yongqiang, SONG Zhenxiang, WANG Bin, et al. Resource potential in Junggar Basin and SINOPEC's integrated exploration strategy for conventional and unconventional petroleum[J]. Petroleum Geology & Experiment, 2023, 45(5): 872-881. doi: 10.11781/sysydz202305872
    [7] 周健, 林承焰, 刘惠民, 等. 准噶尔盆地哈山地区石炭系—二叠系火山岩储层发育机制研究[J]. 地学前缘, 2024, 31(2): 327-342.

    ZHOU Jian, LIN Chengyan, LIU Huimin, et al. Mechanism of reservoir development in the Carboniferous-Permian volcanic rock reservoirs in Hala'alate Mountain area, Junggar Basin[J]. Earth Science Frontiers, 2024, 31(2): 327-342.
    [8] 薛雁, 林会喜, 张奎华, 等. 哈拉阿拉特山地区构造特征及成因机制模拟[J]. 大地构造与成矿学, 2017, 41(5): 843-852.

    XUE Yan, LIN Huixi, ZHANG Kuihua, et al. Tectonic characteristics and genetic simulation of Hala'alate Mountain area[J]. Geotectonica et Metallogenia, 2017, 41(5): 843-852.
    [9] 于洪洲, 王越, 周健, 等. 准噶尔盆地西北缘哈山地区二叠系风城组沉积体系[J]. 新疆石油地质, 2022, 43(4): 396-403.

    YU Hongzhou, WANG Yue, ZHOU Jian, et al. Sedimentary system of Permian Fengcheng Formation in Hashan area in northwestern margin of Junggar Basin[J]. Xinjiang Petroleum Geology, 2022, 43(4): 396-403.
    [10] 张元元, 曾宇轲, 唐文斌. 准噶尔盆地西北缘二叠纪原型盆地分析[J]. 石油科学通报, 2021, 6(3): 333-343.

    ZHANG Yuanyuan, ZENG Yuke, TANG Wenbin. Permian attributes and tectonic evolution of the west Junggar Basin[J]. Petroleum Science Bulletin, 2021, 6(3): 333-343.
    [11] 张奎华, 孙中良, 张关龙, 等. 准噶尔盆地哈山地区下二叠统风城组泥页岩优势岩相与页岩油富集模式[J]. 石油实验地质, 2023, 45(4): 593-605. doi: 10.11781/sysydz202304593

    ZHANG Kuihua, SUN Zhongliang, ZHANG Guanlong, et al. Shale dominant lithofacies and shale oil enrichment model of Lower Permian Fengcheng Formation in Hashan area, Junggar Basin[J]. Petroleum Geology & Experiment, 2023, 45(4): 593-605. doi: 10.11781/sysydz202304593
    [12] 李振明, 熊伟, 王斌, 等. 准噶尔盆地哈山地区二叠系风城组细粒沉积特征与演化模式[J]. 石油实验地质, 2023, 45(4): 693-704. doi: 10.11781/sysydz202304693

    LI Zhenming, XIONG Wei, WANG Bin, et al. Fine-grained sedimentary characteristics and evolution model of Permian Fengcheng Formation in Hashan area, Junggar Basin[J]. Petroleum Geology & Experiment, 2023, 45(4): 693-704. doi: 10.11781/sysydz202304693
    [13] 张志杰, 袁选俊, 汪梦诗, 等. 准噶尔盆地玛湖凹陷二叠系风城组碱湖沉积特征与古环境演化[J]. 石油勘探与开发, 2018, 45(6): 972-984.

    ZHANG Zhijie, YUAN Xuanjun, WANG Mengshi, et al. Alkaline-lacustrine deposition and paleoenvironmental evolution in Permian Fengcheng Formation at the Mahu Sag, Junggar Basin, NW China[J]. Petroleum Exploration and Development, 2018, 45(6): 972-984.
    [14] 龚德瑜, 刘泽阳, 何文军, 等. 准噶尔盆地玛湖凹陷二叠系风城组有机质多元富集机制[J/OL]. 石油勘探与开发, 2024-02-23. http://kns.cnki.net/kcms/detail/11.2360.TE.20240222.2112.006.html.

    GONG Deyu, LIU Zeyang, HE Wenjun, et al. Multiple enrichment mechanism of organic matter in the Fengcheng Formation of Mahu Sag, Junggar Basin, NW China[J]. Petroleum Exploration and Development, 2024-02-23. http://kns.cnki.net/kcms/detail/11.2360.TE.20240222.2112.006.html.
    [15] 王小军, 王婷婷, 曹剑. 玛湖凹陷风城组碱湖烃源岩基本特征及其高效生烃[J]. 新疆石油地质, 2018, 39(1): 9-15.

    WANG Xiaojun, WANG Tingting, CAO Jian. Basic characteristics and highly efficient hydrocarbon generation of alkaline-lacustrine source rocks in Fengcheng Formation of Mahu Sag[J]. Xinjiang Petroleum Geology, 2018, 39(1): 9-15.
    [16] 支东明, 曹剑, 向宝力, 等. 玛湖凹陷风城组碱湖烃源岩生烃机理及资源量新认识[J]. 新疆石油地质, 2016, 37(5): 499-506.

    ZHI Dongming, CAO Jian, XIANG Baoli, et al. Fengcheng alkaline lacustrine source rocks of Lower Permian in Mahu Sag in Junggar Basin: hydrocarbon generation mechanism and petroleum resources reestimation[J]. Xinjiang Petroleum Geology, 2016, 37(5): 499-506.
    [17] 刘得光, 周路, 李世宏, 等. 玛湖凹陷风城组烃源岩特征与生烃模式[J]. 沉积学报, 2020, 38(5): 946-955.

    LIU Deguang, ZHOU Lu, LI Shihong, et al. Characteristics of source rocks and hydrocarbon generation models of Fengcheng Formation in Mahu Depression[J]. Acta Sedimentologica Sinica, 2020, 38(5): 946-955.
    [18] 龚德瑜, 刘海磊, 杨海波, 等. 准噶尔盆地风城组烃源岩生气潜力与天然气勘探领域[J]. 新疆石油地质, 2022, 43(6): 674-683.

    GONG Deyu, LIU Hailei, YANG Haibo, et al. Gas generation potential of Fengcheng Formation source rocks and exploration fields in Junggar Basin[J]. Xinjiang Petroleum Geology, 2022, 43(6): 674-683.
    [19] 谢媛, 张华. 准噶尔盆地玛页1井风城组生物标志化合物及其对古环境和生烃生物的指示[J]. 地球化学, 2024, 53(3): 370-385.

    XIE Yuan, ZHANG Hua. Lipid biomarkers of the Fengcheng Formation from the Maye 1 borehole in the Junggar Basin and its indication of paleoenvironment and hydrocarbon-generating organisms[J]. Geochimica, 2024, 53(3): 370-385.
    [20] 夏刘文, 曹剑, 边立曾, 等. 准噶尔盆地玛湖大油区二叠纪碱湖生物—环境协同演化及油源差异性[J]. 中国科学(地球科学), 2022, 52(4): 732-746.

    XIA Liuwen, CAO Jian, BIAN Lizeng, et al. Co-evolution of paleo-environment and bio-precursors in a Permian alkaline lake, Mahu mega-oil province, Junggar Basin: implications for oil sources[J]. Science China (Earth Sciences), 2022, 65(3): 462-476.
    [21] PETERS K E, WALTERS C C, MOLDOWAN J M. The biomarker guide[M]. 2nd ed. Cambridge: Cambridge University Press, 2004: 700.
    [22] KODNER R B, PEARSON A, SUMMONS R E, et al. Sterols in red and green algae: quantification, phylogeny, and relevance for the interpretation of geologic steranes[J]. Geobiology, 2008, 6(4): 411-420
    [23] FRANCAVILLA M, TROTTA P, LUQUE R. Phytosterols from Dunaliella tertiolecta and Dunaliella salina: a potentially novel industrial application[J]. Bioresource Technology, 2010, 101(11): 4144-4150.
    [24] SCHWARK L, EMPT P. Sterane biomarkers as indicators of Palaeozoic algal evolution and extinction events[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 240(1/2): 225-236.
    [25] LUO Genming, HALLMANN C, XIE Shucheng, et al. Comparative microbial diversity and redox environments of black shale and stromatolite facies in the Mesoproterozoic Xiamaling Formation[J]. Geochimica et Cosmochimica Acta, 2015, 151: 150-167.
    [26] 王屿涛. 准噶尔盆地西北缘稠油生物降解特征[J]. 沉积学报, 1994, 12(1): 81-88.

    WANG Yutao. Characteristics of heavy oil biodegradation in the northwestern margin of Junggar Basin[J]. Acta Sedimentologica Sinica, 1994, 12(1): 81-88.
    [27] MICHAEL MOLDOWAN J, SEIFERT W K, GALLEGOS E J. Relationship between petroleum composition and depositional environment of petroleum source rocks[J]. AAPG Bulletin, 1985, 69(8): 1255-1268.
    [28] 乔锦琪, 刘洛夫, 尚晓庆, 等. 油气运移示踪应用及有效性分析: 以准噶尔盆地白家海凸起侏罗系八道湾组油气为例[J]. 矿物岩石地球化学通报, 2023, 42(1): 107-121.

    QIAO Jinqi, LIU Luofu, SHANG Xiaoqing, et al. Application and effectiveness analysis of the hydrocarbon-migration tracing: a case study of hydrocarbons from the Jurassic Badaowan Formation of the Baijiahai high in the Junggar Basin, China[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2023, 42(1): 107-121.
    [29] 张奎华. 准噶尔盆地哈山斜坡带侏罗系沉积特征及成藏控制因素研究[D]. 青岛: 中国石油大学(华东), 2014.

    ZHANG Kuihua. Study on depositional features and hydrocarbon accumulation control factors of Jurassic in Hashan slope belt of Junggar Basin[D]. Qingdao: China University of Petroleum (East China), 2014.
    [30] 张子隆, 杨威, 王千军, 等. 走滑断裂不同结构单元输导、运聚特性及其差异控藏模式: 以准噶尔盆地乌尔禾沥青矿地区为例[J]. 断块油气田, 2023, 30(3): 424-433.

    ZHANG Zilong, YANG Wei, WANG Qianjun, et al. Hydrocarbon transport and migration characteristics of different structural units of strike-slip fault system and their differential control on hydrocarbon accumulation patterns: a case study of bituminous vein area in Wuerhe, Junggar Basin[J]. Fault-Block Oil & Gas Field, 2023, 30(3): 424-433.
    [31] 陈刚强, 王学勇, 刘海磊, 等. 准噶尔盆地乌尔禾沥青矿脉走滑断裂体系特征及形成机制[J]. 新疆地质, 2019, 37(4): 520-524.

    CHEN Gangqiang, WANG Xueyong, LIU Hailei, et al. Strike-slip fault system characteristics and forming mechanisms of bituminous vein in Wuerhe, Junggar Basin[J]. Xinjiang Geology, 2019, 37(4): 520-524.
    [32] 梁媛媛. 准噶尔盆地西北缘走滑构造特征及其控藏作用研究[D]. 北京: 中国石油大学(北京), 2020.

    LIANG Yuanyuan. Strike-slip fault system at the northwestern margin of Junggar Basin and its relationship with hydrocarbon accumulation[D]. Beijing: China University of Petroleum (Beijing), 2020.
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  24
  • HTML全文浏览量:  5
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-02-21
  • 修回日期:  2025-04-06
  • 刊出日期:  2025-05-28

目录

    /

    返回文章
    返回