留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

四川盆地二叠系大隆组页岩芳烃热演化规律及成熟度意义

张存杨 张小涛 刘岩 杨佳佳 孙玮琳 沈斌 徐学敏 许智超 田涛

张存杨, 张小涛, 刘岩, 杨佳佳, 孙玮琳, 沈斌, 徐学敏, 许智超, 田涛. 四川盆地二叠系大隆组页岩芳烃热演化规律及成熟度意义[J]. 石油实验地质, 2025, 47(3): 580-592. doi: 10.11781/sysydz2025030580
引用本文: 张存杨, 张小涛, 刘岩, 杨佳佳, 孙玮琳, 沈斌, 徐学敏, 许智超, 田涛. 四川盆地二叠系大隆组页岩芳烃热演化规律及成熟度意义[J]. 石油实验地质, 2025, 47(3): 580-592. doi: 10.11781/sysydz2025030580
ZHANG Cunyang, ZHANG Xiaotao, LIU Yan, YANG Jiajia, SUN Weilin, SHEN Bin, XU Xuemin, XU Zhichao, TIAN Tao. Thermal evolution trend of aromatic hydrocarbons in shales from Permian Dalong Formation in Sichuan Basin and its significance in thermal maturity[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2025, 47(3): 580-592. doi: 10.11781/sysydz2025030580
Citation: ZHANG Cunyang, ZHANG Xiaotao, LIU Yan, YANG Jiajia, SUN Weilin, SHEN Bin, XU Xuemin, XU Zhichao, TIAN Tao. Thermal evolution trend of aromatic hydrocarbons in shales from Permian Dalong Formation in Sichuan Basin and its significance in thermal maturity[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2025, 47(3): 580-592. doi: 10.11781/sysydz2025030580

四川盆地二叠系大隆组页岩芳烃热演化规律及成熟度意义

doi: 10.11781/sysydz2025030580
基金项目: 

中国地质调查局项目 DD20230265

陕西省2023年创新能力支撑计划 2023KJXX-122

中国地质科学院基本科研业务费项目 CSJ-2022-06

详细信息
    作者简介:

    张存杨(1997—),男,博士生,地质学专业,油气地球化学方向。E-mail: appletuqu@163.com

    通讯作者:

    张小涛(1982-), 男, 高级工程师, 从事油气地球化学及油气成藏研究。E-mail: zxt347@foxmail.com

  • 中图分类号: TE121.11

Thermal evolution trend of aromatic hydrocarbons in shales from Permian Dalong Formation in Sichuan Basin and its significance in thermal maturity

  • 摘要: 中国南方古生代海相页岩具有重要的油气勘探意义,然而,由于海相沉积中普遍缺乏高等植物来源的有机质(镜质体),导致其成熟度厘定存在明显的不确定性。对四川盆地广元地区二叠系大隆组页岩进行了生排烃热模拟实验,探索芳烃成熟度参数在高—过成熟阶段的适用性,通过气相色谱—质谱法(GC-MS)对热模拟后固体样品的芳烃萃取物进行分析。结果显示,四川广元上寺地区大隆组页岩热模拟残留油含有萘、菲、屈、苯并(a)蒽、硫芴、联苯、氧芴、芴、萤蒽、芘、蒽、三芳甾烷等丰富的芳烃化合物。大多数芳烃成熟度参数随模拟温度在升高过程中出现了拐点,且参数值在拐点前后显示不同的变化趋势,表明这些芳烃成熟度参数具有特定的适用范围。其中,芳烃成熟度参数(如MNR、DNR、MPI3、DPR、F1、F2、MDR、DBDBT2)可用于评价成熟—高成熟阶段(0.8% < Easy Ro < 2.5%)页岩的成熟度,而PMNr则更加适用于评价高—过成熟阶段(2.5% < Easy Ro < 4.5%)的页岩。研究发现,C-2 DBF-1/MDBF-1和C-2 DBF-2/MDBF-1这两个参数对评价成熟—过成熟阶段(0.8% < Easy Ro < 4.5%)的页岩有很好的效果,尤其在高温演化阶段与温度的相关性更强,这表明它们在评价高—过成熟页岩方面具有潜力。

     

  • 图  1  四川盆地广元地区地质构造概况据参考文献[13]修改。

    Figure  1.  Geological structure map of Guangyuan area, Sichuan Basin

    图  2  四川盆地上寺剖面二叠系大隆组页岩芳烃化合物系列相对含量

    Figure  2.  Relative content of aromatic hydrocarbon compound series in Permian Dalong Formation shales of Shangsi section, Sichuan Basin

    图  3  四川盆地上寺剖面二叠系大隆组页岩不同热模拟温度下Easy Ro热演化阶段

    Figure  3.  Thermal evolution stages of Easy Ro at different thermal simulation temperatures in Permian Dalong Formation shales of Shangsi section, Sichuan Basin

    图  4  四川盆地上寺剖面二叠系大隆组页岩奈系列化合物部分质量色质图

    Figure  4.  Partial mass chromatograms of naphthalene compound series in Permian Dalong Formation shales of Shangsi section, Sichuan Basin

    图  5  四川盆地上寺剖面二叠系大隆组页岩芳烃部分质量色质图

    Figure  5.  Partial mass chromatograms of aromatic hydrocarbons in Permian Dalong Formation shales of Shangsi section, Sichuan Basin

    图  6  四川盆地上寺剖面二叠系大隆组页岩萘系列主要成熟度参数变化趋势

    Figure  6.  Variation trends in maturity parameters of naphthalene compound series in Permian Dalong Formation shales in Shangsi section, Sichuan Basin

    图  7  四川盆地上寺剖面二叠系大隆组页岩菲系列主要成熟度参数变化趋势

    Figure  7.  Variation trends in maturity parameters of phenanthrene compound series in Permian Dalong Formation shales of Shangsi section, Sichuan Basin

    图  8  四川盆地上寺剖面二叠系大隆组页岩二苯并噻吩、三芳甾烷、二苯并呋喃部分成熟度参数变化趋势

    Figure  8.  Variation trends in selected maturity parameters of dibenzothiophene, triaromatic steranes, and dibenzofuran in Permian Dalong Formation shales of Shangsi section, Sichuan Basin

    图  9  有水、无水模拟实验芳烃成熟度参数拐点温度差异无水古近系沙三段、无水青白口系下马岭组数据引自文献[5, 36]。

    Figure  9.  Differences of turning point temperatures for aromatic maturity parameters in aqueous and anhydrous simulation experiments

    表  1  四川盆地广元地区上寺剖面二叠系大隆组页岩热模拟实验相关参数

    Table  1.   Parameters related to thermal simulation experiment of hydrocarbon generation and expulsion in Permian Dalong Formation shales of Shangsi section, Guangyuan area, Sichuan Basin

    样品编号 模拟温度/℃ 静岩压力/MPa 排烃流体压力/MPa
    SSR1-300 300 77.0 36.0
    SSR1-325 325 96.0 44.4
    SSR1-350 350 121.0 55.2
    SSR1-375 375 128.0 58.8
    SSR1-400 400 136.0 62.4
    SSR1-425 425 142.0 64.8
    SSR1-450 450 158.0 72.0
    SSR1-500 500 171.0 78.0
    SSR1-550 550 184.0 84.0
    SSR1-590 590 198.0 90.0
    SSR1-650 650 213.0 96.6
    下载: 导出CSV

    表  2  芳烃成熟度参数表达式

    Table  2.   Expressions of parameters about aromatic hydrocarbon maturity

    参数代号 表达式
    MNR 2-MN/1-MN
    DNR (2, 6-DMN+2, 7-DMN)/1, 5-DMN
    TNR1 2, 3, 6-TMN/(1, 4, 6-TMN+1, 3, 5-TMN)
    TMNr3 1, 3, 7-/(1, 3, 7-+1, 2, 5-)TMN
    TeMNr 1, 3, 6, 7-/(1, 3, 6, 7-+1, 2, 5, 6-+1, 2, 3, 5-)TeMN
    PMNr 1, 2, 4, 6, 7-/(1, 2, 4, 6, 7-+1, 2, 3, 5, 6-)PMN
    MPR1 1-MP/P
    MPI3 (2-+3-)MP/(1-+9-) MP
    DPR (2, 6-+2, 7-)DMP/(1, 6-+2, 10-)DMP
    F1 (2-+3-)MP/(2-+3-+9-+1-)MP
    F2 2-MP/(2-+3-+9-+1-)MP
    MDR 4-MDBT/1-MDBT
    DBDBT2 2, 4-DMDBT/1, 4-DMDBT
    C26/C2820S-TAS C26, 20S-TAS /C28, 20S-TAS
    C27/C2820R-TAS C27, 20R-TAS /C28, 20R-TAS
    下载: 导出CSV

    表  3  四川盆地广元地区上寺剖面二叠系大隆组页岩芳烃成熟度参数数据

    Table  3.   Summary of parameters about aromatic hydrocarbon maturity in Permian Dalong Formation shales of Shangsi section, Guangyuan area, Sichuan Basin

    温度/℃ Easy Ro/% MNR DNR TNR1 TMNr3 TeMNr PMNr P MPR1 MPI3 DPR F1 F2 MDR DBDBT2 A B C D
    300 0.8 0.69 1.22 0.72 0.44 0.55 0.33 14.91 0.53 0.58 0.17 0.37 0.19 2.38 0.53 1.84 0.81 0.07 0.13
    325 1.0 1.09 2.89 0.94 0.44 0.61 0.24 21.81 0.27 1.36 0.42 0.58 0.31 2.76 0.56 3.89 0.72 0.22 0.09
    350 1.3 1.36 2.36 0.94 0.34 0.60 0.18 14.57 0.42 0.76 0.24 0.43 0.23 2.30 0.44 3.25 0.57
    375 1.5 1.26 5.56 1.33 0.62 0.73 0.07 15.10 0.39 1.15 0.42 0.54 0.30 2.56 0.49 0.15 0.04
    400 1.8 2.10 8.68 1.82 0.81 0.83 0.03 21.30 0.27 1.96 0.70 0.66 0.37 3.55 0.67 0.31 0.13
    425 2.1 4.79 32.07 3.75 0.81 0.81 0.01 42.09 0.08 7.16 2.54 0.88 0.47 11.76 3.15 0.19 0.10
    450 2.5 7.12 47.82 0.59 0.76 0.71 0.02 69.32 0.02 10.59 3.18 0.91 0.51 36.65 10.06 9.42 1.08 0.33 0.17
    500 3.1 1.18 4.01 0.88 0.54 0.66 0.12 94.71 0.01 3.06 0.60 0.75 0.42 7.13 0.68 5.47 0.82 0.22 0.11
    550 3.6 0.98 2.51 0.83 0.49 0.62 0.32 67.15 0.04 2.19 0.50 0.69 0.35 2.66 0.73 3.60 0.79 0.69 0.27
    590 4.0 1.24 0.57 1.12 0.38 0.62 0.36 13.00 0.44 0.77 0.22 0.43 0.23 1.16 0.75 0.68 0.61 1.09 0.55
    650 4.5 0.94 1.94 0.60 0.37 0.55 0.45 17.98 0.28 0.90 0.19 0.47 0.26 1.13 1.02 3.43 0.67 1.20 0.58
    原样 0.8 0.49 1.91 0.61 0.52 0.65 0.48 15.24 0.52 0.59 0.16 0.37 0.19 2.16 0.62 0.17 0.48 0.17 0.65
        注:P为菲,A=C26/C2820S-TAS,B=C27/C2820R-TAS,C=C-2 DBF-1/MDBF-1,D=C-2 DBF-2/MDBF-1。
    下载: 导出CSV

    表  4  四川盆地上寺剖面二叠系大隆组页岩部分芳烃成熟度参数适用范围

    Table  4.   Application ranges of selected aromatic maturity parameters in Permian Dalong Formation shales of Shangsi section, Sichuan Basin

    芳烃化合物 参数代号 适用范围 相关性(R2) 拐点温度/℃ 拐点Easy Ro/%
    萘系列 MNR 成熟—高熟阶段后期 0.88,正相关 450 2.5
    DNR 成熟—高熟阶段后期 0.84,正相关 450 2.5
    TNR1 成熟—高熟阶段 0.96,正相关 425 2.1
    TMNr3 高熟—过熟阶段 0.95,负相关 400 2.1
    TeMNr 高熟—过熟阶段 0.97,负相关 400 1.8
    PMNr 成熟—高熟阶段 0.97,负相关 425 2.1
    高熟—过熟阶段 0.97,正相关
    菲系列 MPR1 成熟—过熟阶段初期 0.82,负相关 500 3.1
    MPI3 成熟—高熟阶段后期 0.76,正相关 450 2.5
    过熟阶段 0.82,负相关
    DPR 成熟—高熟阶段后期 0.79,正相关 450 2.5
    过熟阶段 0.87,负相关
    F1 成熟—高熟阶段后期 0.83,正相关 450 2.5
    F2 成熟—高熟阶段后期 0.87,正相关 450 2.5
    三芳甾烷系列 MDR 成熟—高熟阶段后期 0.71,正相关 450 2.5
    二苯并呋喃系列 C-2 DBF-1/ MDBF-1 成熟—过熟阶段 0.82,正相关
    C-2 DBF-2/ MDBF-1 成熟—过熟阶段 0.72,正相关
    下载: 导出CSV
  • [1] 王义凤, 谢林丰, 李剑, 等. 基于激光拉曼和傅里叶变换质谱实验的高—过成熟有机质特征评价[J]. 天然气工业, 2023, 43(11): 83-99. doi: 10.3787/j.issn.1000-0976.2023.11.008

    WANG Yifeng, XIE Linfeng, LI Jian, et al. Characteristics evaluation of high-over mature organic matter based on laser Raman and Fourier transform mass spectrometry experiments[J]. Natural Gas Industry, 2023, 43(11): 83-99. doi: 10.3787/j.issn.1000-0976.2023.11.008
    [2] OWUSU E B, TETTEH G M, ASANTE-OKYERE S, et al. Error correction of vitrinite reflectance in matured black shales: a machine learning approach[J]. Unconventional Resources 2022(2): 41-50.
    [3] 张谦, 金之钧, 朱如凯, 等. 岩石热解方法应用于页岩油气研究需注意的几个问题[J]. 石油与天然气地质, 2023, 44(4): 1020-1032.

    ZHANG Qian, JIN Zhijun, ZHU Rukai, et al. Remarkable issues of Rock-Eval pyrolysis in the assessment of shale oil/gas[J]. Oil & Gas Geology, 2023, 44(4): 1020-1032.
    [4] 葛祝时, 左兆喜, 肖七林, 等. 海相页岩芳烃演化规律及成熟度指示意义: 来自西加拿大盆地二白斑组自然演化与热模拟样品的对比研究[J]. 石油实验地质, 2024, 46(3): 590-600. doi: 10.11781/sysydz202403590

    GE Zhushi, ZUO Zhaoxi, XIAO Qilin, et al. Aromatic hydrocarbon evolution patterns and maturity indication significance of marine shale: a comparative study of naturally evolved and thermally simulated samples from the Second White Specks Formation of Cretaceous Colorado Group, Western Canada Basin[J]. Petroleum Geology & Experiment, 2024, 46(3): 590-600. doi: 10.11781/sysydz202403590
    [5] 刘惠民, 包友书, 黎茂稳, 等. 页岩油富集可动性地球化学评价参数探讨: 以威利斯顿盆地Bakken组和渤海湾盆地济阳坳陷古近系沙河街组页岩为例[J]. 石油与天然气地质, 2024, 45(3): 622-636.

    LIU Huimin, BAO Youshu, LI Maowen, et al. Geochemical parameters for evaluating shale oil enrichment and mobility: a case study of shales in the Bakken Formation, Williston Basin and the Shahejie Formation, Jiyang Depression[J]. Oil & Gas Geology, 2024, 45(3): 622-636.
    [6] 孟康, 邵德勇, 张六六, 等. 鄂西宜昌地区寒武系水井沱组页岩破碎气地球化学特征及其对页岩含气性的指示意义[J]. 地学前缘, 2023, 30(3): 14-27.

    MENG Kang, SHAO Deyong, ZHANG Liuliu, et al. Geochemical characteristics of residual gas released from crushed shale from the Shuijingtuo Formation in Yichang, western Hubei: indication for gas-bearing capacity of shale[J]. Earth Science Frontiers, 2023, 30(3): 14-27.
    [7] RADKE M, WELTE D H, WILLSCH H. Geochemical study on a well in the western Canada Basin: relation of the aromatic distribution pattern to maturity of organic matter[J]. Geochimica et Cosmochimica Acta, 1982, 46(1): 1-10. doi: 10.1016/0016-7037(82)90285-X
    [8] 王霆, 宋浩, 王瑞林, 等. 原油中芳烃化合物的柱层析与银离子薄层色谱分离方法对比研究[J]. 石油实验地质, 2023, 45(3): 549-559. doi: 10.11781/sysydz202303549

    WANG Ting, SONG Hao, WANG Ruilin, et al. Comparison of column chromatography and Ag+-thin layer chromatography for aromatic compounds in crude oil[J]. Petroleum Geology & Experiment, 2023, 45(3): 549-559. doi: 10.11781/sysydz202303549
    [9] 林晓慧, 梁天, 邹艳荣, 等. 干酪根与芳烃化合物固—液有机质相互作用机理研究[J]. 石油实验地质, 2024, 46(3): 614-620. doi: 10.11781/sysydz202403614

    LIN Xiaohui, LIANG Tian, ZOU Yanrong, et al. Solid-liquid organic matter interaction mechanism between kerogen and aromatic compounds[J]. Petroleum Geology & Experiment, 2024, 46(3): 614-620. doi: 10.11781/sysydz202403614
    [10] 彭威龙, 胡国艺, 刘全有, 等. 热模拟实验研究现状及值得关注的几个问题[J]. 天然气地球科学, 2018, 29(9): 1252-1263.

    PENG Weilong, HU Guoyi, LIU Quanyou, et al. Research status on thermal simulation experiment and several issues for concerns[J]. Natural Gas Geoscience, 2018, 29(9): 1252-1263.
    [11] 卢双舫, 赵锡嘏, 王子文, 等. 煤成烃生成和运移的模拟实验: 芳烃产物的特征及其意义[J]. 石油学报, 1996, 17(1): 47-53.

    LU Shuangfang, ZHAO Xigu, WANG Ziwen, et al. The characteristics of aromatic products of hydrocarbon generated from coal[J]. Acta Petrolei Sinica, 1996, 17(1): 47-53.
    [12] 何大祥, 唐友军, 郑彬, 等. 生排烃热模拟中页岩生物标志化合物的变化及其地质意义[J]. 断块油气田, 2020, 27(6): 689-694.

    HE Daxiang, TANG Youjun, ZHENG Bin, et al. Changes of shale biomarkers in thermal simulation of hydrocarbon generation and expulsion and its geological significance[J]. Fault-Block Oil & Gas Field, 2020, 27(6): 689-694.
    [13] 方雪. 四川广元上寺剖面上二叠统不同形态硅质岩的微观成因研究[D]. 青岛: 中国石油大学(华东), 2017.

    FANG Xue. Microscopic petrogenesis of siliceous rocks in different morphology of Upper Permian of Shangsi section in Guangyuan, Sichuan province[D]. Qingdao: China University of Petroleum (East China), 2017.
    [14] 金文正, 王俊鹏, 崔泽宏, 等. 四川盆地广元北部地区的构造分区特征[J]. 断块油气田, 2023, 30(2): 261-268.

    JIN Wenzheng, WANG Junpeng, CUI Zehong, et al. Tectonic zoning characteristics in northern Guangyuan area, Sichuan Basin[J]. Fault-Block Oil & Gas Field, 2023, 30(2): 261-268.
    [15] 张鑫. 四川广元上寺大隆组遗迹化石及其赋存的莓状黄铁矿对古海洋氧化还原条件的指示意义[D]. 焦作: 河南理工大学, 2019.

    ZHANG Xin. Trace fossils and pyrite formboids of the Dalong Formation in Guangyuan Shangsi, Sichuan and their implications for the palaeooceanic redox condition[D]. Jiaozuo: Henan Polytechnic University, 2019.
    [16] RUAN Xiaoyan, LUO Genming, HU Shouzhi, et al. Molecular records of primary producers and sedimentary environmental conditions of Late Permian rocks in northeast Sichuan, China[J]. Journal of China University of Geosciences, 2008, 19(5): 471-480. doi: 10.1016/S1002-0705(08)60052-7
    [17] 郑伦举, 秦建中, 何生, 等. 地层孔隙热压生排烃模拟实验初步研究[J]. 石油实验地质, 2009, 31(3): 296-302. doi: 10.11781/sysydz200903296

    ZHENG Lunju, QIN Jianzhong, HE Sheng, et al. Preliminary study of formation porosity thermocompression simulation experiment of hydrocarbon generation and expulsion[J]. Petroleum Geology & Experiment, 2009, 31(3): 296-302. doi: 10.11781/sysydz200903296
    [18] 郑伦举, 马中良. 中国石化无锡石油地质研究所实验地质技术之地层孔隙热压生排烃模拟实验技术[J]. 石油实验地质, 2010, 32(3): 202.

    ZHENG Lunju, MA Zhongliang. Experimental geological technology of SINOPEC Wuxi Institute of Petroleum Geology, simulation experiment technology of hydrocarbon generation and expulsion in stratum porosity[J]. Petroleum Geology & Experiment, 2010, 32(3): 202.
    [19] 魏琴. 煤温压热模拟实验中排出物及残留物的地球化学表征[D]. 北京: 中国地质大学(北京), 2018.

    WEI Qin. Geochemical characterization of hydrocarbon generation and expulsion from thermal and pressure simulation of coal[D]. Beijing: China University of Geosciences (Beijing), 2018.
    [20] 黄凌松, 董若婧, 刘羽汐, 等. 萘菲系列化合物成熟度参数适用性探讨: 基于热压生排烃模拟实验[J]. 矿物岩石地球化学通报, 2023, 42(1): 122-134.

    HUANG Lingsong, DONG Ruojing, LIU Yuxi, et al. Discussion on the applicability of maturity parameters of naphthalene and phenanthrene series compounds: insights from the thermocompression simulation experiment of hydrocarbon generation and expulsion[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2023, 42(1): 122-134.
    [21] SIMONEIT B R T, GRIMALT J O, WANG T G, et al. Cyclic terpenoids of contemporary resinous plant detritus and of fossil woods, ambers and coals[J]. Organic Geochemistry, 1986, 10(4/6): 877-889.
    [22] 朱扬明. 生油岩五环芳烃的热演化及成熟度参数[J]. 地质地球化学, 1998(1): 75-80.

    ZHU Yangming. Thermal evolution and maturity parameters of pentacyclic aromatic hydrocarbons in source rocks[J]. Geology-Geochemistry, 1998, (1): 75-80.
    [23] 雷锐. 热成因固体沥青的形成过程及主控因素[D]. 广州: 中国科学院大学(中国科学院广州地球化学研究所), 2019.

    LEI Rui. Formation process and main influencing factors of thermogenic solid bitumen[D]. Guangzhou: Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 2019.
    [24] SNOWDON L R. Errors in extrapolation of experimental kinetic parameters to organic geochemical systems: geologic notes[J]. AAPG Bulletin, 1979, 63(7): 1128-1134.
    [25] GOLOVKO A K, KONTOROVICH A E, PEVNEVA G S, et al. Composition and distribution of alkylnaphthalenes in west Siberian oils[J]. Russian Geology and Geophysics, 2014, 55(5/6): 737-744.
    [26] 贾存善, 王延斌, 顾忆, 等. 塔河油田奥陶系原油芳烃地球化学特征[J]. 石油实验地质, 2009, 31(4): 384-388. doi: 10.11781/sysydz200904384

    JIA Cunshan, WANG Yanbin, GU Yi, et al. Geochemical characteristics of aromatic hydrocarbons of crude oils from Ordovician reservoir in the Tahe oilfield[J]. Petroleum Geology & Experiment, 2009, 31(4): 384-388. doi: 10.11781/sysydz200904384
    [27] ALEXANDER R, KAGI R I, ROWLAND S J, et al. The effects of thermal maturity on distributions of dimethylnaphthalenes and trimethylnaphthalenes in some ancient sediments and petroleums[J]. Geochimica et Cosmochimica Acta, 1985, 49(2): 385-395.
    [28] 赵兴齐, 陈践发, 郭望, 等. 开鲁盆地奈曼凹陷奈1区块原油及烃源岩芳烃地球化学特征[J]. 地球化学, 2013, 42(3): 262-273.

    ZHAO Xingqi, CHEN Jianfa, GUO Wang, et al. Geochemical characteristics of aromatic hydrocarbon in crude oil and source rocks from Nai 1 block of Naiman Depression, Kailu Basin[J]. Geochimica, 2013, 42(3): 262-273.
    [29] 蒋文龙. 西加盆地烃源岩自然演化与热模拟地球化学特征对比研究[D]. 北京: 中国地质大学(北京), 2016.

    JIANG Wenlong. Comparative study on the source rock geoche-mical characteristics of natural evolution and thermal simulation in Western Canada Sedimentary Basin[D]. Beijing: China University of Geosciences (Beijing), 2016.
    [30] RADKE M, VRIEND S P, RAMANAMPISOA L R. Alkyldibenzofurans in terrestrial rocks: influence of organic facies and maturation[J]. Geochimica et Cosmochimica Acta, 2000, 64(2): 275-286.
    [31] 李美俊, 师生宝, 王铁冠, 等. 石油和沉积有机质中C3-、C4-烷基取代二苯并噻吩的鉴定[J]. 地球化学, 2014, 43(2): 157-165.

    LI Meijun, SHI Shengbao, WANG Tieguan, et al. The identification of C3- and C4- alkylated dibenzothiophenes in petroleum and sedimentary organic matter[J]. Geochimica, 2014, 43(2): 157-165.
    [32] 罗昌荣, 赵震毅, 刘涵刚, 等. β-胡萝卜素裂解温度对其裂解产物的影响[J]. 无锡轻工大学学报, 2003, 22(3): 67-75.

    LUO Changrong, ZHAO Zhenyi, LIU Hangang, et al. Effect of pyrolytic temperature of β-carotene on the pyrolytic products[J]. Journal of Wuxi University of Light Industry, 2003, 22(3): 67-75.
    [33] CHAKHMAKHCHEV A, SUZUKI M, TAKAYAMA K. Distribution of alkylated dibenzothiophenes in petroleum as a tool for maturity assessments[J]. Organic Geochemistry, 1997, 26(7/8): 483-489.
    [34] 孙丽娜, 张中宁, 吴远东, 等. 生物标志化合物热成熟度参数演化规律及意义: 以Ⅲ型烃源岩HTHP生排烃热模拟液态烃产物为例[J]. 石油与天然气地质, 2015, 36(4): 573-580.

    SUN Lina, ZHANG Zhongning, WU Yuandong, et al. Evolution patterns and their significances of biomarker maturity parameters: a case study on liquid hydrocarbons from type Ⅲ source rock under HTHP hydrous pyrolysis[J]. Oil & Gas Geology, 2015, 36(4): 573-580.
    [35] 马军, 李水福, 胡守志, 等. 芳烃化合物组成及其在油气地球化学中的应用[J]. 地质科技情报, 2010, 29(6): 73-79.

    MA Jun, LI Shuifu, HU Shouzhi, et al. The composition of aromatic hydrocarbon and its application in petroleum geochemistry[J]. Bulletin of Geological Science and Technology, 2010, 29(6): 73-79.
    [36] 刘雯, 宋换新. 二苯并呋喃系列在煤岩热模拟实验中的演化特征研究[J]. 中国石油和化工标准与质量, 2023, 43(4): 110-112.

    LIU Wen, SONG Huanxin. Study on the evolution characteristics of dibenzofuran series in thermal simulation experiments of coal and rock[J]. China Petroleum and Chemical Standard and Quality, 2023, 43(4): 110-112.
    [37] 王晋. 烃源岩中二苯并呋喃类化合物的成因机理实验研究[D]. 北京: 中国石油大学(北京), 2019.

    WANG Jin. Experimental study on the genetic mechanism of dibenzofuran compounds in source rocks[D]. Beijing: China University of Petroleum (Beijing), 2019.
    [38] 包建平, 倪春华, 朱翠山, 等. 高演化地质样品中三芳甾类标志物及其地球化学意义[J]. 沉积学报, 2020, 38(4): 898-911.

    BAO Jianping, NI Chunhua, ZHU Cuishan, et al. Triaromatic steroids and their geochemical significance in highly mature geological samples in the north Guizhou Depression[J]. Acta Sedimentologica Sinica, 2020, 38(4): 898-911.
    [39] 魏彩云, 张斌, 胡国艺, 等. 烃源岩热模拟分子标志物演化特征及分子解析[J]. 地球化学, 2021, 50(6): 602-611.

    WEI Caiyun, ZHANG Bin, HU Guoyi, et al. Evolution characte-ristics and molecular analysis of molecular markers in pyrolysis from source rocks[J]. Geochimica, 2021, 50(6): 602-611.
    [40] GUO Yang, WANG Shuzhong, XU D H, et al. Review of catalytic supercritical water gasification for hydrogen production from biomass[J]. Renewable and Sustainable Energy Reviews, 2010, 14(1): 334-343.
    [41] 王远, 吴嘉, 金霄, 等. 含S自由基促进沉积有机质生烃的本质: H转移机制[J]. 地球化学, 2023, 52(2): 172-179.

    WANG Yuan, WU Jia, JIN Xiao, et al. Sulfur-bearing free radicals promote the hydrocarbon generation of sedimentary organic matter via a hydrogen transfer mechanism[J]. Geochimica, 2023, 52(2): 172-179.
    [42] HELGESON H C, RICHARD L, MCKENZIE W F, et al. A chemical and thermodynamic model of oil generation in hydrocarbon source rocks[J]. Geochimica et Cosmochimica Acta, 2009, 73(3): 594-695.
    [43] SAHU R, SONG B J, IM J S, et al. A review of recent advances in catalytic hydrocracking of heavy residues[J]. Journal of Industrial and Engineering Chemistry, 2015, 27: 12-24.
  • 加载中
图(9) / 表(4)
计量
  • 文章访问数:  25
  • HTML全文浏览量:  6
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-07
  • 修回日期:  2025-04-08
  • 刊出日期:  2025-05-28

目录

    /

    返回文章
    返回