留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

致密储层裂缝气水微观渗流过程研究

侯世伟 吕寻庆 孟素云 张皓 杜修力

侯世伟, 吕寻庆, 孟素云, 张皓, 杜修力. 致密储层裂缝气水微观渗流过程研究[J]. 石油实验地质, 2025, 47(3): 671-679. doi: 10.11781/sysydz2025030671
引用本文: 侯世伟, 吕寻庆, 孟素云, 张皓, 杜修力. 致密储层裂缝气水微观渗流过程研究[J]. 石油实验地质, 2025, 47(3): 671-679. doi: 10.11781/sysydz2025030671
HOU Shiwei, LÜ Xunqing, MENG Suyun, ZHANG Hao, DU Xiuli. Microscopic seepage process of gas and water in fractures of tight reservoirs[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2025, 47(3): 671-679. doi: 10.11781/sysydz2025030671
Citation: HOU Shiwei, LÜ Xunqing, MENG Suyun, ZHANG Hao, DU Xiuli. Microscopic seepage process of gas and water in fractures of tight reservoirs[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2025, 47(3): 671-679. doi: 10.11781/sysydz2025030671

致密储层裂缝气水微观渗流过程研究

doi: 10.11781/sysydz2025030671
基金项目: 

国家自然科学基金项目 52208356

辽宁省教育厅项目 LJ242410153045

辽宁省科技厅项目 2024-MSLH-388

北京工业大学教育部重点实验室项目 2022B05

沈阳市中青年科技创新人才支持计划 RC220171

详细信息
    作者简介:

    侯世伟(1982—),女,博士,副教授,从事岩土工程防灾减灾研究。E-mail: hsw1375@126.com

  • 中图分类号: TE311

Microscopic seepage process of gas and water in fractures of tight reservoirs

  • 摘要: 为研究致密储层裂缝空间内流体的动态渗流机理,基于深度学习分割结果,构建真实储层三维数字岩心裂隙结构。首先评价其连通性,然后模拟单相流渗透率,利用水平集方法耦合N-S方程进行气、水两相流驱替过程研究,并采用有限元方法求解。结果显示:深度学习方法可高效自动分割岩心图像中的裂隙,准确率达85%;连通裂隙对于岩石渗透性有重要作用,流体性质的不同,影响流动压力和速度,进而影响其渗透率。驱替模拟过程中可清晰观察到气、水两相分布特征,随驱替时间变化直至渗流结束,狭窄裂隙通道流体饱和度几乎无变化,是残余气相的主要赋存空间;而连通性相对较好的裂隙成为主渗流通道,其具有宽且笔直的特征,气体采收率趋于稳定。该研究结果对微观条件下致密储层裂缝空间内的气、水两相流动研究具有一定的指导意义。

     

  • 图  1  U-Net网络结构

    Figure  1.  U-Net network structure

    图  2  切片图像物质组成

    Figure  2.  Material composition in slice image

    图  3  U-Net训练结果

    Figure  3.  U-Net training results

    图  4  砂岩RVE重构模型

    Figure  4.  RVE reconstruction model of sandstone

    图  5  裂隙分割提取过程

    Figure  5.  Fracture segmentation extraction process

    图  6  三维重构结果

    Figure  6.  Three-dimensional reconstruction results

    图  7  最大连通裂隙结构及其骨架化模型

    Figure  7.  Largest connected fracture structure and its skeletonized model

    图  8  COMSOL生成计算模型

    Figure  8.  Computational models generated by COMSOL

    图  9  模型在不同流体下的速度和压力云图

    Figure  9.  Contour maps of model velocity and pressure with different fluids

    图  10  不同时刻模型速度与压力分布

    Figure  10.  Model velocity and pressure distributions at different moments

    图  11  不同时刻流体状态分布

    Figure  11.  Fluid state distributions at different moments

    图  12  流体饱和度变化曲线

    Figure  12.  Fluid saturation variation curves

    表  1  渗流模拟参数设定

    Table  1.   Parameter settings for seepage simulation

    流体材料 密度/(g/cm3) 动力黏度/(Pa·s) 压差/Pa
    1 0.001 1 000
    甲烷 6.5×10-4 1.1×10-5 1 000
    下载: 导出CSV
  • [1] 戴金星, 董大忠, 倪云燕, 等. 致密砂岩气藏与页岩气藏展布模式[J]. 石油勘探与开发, 2024, 51(4): 667-678.

    DAI Jinxing, DONG Dazhong, NI Yunyan, et al. Distribution patterns of tight sandstone gas and shale gas[J]. Petroleum Exploration and Development, 2024, 51(4): 667-678.
    [2] 邹才能, 杨智, 董大忠, 等. 非常规源岩层系油气形成分布与前景展望[J]. 地球科学(中国地质大学学报), 2022, 47(5): 1517-1533.

    ZOU Caineng, YANG Zhi, DONG Dazhong, et al. Formation, distribution and prospect of unconventional hydrocarbons in source rock strata in China[J]. Earth Science (Journal of China University of Geosciences), 2022, 47(5): 1517-1533.
    [3] 赵永强, 宋振响, 王斌, 等. 准噶尔盆地油气资源潜力与中国石化常规—非常规油气一体化勘探策略[J]. 石油实验地质, 2023, 45(5): 872-881. doi: 10.11781/sysydz202305872

    ZHAO Yongqiang, SONG Zhenxiang, WANG Bin, et al. Resource potential in Junggar Basin and SINOPEC's integrated exploration strategy for conventional and unconventional petroleum[J]. Petroleum Geology & Experiment, 2023, 45(5): 872-881. doi: 10.11781/sysydz202305872
    [4] 项鑫, 黄传炎, 曹兰柱, 等. 二连盆地洼槽区非常规油气富集模式及勘探潜力[J]. 地学前缘, 2023, 30(6): 462-472.

    XIANG Xin, HUANG Chuanyan, CAO Lanzhu, et al. Enrichment model and exploration potential for unconventional oil and gas in troughs, Erlian Basin[J]. Earth Science Frontiers, 2023, 30(6): 462-472.
    [5] 李映涛, 汝智星, 邓尚, 等. 塔里木盆地顺北特深碳酸盐岩储层天然裂缝实验评价及油气意义[J]. 石油实验地质, 2023, 45(3): 422-433. doi: 10.11781/sysydz202303422

    LI Yingtao, RU Zhixing, DENG Shang, et al. Experimental evaluation and hydrocarbon significance of natural fractures in Shunbei ultra-deep carbonate reservoir, Tarim Basin[J]. Petroleum Geology & Experiment, 2023, 45(3): 422-433. doi: 10.11781/sysydz202303422
    [6] 黄琴, 桑丹, 张俊, 等. 基于数字岩心的海上砂砾岩油藏提高采收率研究[J]. 复杂油气藏, 2024, 17(2): 208-216.

    HUANG Qin, SANG Dan, ZHANG Jun, et al. Study on enhanced oil recovery of offshore glutenite reservoir based on digital cores[J]. Complex Hydrocarbon Reservoirs, 2024, 17(2): 208-216.
    [7] 王敏. 基于砂砾岩多组分三维数字岩心的电阻率数值模拟与影响规律分析[J]. 油气地质与采收率, 2024, 31(6): 33-44.

    WANG Min. Resistivity numerical simulation and its influence law analysis based on multi-component 3D digital core of glutenite[J]. Petroleum Geology and Recovery Efficiency, 2024, 31(6): 33-44.
    [8] 李承峰, 刘乐乐, 孙建业, 等. 基于数字岩心的含水合物石英砂微观渗流有限元分析[J]. 海洋地质前沿, 2020, 36(9): 68-72.

    LI Chengfeng, LIU Lele, SUN Jianye, et al. Finite element analysis of micro-seepage in hydrate-bearing quartz sands based on digital cores[J]. Marine Geology Frontiers, 2020, 36(9): 68-72.
    [9] 庞惠文, 金衍, 高彦芳, 等. 风城油田齐古组油砂细观结构和渗流特征[J]. 新疆石油地质, 2021, 42(4): 487-494.

    PANG Huiwen, JIN Yan, GAO Yanfang, et al. Study on meso-structures and flow characteristics of oil sands in Qigu Formation of Fengcheng Oilfield[J]. Xinjiang Petroleum Geology, 2021, 42(4): 487-494.
    [10] 邓美洲, 牛娜, 尹霜, 等. 各向异性致密砂岩气藏分段压裂水平井气水两相产能预测模型[J]. 油气地质与采收率, 2024, 31(3): 99-111.

    DENG Meizhou, NIU Na, YIN Shuang, et al. Gas-water two-phase productivity prediction model of multistage fractured horizontal wells in anisotropic tight sandstone gas reservoirs[J]. Petroleum Geology and Recovery Efficiency, 2024, 31(3): 99-111.
    [11] 李洋, 王胜, 王硕亮. 考虑混合润湿孔隙的页岩油藏表观渗透率模型[J]. 油气地质与采收率, 2024, 31(2): 108-118.

    LI Yang, WANG Sheng, WANG Shuoliang. An apparent oil permeability model for shale oil reservoir with mixed-wet nanopores[J]. Petroleum Geology and Recovery Efficiency, 2024, 31(2): 108-118.
    [12] 杜修力, 马超, 路德春. 岩土类材料的静水压力效应[J]. 岩石力学与工程学报, 2015, 34(3): 572-582.

    DU Xiuli, MA Chao, LU Dechun. Effect of hydrostatic pressure on geomaterials[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(3): 572-582.
    [13] FU Shuaishi, ZHANG Lianjin, LI Yingwen, et al. Influence of stress sensitivity on water-gas flow in carbonate rocks[J]. Geofluids, 2020, 2020(1): 6642008.
    [14] 隋微波, 权子涵, 侯亚南, 等. 利用数字岩心抽象孔隙模型计算孔隙体积压缩系数[J]. 石油勘探与开发, 2020, 47(3): 564-572.

    SUI Weibo, QUAN Zihan, HOU Yanan, et al. Estimating pore volume compressibility by spheroidal pore modeling of digital rocks[J]. Petroleum Exploration and Development, 2020, 47(3): 564-572.
    [15] 邓航, 田巍. 储层条件下的应力敏感性研究[J]. 断块油气田, 2023, 30(6): 933-939.

    DENG Hang, TIAN Wei. Study on stress sensitivity under reservoir conditions[J]. Fault-Block Oil & Gas Field, 2023, 30(6): 933-939.
    [16] 张杜杰. 超深致密砂岩气藏应力敏感性实验研究[J]. 复杂油气藏, 2024, 17(2): 217-224.

    ZHANG Dujie. Experimental study on stress sensitivity of ultra-deep tight sandstone gas reservoirs[J]. Complex Hydrocarbon Reservoirs, 2024, 17(2): 217-224.
    [17] 王长权, 田中敬, 王晨晨, 等. 基于应力敏感的致密油藏孔隙结构及油水两相渗流特征[J]. 特种油气藏, 2023, 30(4): 131-138.

    WANG Changquan, TIAN Zhongjing, WANG Chenchen, et al. Pore Structure and oil-water two-phase seepage characteristics of tight oil reservoirs based on stress sensitivity[J]. Special Oil & Gas Reservoirs, 2023, 30(4): 131-138.
    [18] 刘向君, 熊健, 梁利喜, 等. 基于微CT技术的致密砂岩孔隙结构特征及其对流体流动的影响[J]. 地球物理学进展, 2017, 32(3): 1019-1028.

    LIU Xiangjun, XIONG Jian, LIANG Lixi, et al. Study on the characteristics of pore structure of tight sand based on micro-CT scanning and its influence on fluid flow[J]. Progress in Geophysics, 2017, 32(3): 1019-1028.
    [19] 杨永飞, 王金雷, 王建忠, 等. 基于VOF方法的超临界二氧化碳—水两相流动孔隙尺度数值模拟[J]. 天然气工业, 2023, 43(3): 69-77.

    YANG Yongfei, WANG Jinlei, WANG Jianzhong, et al. Pore-scale numerical simulation of supercritical CO2-brine two-phase flow based on VOF method[J]. Natural Gas Industry, 2023, 43(3): 69-77.
    [20] 郭晶晶, 王帝贺, 王攀荣, 等. 基于数字岩心的低渗储层孔隙结构及水驱剩余油分布特征[J]. 特种油气藏, 2023, 30(2): 101-108.

    GUO Jingjing, WANG Dihe, WANG Panrong, et al. Pore structure of low-permeability reservoir and distribution characteristics of remaining oil after water flooding based on digital core[J]. Special Oil & Gas Reservoirs, 2023, 30(2): 101-108.
    [21] 谭锋奇, 马春苗, 黎宪坤, 等. 储层流体可动性在油田开发中的应用及展望[J]. 西南石油大学学报(自然科学版), 2024, 46(1): 1-20.

    TAN Fengqi, MA Chunmiao, LI Xiankun, et al. Application and prospect of fluid mobility in oilfield development[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2024, 46(1): 1-20.
    [22] 张庆宇, 鞠斌山. 水驱油藏优势渗流通道识别及其效果分析[J]. 现代地质, 2024, 38(6): 1523-1531.

    ZHANG Qingyu, JU Binshan. Identification of dominant seepage channels in water-flooded reservoirs and analysis of their effects[J]. Geoscience, 2024, 38(6): 1523-1531.
    [23] RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation[C]//18th International Conference on Medical Image Computing and Computer-assisted Intervention-MICCAI 2015. Munich, Germany: Springer International Publishing, 2015: 234-241.
    [24] 赵久玉, 蔡建超. 基于Unet++网络的数字岩心图像分割泛化能力[J]. 中国石油大学学报(自然科学版), 2024, 48(2): 118-125.

    ZHAO Jiuyu, CAI Jianchao. Generalization ability analysis of digital rock image segmentation based on Unet++ network[J]. Journal of China University of Petroleum (Edition of Natural Science), 2024, 48(2): 118-125.
    [25] 汪南洋, 沈疆海. 基于MSHAM-UNet的岩心孔洞图像分割方法[J]. 科学技术与工程, 2024, 24(24): 10362-10369.

    WANG Nanyang, SHEN Jianghai. Image segmentation method of rock core hole based on MSHAM-UNet[J]. Science Technology and Engineering, 2024, 24(24): 10362-10369.
    [26] 王鸣川, 王燃, 岳慧, 等. 页岩油微观渗流机理研究进展[J]. 石油实验地质, 2024, 46(1): 98-110. doi: 10.11781/sysydz202401098

    WANG Mingchuan, WANG Ran, YUE Hui, et al. Research progress of microscopic percolation mechanism of shale oil[J]. Petroleum Geology & Experiment, 2024, 46(1): 98-110. doi: 10.11781/sysydz202401098
    [27] ZHANG Lei, KANG Qinjun, YAO Jun, et al. Pore scale simulation of liquid and gas two-phase flow based on digital core technology[J]. Science China Technological Sciences, 2015, 58(8): 1375-1384.
    [28] SONG Rui, WANG Yao, LIU Jianjun, et al. Comparative analysis on pore-scale permeability prediction on micro-CT images of rock using numerical and empirical approaches[J]. Energy Science & Engineering, 2019, 7(6): 2842-2854.
    [29] 赵玉龙, 周厚杰, 李洪玺, 等. 基于水平集方法的低渗砂岩数字岩心气水两相渗流模拟[J]. 计算物理, 2021, 38(5): 585-594.

    ZHAO Yulong, ZHOU Houjie, LI Hongxi, et al. Gas-water two-phase flow simulation of low-permeability sandstone digital rock: level-set method[J]. Chinese Journal of Computational Physics, 2021, 38(5): 585-594.
    [30] OSHER S, SETHIAN J A. Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations[J]. Journal of Computational Physics, 1988, 79(1): 12-49.
    [31] TOKAN-LAWAL A, PRODANOVIC M, EICHHUBL P. Investigating flow properties of partially cemented fractures in Travis Peak Formation using image-based pore-scale modeling[J]. Journal of Geophysical Research: Solid Earth, 2015, 120(8): 5453-5466.
    [32] 蔡沛辰, 阙云. 基于水平集方法的原状土三维水气两相渗流特性数值研究[J]. 长江科学院院报, 2022, 39(9): 90-95.

    CAI Peichen, QUE Yun. Numerical study on 3D water-air two-phase seepage characteristics of undisturbed soil based on level set method[J]. Journal of Yangtze River Scientific Research Institute, 2022, 39(9): 90-95.
    [33] 方辉煌, 桑树勋, 刘世奇, 等. 基于微米焦点CT技术的煤岩数字岩石物理分析方法: 以沁水盆地伯方3号煤为例[J]. 煤田地质与勘探, 2018, 46(5): 167-174.

    FANG Huihuang, SANG Shuxun, LIU Shiqi, et al. Study of digital petrophysical analysis method based on micro-focus X-ray tomography: a case study from No. 3 coal seam of Bofang mining area in southern Qinshui Basin[J]. Coal Geology & Exploration, 2018, 46(5): 167-174.
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  25
  • HTML全文浏览量:  6
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-09-24
  • 修回日期:  2025-04-10
  • 刊出日期:  2025-05-28

目录

    /

    返回文章
    返回