Influencing factors and prevention optimization of shallow shale gas inter-well frac-hits
-
摘要: 昭通浅层页岩气田是国内第一个中浅层页岩气开发示范区,主体埋深在1 000~2 200 m,因产建不同步、区域断裂系统发育、水平应力差小等原因,新井压裂过程中频繁出现井间干扰现象,呈现压窜范围广、产量恢复难度大等一系列难题;“压裂井—生产井”之间的压窜主要表现为“响应快、复产难、多频次”的特点,对被压窜井的统计结果来看,投产时间越长的井压窜治理后的恢复程度越低,因此有必要开展井间压窜影响因素分析与防治措施。对昭通浅层页岩气田全部压窜的32井次的工程、地质条件动静态参数进行了梳理,通过训练随机森林模型,评估了地质工程参数对压窜现象的影响程度,明确井间压窜主控因素排序为井间距、施工强度和母井投产时间。结合数值模拟方法,提出了子母井最优井间距为450 m;正交设计模拟结果显示,母井投产后被压窜后总是受到负面干扰,随着投产时间越长,母井受到的干扰比例从6.3%增加到35%;而当母井投产1年内、子母井的井距大于400 m后,子井受到正向干扰,随着井距增大干扰程度变化范围为2.5%~8.6%。提出的井距优化措施支撑了昭通浅层页岩气开发方案的井位部署和压裂参数优化,证明了该研究成果的可能性。Abstract: The Zhaotong shallow shale gas field is the first pilot demonstration area in China for medium to shallow shale gas development, with main burial depths ranging from 1 000 to 2 200 m. Due to asynchronous production and infrastructure construction and a small horizontal stress difference in the regional fault system, inter-well interference frequently occurs during the fracturing of new wells. This presents a series of problems such as extensive frac-hits and difficulty in restoring production. The frac-hits between fractured wells and producing wells are mainly characterized by fast response, difficult production recovery, and multiple occurrences. Statistical analysis of affected wells showed that the longer the production time, the lower the recovery rates after the implementation of frac-hits control measures. To address these challenges, it is imperative to analyze the influencing factors of inter-well frac-hits and propose preventive measures. The study comprehensively reviewed the dynamic and static parameters under the engineering and geological conditions from 32 wells experiencing frac-hits in the Zhaotong shallow shale gas field. A random forest model was trained to evaluate the influence of geological and engineering parameters on frac-fits. The main controlling factors were identified as well spacing, construction intensity, and the production time of the parent well. Numerical simulations suggested an optimal parent-child well spacing of 450 m. Orthogonal design simulations revealed that parent wells consistently suffered negative interference after experiencing frac-hits, with the interference ratio increasing from 6.3% to 35% as the production time extended. When the parent-child well spacing exceeded 400 m within the first year of parent well production, child wells experienced positive interference, and the interference degree ranging from 2.5% to 8.6% as well spacing increased. The proposed well spacing optimization strategy supports well location deployment and fracturing parameter optimization in the Zhaotong shallow shale gas field, validating the research results.
-
表 1 压窜井地质、工程模拟参数取值范围
Table 1. Value ranges for geological and engineering simulation parameters of wells experiencing frac-hits
变量名 参数取值 最小水平主应力/MPa 28 最大水平主应力/MPa 36 孔隙压力/MPa 24 井间距/m 300,350,400,450,500 母井投产时间/a 1,2,3,4,5 单簇排量/(m3/min) 1.5,2,2.5,3,3.5 表 2 昭通页岩气田H32平台压裂设计参数
Table 2. Fracturing design parameters of platform H32 in Zhaotong shale gas field
井号 段长/m 簇间距/m 单簇排量/(m3/min) 用液强度/(m3/m) 加砂强度/(t/m) H32-1 70 10 14 25 2.5 H32-2 70 10 16 30 3.5 H32-3 70 10 16 30 3.5 -
[1] 徐政语, 梁兴, 鲁慧丽, 等. 昭通示范区五峰组—龙马溪组页岩气成藏类型与有利区分布[J]. 海相油气地质, 2021, 26(4): 289-298. doi: 10.3969/j.issn.1672-9854.2021.04.001XU Zhengyu, LIANG Xing, LU Huili, et al. Shale gas accumulation types and favorable area distribution of Wufeng Formation-Longmaxi Formation in Zhaotong demonstration area[J]. Marine Origin Petroleum Geology, 2021, 26(4): 289-298. doi: 10.3969/j.issn.1672-9854.2021.04.001 [2] 云露, 高玉巧, 高全芳. 渝东南地区常压页岩气勘探开发进展及下步攻关方向[J]. 石油实验地质, 2023, 45(6): 1078-1088. doi: 10.11781/sysydz2023061078YUN Lu, GAO Yuqiao, GAO Quanfang. Progress and research direction of normal-pressure shale gas exploration and development in southeastern Chongqing[J]. Petroleum Geology & Experiment, 2023, 45(6): 1078-1088. doi: 10.11781/sysydz2023061078 [3] 常德双, 韩冰, 朱斗星, 等. 燕山运动对页岩气保存条件的控制作用: 以滇黔北地区太阳—海坝区块龙马溪组页岩气为例[J]. 天然气工业, 2021, 41(S1): 45-50.CHANG Deshuang, HAN Bing, ZHU Douxing, et al. Control of Yanshanian movement on shale gas preservation conditions: a case study on the Longmaxi Formation shale gas in Taiyang-Haiba block of northern Yunnan and Guizhou[J]. Natural Gas Industry, 2021, 41(S1): 45-50. [4] 梁兴, 管彬, 李军龙, 等. 山地浅层页岩气地质工程一体化高效压裂试气技术: 以昭通国家级页岩气示范区太阳气田为例[J]. 天然气工业, 2021, 41(S1): 124-132.LIANG Xing, GUAN Bin, LI Junlong, et al. Key technologies of shallow shale gas reservoir in mountainous area: taking Taiyang gas field in Zhaotong national shale gas demonstration area as an example[J]. Natural Gas Industry, 2021, 41(S1): 124-132. [5] 刘明, 杨瑞青, 杨风丽, 等. 渝东南南川地区五峰组—龙马溪组页岩气层地应力数值模拟及有利区预测[J]. 石油实验地质, 2023, 45(6): 1178-1188. doi: 10.11781/sysydz2023061178LIU Ming, YANG Ruiqing, YANG Fengli, et al. Numerical modeling of in-situ stress and prediction of favorable area of shale gas layer in Wufeng to Longmaxi formations, Nanchuan region, southeastern Chongqing[J]. Petroleum Geology & Experiment, 2023, 45(6): 1178-1188. doi: 10.11781/sysydz2023061178 [6] HE Y, WANG J, HUANG X, et al. Investigation of low water recovery based on gas-water two-phase low-velocity non-Darcy flow model for hydraulically fractured horizontal wells in shale[J]. Petroleum, 2023, 9(3): 364-372. doi: 10.1016/j.petlm.2022.03.005 [7] SHEN J, HE H, LI Y, et al. An investigation of data analysis method for hydraulic fracturing based on the water hammer effect[J]. Unconventional Resources, 2023, 3: 284-290. doi: 10.1016/j.uncres.2023.05.003 [8] 魏海峰. 非均质性页岩水力压裂裂缝扩展形态研究进展[J]. 油气地质与采收率, 2023, 30(4): 156-166.WEI Haifeng. Research progress on fracture propagation patterns of hydraulic fracturing in heterogeneous shale[J]. Petroleum Geology and Recovery Efficiency, 2023, 30(4): 156-166. [9] 孟胡, 申颖浩, 朱万雨, 等. 四川盆地昭通页岩气水平井水力压裂套管外载分析[J]. 特种油气藏, 2023, 30(5): 166-174. doi: 10.3969/j.issn.1006-6535.2023.05.022MENG Hu, SHEN Yinghao, ZHA Wanyu, et al. Extemal load analysis of hydraulic fracturing casing in Zhaotong shale gas horizontal well of Sichuan Basin[J]. Special Oil & Gas Reservoirs, 2023, 30(5): 166-174. doi: 10.3969/j.issn.1006-6535.2023.05.022 [10] KANG Y, LI P, CAO W, et al. Investigation of pore structure alteration and permeability enhancement of shale matrix by supercritical water treatment after hydraulic fracturing[J]. Petroleum, 2024, 10(2): 265-274. doi: 10.1016/j.petlm.2022.05.002 [11] TANG Hewei, YAN Bicheng, CHAI Zhi, et al. Analyzing the well-interference phenomenon in the Eagle Ford shale/austin chalk production system with a comprehensive compositional reservoir model[J]. SPE Reservoir Evaluation & Engineering, 2019, 22(3): 827-841. [12] PANG Wei, EHLIG-ECONOMIDES C A, DU Juan, et al. Effect of well interference on shale gas well SRV interpretation[C]//SPE Asia Pacific Unconventional Resources Conference and Exhibition. Brisbane, Australia: SPE, 2015. [13] 张庆, 何封, 何佑伟. 基于机器学习的页岩气井井间干扰评价及预测[J]. 油气藏评价与开发, 2022, 12(3): 487-495.ZHANG Qing, HE Feng, HE Youwei. Well interference evaluation and prediction of shale gas wells based on machine learning[J]. Reservoir Evaluation and Development, 2022, 12(3): 487-495. [14] 周小金, 杨洪志, 范宇, 等. 川南页岩气水平井井间干扰影响因素分析[J]. 中国石油勘探, 2021, 26(2): 103-112. doi: 10.3969/j.issn.1672-7703.2021.02.011ZHOU Xiaojin, YANG Hongzhi, FAN Yu, et al. Analysis of factors affecting frac hits in horizontal shale gas wells in the southern Sichuan Basin[J]. China Petroleum Exploration, 2021, 26(2): 103-112. doi: 10.3969/j.issn.1672-7703.2021.02.011 [15] KUMAR A, SETH P, SHRIVASTAVA K, et al. Well interference diagnosis through integrated analysis of tracer and pressure interference tests[C]//SPE/AAPG/SEG Unconventional Resources Technology Conference. Houston, Texas, USA: SPE, 2018. [16] 樊怀才, 张鉴, 岳圣杰, 等. 页岩气平台式井组井间干扰影响因素分析及井距优化[J]. 天然气地球科学, 2022, 33(4): 512-519.FAN Huaicai, ZHANG Jian, YUE Shengjie, et al. Analysis of influencing factors of interwell interference in shale gas well groups and well spacing optimization[J]. Natural Gas Geoscience, 2022, 33(4): 512-519. [17] 卢比, 胡春锋, 马军. 南川页岩气田压裂水平井井间干扰影响因素及对策研究[J]. 油气藏评价与开发, 2023, 13(3): 330-339.LU Bi, HU Chunfeng, MA Jun. Influencing factors and countermeasures of inter-well interference of fracturing horizontal wells in Nanchuan shale gas field[J]. Reservoir Evaluation and Development, 2023, 13(3): 330-339. [18] 王文东, 喻文锋, 高攀, 等. 页岩气井间压裂窜扰机理及影响规律[J]. 天然气工业, 2024, 44(1): 128-138. doi: 10.3787/j.issn.1000-0976.2024.01.012WANG Wendong, YU Wenfeng, GAO Pan, et al. Mechanisms and impact patterns of frac hits between shale gas wells[J]. Natural Gas Industry, 2024, 44(1): 128-138. doi: 10.3787/j.issn.1000-0976.2024.01.012 [19] 朱海燕, 唐煊赫, 肖佳林, 等. 四川盆地页岩气立体井网压裂井间干扰与控制研究进展[C]//第33届全国天然气学术年会(2023)论文集. 南宁: 中国石油学会天然气专业委员会, 2023.ZHU Haiyan, TANG Xuanhe, XIAO Jialin, et al. Research progress of interwell interference and control in vertical well pattern fracturing of shale gas in Sichuan Basin[C]. Proceedings of the 33rd National Natural Gas Academic Annual Conference (2023). Nanning: Natural Gas Professional Committee of the Chinese Petroleum Society, 2023. [20] 王林生, 梁利喜, 覃建华, 等. 玛湖砾岩油藏水平井压裂井间窜扰特征与机制分析[J]. 油气地质与采收率, 2023, 30(6): 129-137.WANG Linsheng, LIANG Lixi, QIN Jianhua, et al. Characteristics and mechanism of inter-well interference in horizontal well fracturing in Mahu conglomerate reservoirs[J]. Petroleum Geology and Recovery Efficiency, 2023, 30(6): 129-137. [21] HE Youwei, GUO Jianchun, TANG Yong, et al. Interwell fracturing interference evaluation of multi-well pads in shale gas reservoirs: a case study in WY Basin[C]//SPE Annual Technical Conference and Exhibition. Virtual: SPE, 2020. [22] 李跃纲, 宋毅, 黎俊峰, 等. 北美页岩气水平井压裂井间干扰研究现状与启示[J]. 天然气工业, 2023, 43(5): 34-46. doi: 10.3787/j.issn.1000-0976.2023.05.004LI Yuegang, SONG Yi, LI Junfeng, et al. Research status and implications of well interference in shale gas horizontal well fracturing in North America[J]. Natural Gas Industry, 2023, 43(5): 34-46. doi: 10.3787/j.issn.1000-0976.2023.05.004 [23] 郭旭洋, 金衍, 黄雷, 等. 页岩油气藏水平井井间干扰研究现状和讨论[J]. 石油钻采工艺, 2021, 43(3): 348-367.GUO Xuyang, JIN Yan, HUANG Lei, et al. Research status and discussion of horizontal well interference in shale oil and gas reservoirs[J]. Oil Drilling & Production Technology, 2021, 43(3): 348-367. [24] WU Kan, OLSON J, BALHOFF M T, et al. Numerical analysis for promoting uniform development of simultaneous multiple-fracture propagation in horizontal wells[J]. SPE Production & Operations, 2017, 32(1): 41-50. [25] RAINBOLT M F, ESCO J. Frac hit induced production losses: evaluating root causes, damage location, possible prevention methods and success of remediation treatments, Part Ⅱ[C]//SPE Hydraulic Fracturing Technology Conference and Exhibition. The Woodlands, Texas, USA: SPE, 2018. [26] GUPTA I, RAI C, DEVEGOWDA D, et al. Fracture hits in unconventional reservoirs: a critical review[J]. SPE Journal, 2021, 26(1): 412-434. [27] 何佑伟, 贺质越, 汤勇, 等. 基于机器学习的页岩气井产量评价与预测[J]. 石油钻采工艺, 2021, 43(4): 518-524.HE Youwei, HE Zhiyue, TANG Yong, et al. Shale gas well production evaluation and prediction based on machine learning[J]. Oil Drilling & Production Technology, 2021, 43(4): 518-524. [28] 李文倚, 侯明雨, 全航, 等. 一种基于知识图谱和随机森林算法的致密气井产能预测方法[J]. 特种油气藏, 2024, 31(5): 77-84.LI Wenyi, HOU Mingyu, QUAN Hang, et al. A productivity prediction method for tight gas wells based on knowledge graph and random forest algorithm[J]. Special Oil & Gas Reservoirs, 2024, 31(5): 77-84. [29] 何浩男, 刘誉, 宋君, 等. 老井重复压裂后产能预测新模型及其应用[J]. 钻采工艺, 2023, 46(1): 174-178HE Haonan, LIU Yu, SONG Jun, et al. A new productivity prediction model for old wells after refracturing and its application[J]. Drilling and Production Technology, 2023, 46(1): 174-178. [30] YADAV H, MOTEALLEH S. Improving quantitative analysis of frac-hits and refracs in unconventional plays using RTA[C]//SPE Hydraulic Fracturing Technology Conference and Exhibition. The Woodlands, Texas, USA: SPE, 2017. [31] BARTON N, BANDIS S, BAKHTAR K. Strength, deformation and conductivity coupling of rock joints[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1985, 22(3): 121-140. [32] 舒红林, 刘臣, 李志强, 等. 昭通浅层页岩气压裂复杂裂缝扩展数值模拟研究[J]. 石油钻探技术, 2023, 51(6): 77-84.SHU Honglin, LIU Chen, LI Zhiqiang, et al. Numerical simulation of complex fracture propagation in shallow shale gas fracturing in Zhaotong[J]. Petroleum Drilling Techniques, 2023, 51(6): 77-84. [33] 何佑伟, 谢义翔, 乔宇, 等. 非常规油气藏不规则复杂裂缝表征方法[J]. 石油实验地质, 2024, 46(4): 748-759. doi: 10.11781/sysydz202404748HE Youwei, XIE Yixiang, QIAO Yu, et al. Characterization of irregular complex fractures in unconventional oil and gas reservoirs[J]. Petroleum Geology & Experiment, 2024, 46(4): 748-759. doi: 10.11781/sysydz202404748 -