留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

渝东南复杂构造区常压页岩气富集机理与评价指标

房大志

房大志. 渝东南复杂构造区常压页岩气富集机理与评价指标[J]. 石油实验地质, 2025, 47(4): 720-730. doi: 10.11781/sysydz2025040720
引用本文: 房大志. 渝东南复杂构造区常压页岩气富集机理与评价指标[J]. 石油实验地质, 2025, 47(4): 720-730. doi: 10.11781/sysydz2025040720
FANG Dazhi. Enrichment mechanism and evaluation indicators of normal pressure shale gas in the complex structural area of southeastern Chongqing[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2025, 47(4): 720-730. doi: 10.11781/sysydz2025040720
Citation: FANG Dazhi. Enrichment mechanism and evaluation indicators of normal pressure shale gas in the complex structural area of southeastern Chongqing[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2025, 47(4): 720-730. doi: 10.11781/sysydz2025040720

渝东南复杂构造区常压页岩气富集机理与评价指标

doi: 10.11781/sysydz2025040720
基金项目: 

中石化科技部项目“渝东南地区浅层页岩气勘探开发关键技术” P24115

详细信息
    作者简介:

    房大志(1984—),男,硕士,副研究员,从事非常规油气勘探开发研究。E-mail: fangdz.hdsj@sinopec.com

  • 中图分类号: TE132.2

Enrichment mechanism and evaluation indicators of normal pressure shale gas in the complex structural area of southeastern Chongqing

  • 摘要: 渝东南复杂构造区常压页岩气广泛分布,资源勘探前景良好,常压页岩气逐渐成为页岩气勘探开发热点领域。该区受多期构造演化作用影响,页岩气保存条件差异较大,页岩储层及气体地球化学特征在不同压力体系下呈现出差异性分布。研究区页岩气烷烃同位素整体上呈现出自盆地边缘向盆外逐渐变重、干燥系数逐渐降低的趋势,指示不同构造区气体保存与逸散情况存在差异。较轻的烷烃气碳同位素和较高的干燥系数指示了更好的页岩气保存条件。综合对比渝东南复杂构造区下志留统龙马溪组页岩气评价的各项指标,发现孔隙度、面孔率、变形指数、含气性等地质静态指标在向斜构造中表现出强非均质性,单井页岩样品间差异显著;烷烃碳同位素、干燥系数、产气量等地质动态指标在不同构造区差异明显。综合页岩储层及气体地球化学特征参数进行评价,平桥、东胜背斜构造区气体保存条件良好,是页岩有利储层及页岩气富集甜点区。

     

  • 图  1  渝东南复杂构造区分布(a)及桑柘坪向斜彭页A井岩性柱状图(b)

    Figure  1.  Distribution of complex structural area in southeastern Chongqing (a), and lithological columns of well Pengye-A in Sangzheping syncline (b)

    图  2  渝东南复杂构造区下志留统龙马溪组页岩不同范围孔隙度分布

    Figure  2.  Shale porosity distribution across different ranges in Lower Silurian Longmaxi Formation in complex structural area of southeastern Chongqing

    图  3  渝东南复杂构造区下志留统龙马溪组页岩不同范围渗透率分布

    Figure  3.  Shale permeability distribution across different ranges in Lower Silurian Longmaxi Formation in complex structural area of southeastern Chongqing

    图  4  渝东南复杂构造区优选井氮气吸附曲线

    a.东胜背斜;b.金佛斜坡;c.桑柘坪向斜。

    Figure  4.  Nitrogen adsorption curves of selected wells in complex structural area of southeastern Chongqing

    图  5  渝东南复杂构造区优选井不同小层有机质孔扫描电镜定量表征及有机质孔径分布

    图中红色为对应扫描电镜Image孔隙处理后图像。a1—d1分别为东胜背斜龙一段①、①、②、③小层,面孔率为20.61%、20.71%、14.33%、15.63%;a2—d2分别为金佛斜坡龙一段①、②、③、④小层,面孔率为18.03%、14.05%、10.68%、20.63%;a3—d3分别为桑柘坪向斜龙一段①、③、③、④小层,面孔率为14.49%、15.30%、15.65%、12.03%。

    Figure  5.  Quantitative characterization of organic matter pores in different small layers of selected wells in complex structural area of southeastern Chongqing by scanning electron microscopy, and pore size distribution

    图  6  页岩气甲烷碳同位素与乙烷碳同位素相关性

    Figure  6.  Correlation between methane carbon isotope (δ13C1) and ethane carbon isotope (δ13C2) in shale gas

    图  7  页岩气甲、乙烷碳同位素与干燥系数相关性

    Figure  7.  Correlation between methane and ethane carbon isotopes (δ13C1 and δ13C2) in shale gas and dryness coefficient (C1/C1-5)

    图  8  页岩气生产井日产量与甲、乙烷碳同位素相关性

    Figure  8.  Correlation between daily output of shale gas production wells and methane and ethane carbon isotopes (δ13C1 and δ13C2)

    图  9  页岩气生产井日产量与干燥系数相关性

    Figure  9.  Correlation between daily production and dryness coefficient (C1/C1-5) of shale gas production wells

    图  10  渝东南下志留统龙马溪组常压页岩气富集高产评价指标

    Figure  10.  Evaluation indicators for enrichment and high yield of normal pressure shale gas in Lower Silurian Longmaxi Formation in southeastern Chongqing

    表  1  渝东南复杂构造区烷烃气组分及碳同位素分布特征

    Table  1.   Distribution characteristics of alkane gas components and carbon isotopes in complex structural area of southeastern Chongqing

    地区 井号 烷烃气组分/% 烷烃气碳同位素/‰
    CH4 C2H6 C3H8 δ13C1 δ13C2
    平桥背斜 焦页A-1 HF 96.47 0.28 0.01 -35.2 -37.5
    焦页A-2 HF 98.80 0.37 0.01 -36.5 -37.6
    焦页A-3 HF 98.31 0.39 0.01 -34.0 -37.8
    焦页B-3 HF 98.50 0.40 0.01 -32.0 -35.3
    焦页C-31 HF 98.54 0.42 0.01 -33.8 -37.5
    金佛斜坡 焦页D-2 HF 98.30 0.39 0.01 -33.6 -36.2
    焦页D-3 HF 98.31 0.40 0.01 -33.0 -36.3
    焦页D-4 HF 86.03 0.32 0.01 -32.7 -36.1
    东胜背斜 胜页A-4 HF 98.40 0.46 0.01 -34.4 -38.0
    胜页B HF 98.26 0.41 0.01 -33.9 -37.0
    胜页C-4 HF 98.38 0.44 0.01 -34.3 -38.2
    胜页D-9 HF 98.41 0.40 0.01 -32.6 -36.4
    武隆向斜 隆页A HF 97.92 0.57 0.02 -30.7 -34.5
    隆页A-2 HF 97.19 0.61 0.02 -32.0 -34.8
    坪地A HF 98.05 0.63 0.01 -30.6 -36.2
    隆页B HF 96.62 0.64 0.01 -29.6 -34.6
    桑柘坪向斜 彭页C HF 95.99 0.54 0.01 -30.7 -33.4
    彭页B HF 97.21 0.99 0.02 -30.9 -33.4
    下载: 导出CSV
  • [1] 郭旭升, 申宝剑, 李志明, 等. 论我国页岩油气的统一性[J]. 石油实验地质, 2024, 46(5): 889-905. doi: 10.11781/sysydz202405889

    GUO Xusheng, SHEN Baojian, LI Zhiming, et al. Discussion on the uniformity of shale oil and gas in China[J]. Petroleum Geology & Experiment, 2024, 46(5): 889-905. doi: 10.11781/sysydz202405889
    [2] 马永生, 蔡勋育, 赵培荣. 中国页岩气勘探开发理论认识与实践[J]. 石油勘探与开发, 2018, 45(4): 561-574.

    MA Yongsheng, CAI Xunyu, ZHAO Peirong. China's shale gas exploration and development: understanding and practice[J]. Petroleum Exploration and Development, 2018, 45(4): 561-574.
    [3] 郭彤楼. 深层页岩气勘探开发进展与攻关方向[J]. 油气藏评价与开发, 2021, 11(1): 1-6.

    GUO Tonglou. Progress and research direction of deep shale gas exploration and development[J]. Reservoir Evaluation and Development, 2021, 11(1): 1-6.
    [4] 蔡勋育, 赵培荣, 高波, 等. 中国石化页岩气"十三五"发展成果与展望[J]. 石油与天然气地质, 2021, 42(1): 16-27.

    CAI Xunyu, ZHAO Peirong, GAO Bo, et al. SINOPEC's shale gas development achievements during the "Thirteenth Five-Year Plan"period and outlook for the future[J]. Oil & Gas Geology, 2021, 42(1): 16-27.
    [5] 何希鹏. 四川盆地东部页岩气甜点评价体系与富集高产影响因素[J]. 天然气工业, 2021, 41(1): 59-71.

    HE Xipeng. Sweet spot evaluation system and enrichment and high yield influential factors of shale gas in Nanchuan area of eastern Sichuan Basin[J]. Natural Gas Industry, 2021, 41(1): 59-71.
    [6] 聂海宽, 李沛, 党伟, 等. 四川盆地及周缘奥陶系—志留系深层页岩气富集特征与勘探方向[J]. 石油勘探与开发, 2022, 49(4): 648-659.

    NIE Haikuan, LI Pei, DANG Wei, et al. Enrichment characteristics and exploration directions of deep shale gas of Ordovician-Silurian in the Sichuan Basin and its surrounding areas, China[J]. Petroleum Exploration and Development, 2022, 49(4): 648-659.
    [7] 郭彤楼, 蒋恕, 张培先, 等. 四川盆地外围常压页岩气勘探开发进展与攻关方向[J]. 石油实验地质, 2020, 42(5): 837-845. doi: 10.11781/sysydz202005837

    GUO Tonglou, JIANG Shu, ZHANG Peixian, et al. Progress and direction of exploration and development of normally-pressured shale gas from the periphery of Sichuan Basin[J]. Petroleum Geology & Experiment, 2020, 42(5): 837-845. doi: 10.11781/sysydz202005837
    [8] 魏祥峰, 李宇平, 魏志红, 等. 保存条件对四川盆地及周缘海相页岩气富集高产的影响机制[J]. 石油实验地质, 2017, 39(2): 147-153. doi: 10.11781/sysydz201702147

    WEI Xiangfeng, LI Yuping, WEI Zhihong, et al. Effects of preservation conditions on enrichment and high yield of shale gas in Sichuan Basin and its periphery[J]. Petroleum Geology & Experiment, 2017, 39(2): 147-153. doi: 10.11781/sysydz201702147
    [9] 汤济广, 汪凯明, 秦德超, 等. 川东南南川地区构造变形与页岩气富集[J]. 地质科技通报, 2021, 40(5): 11-21.

    TANG Jiguang, WANG Kaiming, QIN Dechao, et al. Tectonic deformation and its constraints to shale gas accumulation in Nanchuan area, southeastern Sichuan Basin[J]. Bulletin of Geological Science and Technology, 2021, 40(5): 11-21.
    [10] 葛勋, 汤济广, 赵培荣, 等. 渝东南彭水地区页岩储层构造应力场模拟解析[J]. 西南石油大学学报(自然科学版), 2023, 45(5): 27-42.

    GE Xun, TANG Jiguang, ZHAO Peirong, et al. Simulation and analysis of tectonic stress field of shale reservoir in Pengshui area, southeast Chongqing[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2023, 45(5): 27-42.
    [11] 梅廉夫, 刘昭茜, 汤济广, 等. 湘鄂西—川东中生代陆内递进扩展变形: 来自裂变径迹和平衡剖面的证据[J]. 地球科学(中国地质大学学报), 2010, 35(2): 161-174.

    MEl Lianfu, LIU Zhaoqian, TANG Jiguang, et al. Mesozoic intra-continental progressive deformation in western Hunan-Hubei-eastern Sichuan provinces of China: evidence from apatite fission track and balanced cross-section[J]. Editorial Committee of Earth Science (Journal of China University of Geosciences), 2010, 35(2): 161-174.
    [12] 曾宇, 侯宇光, 胡东风, 等. 川东南盆缘常压区页岩裂缝脉体特征及古压力演化[J]. 地球科学, 2022, 47(5): 1819-1833.

    ZENG Yu, HOU Yuguang, HU Dongfeng, et al. Characteristics of shale fracture veins and paleo-pressure evolution in normal pressure shale gas zone, southeast margin of Sichuan Basin[J]. Earth Science, 2022, 47(5): 1819-1833.
    [13] 胡东风, 张汉荣, 倪楷, 等. 四川盆地东南缘海相页岩气保存条件及其主控因素[J]. 天然气工业, 2014, 34(6): 17-23.

    HU Dongfeng, ZHANG Hanrong, NI Kai, et al. Main controlling factors for gas preservation conditions of marine shales in southeastern margins of the Sichuan Basin[J]. Natural Gas Industry, 2014, 34(6): 17-23.
    [14] 郭旭升, 赵永强, 申宝剑, 等. 中国南方海相页岩气勘探理论: 回顾与展望[J]. 地质学报, 2022, 96(1): 172-182.

    GUO Xusheng, ZHAO Yongqiang, SHEN Baojian, et al. Marine shale gas exploration theory in southern China: review and prospects[J]Acta Geologica Sinica, 2022, 96(1): 172-182.
    [15] 肖佃师, 赵仁文, 杨潇, 等. 海相页岩气储层孔隙表征、分类及贡献[J]. 石油与天然气地质, 2019, 40(6): 1215-1225.

    XIAO Dianshi, ZHAO Renwen, YANG Xiao, et al. Characterization, classification and contribution of marine shale gas reservoirs[J]. Oil & Gas Geology, 2019, 40(6): 1215-1225.
    [16] 赵迪斐. 川东下古生界五峰组—龙马溪组页岩储层孔隙结构精细表征[D]. 徐州: 中国矿业大学, 2020.

    ZHAO Difei. Quantitative characterization of pore structure of shale reservoirs in the Lower Paleozoic Wufeng-Longmaxi formation of the east Sichuan area[D]. Xuzhou: China University of Mining and Technology, 2020.
    [17] 杨钦, 苏思远, 李昂, 等. 孔隙类型对页岩气赋存状态的影响: 以川南长宁地区五峰组—龙马溪组页岩为例[J]. 中国矿业大学学报, 2022, 51(4): 704-717.

    YANG Qin, SU Siyuan, LI Ang, et al. Influence of pore type on the occurrence state of shale gas: taking Wufeng-Longmaxi formation shale in Changning area of southern Sichuan as an example[J]. Journal of China University of Mining & Technology, 2022, 51(4): 704-717.
    [18] SHAN Chang'an, SHI Yakun, LIANG Xing, et al. Diagenetic characteristics and microscopic pore evolution of deep shale gas reservoirs in Longmaxi Formation, southeastern Sichuan Basin, China[J]. Unconventional Resources, 2024, 4, 100090.
    [19] 陈尚斌, 秦勇, 王阳, 等. 中上扬子区海相页岩气储层孔隙结构非均质性特征[J]. 天然气地球科学, 2015, 26(8): 1455-1463.

    CHEN Shangbin, QIN Yong, WANG Yang, et al. Pore structure and heterogeneity of marine shales in the Middle-Upper Yangtze[J]. Natural Gas Geoscience, 2015, 26(8): 1455-1463.
    [20] 何庆, 何生, 董田, 等. 鄂西下寒武统牛蹄塘组页岩孔隙结构特征及影响因素[J]. 石油实验地质, 2019, 41(4): 530-539. doi: 10.11781/sysydz201904530

    HE Qing, HE Sheng, DONG Tian, et al. Pore structure characteristics and controls of Lower Cambrian Niutitang Formation, western Hubei Province[J]. Petroleum Geology & Experiment, 2019, 41(4): 530-539. doi: 10.11781/sysydz201904530
    [21] 章新文, 李吉君, 卢双舫, 等. 构造变形对页岩孔隙结构及吸附性的影响[J]. 特种油气藏, 2018, 25(3): 32-36.

    ZHANG Xinwen, LI Jijun, LU Shuangfang, et al. Effects of structural deformation on shale pore structure and adsorption[J]. Special Oil & Gas Reservoirs, 2018, 25(3): 32-36.
    [22] 司陈洋, 谭静强, 王张虎, 等. 湘西地区寒武系牛蹄塘组页岩孔隙发育特征及影响因素[J]. 中南大学学报(自然科学版), 2022, 53(9): 3738-3755.

    SI Chenyang, TAN Jingqiang, WANG Zhanghu, et al. Characteristics and influencing factors of shale pore development in Niutitang Formation of Cambrian, western Hunan[J]. Journal of Central South University (Science and Technology), 2022, 53(9): 3738-3755.
    [23] 钱计安, 蒋裕强, 罗彤彤, 等. 页岩储层渗吸过程微观孔缝演变特征及影响因素: 以四川盆地渝西地区龙马溪组龙一1亚段为例[J]. 石油实验地质, 2024, 46(6): 1336-1348. doi: 10.11781/sysydz2024061336

    QIAN Ji'an, JIANG Yuqiang, LUO Tongtong, et al. Microscopic pore and fracture evolution characteristics and influencing factors during imbibition process of shale reservoirs: a case study of the first section of the first member of Longmaxi Formation, western Chongqing area, Sichuan Basin[J]. Petroleum Geology & Experiment, 2024, 46(6): 1336-1348. doi: 10.11781/sysydz2024061336
    [24] 杨少航, 罗良, 马诗杰, 等. 川南长宁地区构造变形特征及对页岩气保存条件的影响[J]. 现代地质, 2024, 38(6): 1458-1472.

    YANG Shaohang, LUO Liang, MA Shijie, et al. Structural deformation and shale gas preservation conditions in the Changning area of the southern Sichuan Basin[J]. Geoscience, 2024, 38(6): 1458-1472.
    [25] 蔡景顺, 杨少航, 薛萌, 等. 长宁和泸州地区构造变形差异性及其对页岩气保存的影响[J]. 断块油气田, 2024, 31(2): 177-186.

    CAI Jingshun, YANG Shaohang, XUE Meng, et al. Differences in structural deformation and its influence on shale gas preservation in Changning and Luzhou areas[J]. Fault-Block Oil & Gas Field, 2024, 31(2): 177-186.
    [26] 刘洪林, 王怀厂, 李晓波. 泸州地区五峰组—龙马溪组页岩气成藏特征[J]. 新疆石油地质, 2024, 45(1): 19-26.

    LIU Honglin, WANG Huaichang, LI Xiaobo. Shale gas accumulation characteristics of Wufeng formation-Longmaxi formation in Luzhou area[J]. Xinjiang Petroleum Geology, 2024, 45(1): 19-26.
    [27] 蒋代琴, 李平平, 邹华耀. 川东北元坝地区侏罗系陆相页岩天然裂缝发育特征及其对页岩油气富集和保存的影响[J]. 现代地质, 2024, 38(2): 362-372.

    JIANG Daiqin, LI Pingping, ZOU Huayao. Characteristics of natural fractures and their influence on oil and gas enrichment and preservation of the Jurassic continental shale in the Yuanba area, northeastern Sichuan Basin[J]. Geoscience, 2024, 38(2): 362-372.
    [28] XIA Xinyu Y, CHEN J, BRAUN R, et al. Isotopic reversals with respect to maturity trends due to mixing of primary and secondary products in source rocks[J]. Chemical Geology, 2013, 339, 205-212.
    [29] TILLEY, B, MCLELLAN S, HIEBERT S, et al. Gas isotope reversals in fractured gas reservoirs of the western Canadian foothills: mature shale gases in disguise[J]. AAPG Bulletin, 2011, 95(8): 1399-1422.
    [30] WOOD D A, HAZRA B. Characterization of organic-rich shales for petroleum exploration & exploitation: a review—Part 2: geochemistry, thermal maturity, isotopes and biomarkers[J]. Journal of Earth Science, 2017, 28(5), 758-778.
    [31] SHI Xuewen W, KANG Shujuan J, LUO Chao, et al. Shale gas exploration potential and reservoir conditions of the Longmaxi Formation in the Changning area, Sichuan Basin, SW China: evidence from mud gas isotope logging[J]. Journal of Asian Earth Sciences, 2022, 233: 105239.
    [32] ZUMBERGE J, FERWORN K, et al. Isotopic reversal ('rollover') in shale gases produced from the Mississippian Barnett and Fayetteville formations[J]. Marine and Petroleum Geology, 2012, 31(1): 43-52.
    [33] RAHMANI Ali, NADERI Mahsa, HOSSEINY Ehsan. Shale gas potential of the Lower Silurian hot shales in southern Iran and the Arabian Plate: characterization of organic geochemistry[J]. Petroleum, 2023, 9(4): 499-507.
    [34] 何希鹏, 齐艳平, 何贵松, 等. 渝东南构造复杂区常压页岩气富集高产主控因素再认识[J]. 油气藏评价与开发, 2019, 9(5): 32-39.

    HE Xipeng, QI Yanping, HE Guisong, et al. Further understanding of main controlling factors of normal pressure shale gas enrichment and high yield in the area with complex structure of the southeast area of Chongqing[J]. Reservoir Evaluation and Development, 2019, 9(5): 32-39.
    [35] 张勇. 彭水区块页岩脆性与含气性定性预测[J]. 油气藏评价与开发, 2017, 7(1): 78-82.

    ZHANG Yong. Shale brittleness and gas bearing property prediction of Pengshui block[J]. Reservoir Evaluation and Development, 2017, 7(1): 78-82.
    [36] 何希鹏, 高玉巧, 唐显春, 等. 渝东南地区常压页岩气富集主控因素分析[J]. 天然气地球科学, 2017, 28(4): 654-664.

    HE Xipeng, GAO Yuqiao, TANG Xianchun, et al. Analysis of major factors controlling the accumulation in normal pressure shale gas in the southeast of Chongqing[J]. Natural Gas Geoscience, 2017, 28(4): 654-664.
    [37] 高玉巧, 蔡潇, 何希鹏, 等. 渝东南盆缘转换带五峰组—龙马溪组页岩压力体系与有机孔发育关系[J]. 吉林大学学报(地球科学版), 2020, 50(2): 662-674.

    GAO Yuqiao, CAI Xiao, HE Xipeng, et al. Relationship between shale pressure system and organic pore development of Wufeng-Longmaxi formation in Marginnal conversion zone of southeastern Chongqing Basin[J]Journal of Jilin University(Earth Science Edition), 2020, 50(2): 662-674.
    [38] 何贵松, 何希鹏, 高玉巧, 等. 渝东南盆缘转换带金佛斜坡常压页岩气富集模式[J]. 天然气工业, 2020, 40(6): 50-60.

    HE Guisong, HE Xipeng, GAO Yuqiao, et al. Enrichment model of normal-pressure shale gas in the Jinfo slope of the basin-margin transition zone in southeast Chongqing[J]. Natural Gas Industry, 2020, 40(6): 50-60.
    [39] 蔡潇, 靳雅夕, 叶建国, 等. 一种页岩有机孔与无机孔定量表征的方法[J]. 油气藏评价与开发, 2020, 10(1): 30-36.

    CAI Xiao, JIN Yaxi, YE Jianguo, et al. A quantitative characterization method for organic and inorganic pores in shale[J]. Reservoir Evaluation and Development, 2020, 10(1): 30-36.
    [40] 刘树根, 叶玥豪, 冉波, 等. 差异保存条件下页岩孔隙结构特征演化及其意义[J]. 油气藏评价与开发, 2020, 10(5): 1-11.

    LIU Shugen, YE Yuehao, RAN Bo, et al. Evolution and implications of shale pore structure characteristics under different preservation conditions[J]. Reservoir Evaluation and Development, 2020, 10(5): 1-11.
    [41] 何陈诚, 何生, 郭旭升, 等. 焦石坝区块五峰组与龙马溪组一段页岩有机孔隙结构差异性[J]. 石油与天然气地质, 2018, 39(3): 472-484.

    HE Chencheng, HE Sheng, GUO Xusheng, et al. Structural differences in organic pores between shales of the Wufeng Formation and of the Longmaxi Formation's first member, Jiaoshiba block, Sichuan Basin[J]. Oil & Gas Geology, 2018, 39(3): 472-484.
    [42] 曹春辉, 张铭杰, 汤庆艳, 等. 四川盆地志留系龙马溪组页岩气气体地球化学特征及意义[J]. 天然气地球科学, 2015, 26(8): 1604-1612.

    CAO Chunhui, ZHANG Mingjie, TANG Qingyan, et al. Geochemical characteristics and implications of shale gas in Longmaxi Formation, Sichuan Basin, China[J]. Natural Gas Geoscience, 2015, 26(8): 1604-1612.
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  11
  • HTML全文浏览量:  3
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-09-01
  • 修回日期:  2025-06-01
  • 刊出日期:  2025-07-28

目录

    /

    返回文章
    返回