Petrofacies types and evolution characteristics of tight sandstone gas reservoirs of Jurassic Shaximiao Formation, Tianfu gas area, central Sichuan Basin
-
摘要: 岩石类型划分对表征致密砂岩储层非均质性和揭示其差异演化过程具有重要意义。以四川盆地中部天府气区中侏罗统沙溪庙组为研究对象,利用岩石薄片、扫描电子显微镜、稳定碳氧同位素等分析测试手段,研究储层岩石相类型及成岩演化过程。天府气区沙溪庙组含气储层在物性、孔隙类型和分布上表现出强非均质性。基于岩石学组分和结构、成岩方式和过程及孔隙结构特征的差异,划分了4种类型的岩石相,包括贫塑性颗粒砂岩、富塑性颗粒砂岩、方解石致密胶结砂岩和浊沸石致密胶结砂岩。在储层演化过程中,贫塑性颗粒砂岩经历了中等压实作用,流体—岩石反应活跃,溶蚀作用强烈,普遍经历了多期溶蚀和胶结作用,是有效的储集岩石相;富塑性颗粒砂岩机械压实强烈,在成岩早期已变得致密,晚期流体活动弱,溶解微弱;方解石致密胶结砂岩和浊沸石致密胶结砂岩中方解石和浊沸石连晶式胶结,早期胶结致密化,晚期流体改造也较弱。沉积物原始组分和结构控制了储层中成岩作用方式和程度的差异。利用岩石相的概念可系统识别影响储层孔隙度和渗透率的关键岩石学参数,将其与测井信息相结合,可有效指导储层属性建模。Abstract: The classification of rock types is important for characterizing the heterogeneity of tight sandstone reservoirs and revealing their differential evolution process. The Middle Jurassic Shaximiao Formation in the Tianfu gas area of the central Sichuan Basin was selected as the study object, and petrofacies types and diagenetic evolution process were investigated using thin-section observation, scanning electron microscopy (SEM), and stable carbon and oxygen isotope analysis. The gas-bearing reservoirs of the Shaximiao Formation in the Tianfu gas area exhibit strong heterogeneity in physical properties, pore types and distribution. Based on the differences in petrographic composition and texture, diagenetic patterns and processes, and pore structure characteristics, four types of petrofacies were classified: ductile-lean sandstone, ductile-rich sandstone, tightly calcite-cemented sandstone, and tightly laumontite-cemented sandstone. During the reservoir evolution process, ductile-lean sandstone experienced moderate compaction, active fluid-rock interactions, and strong dissolution, and generally underwent multiple stages of dissolution and cementation, resulting in effective reservoir petrofacies. Ductile-rich sandstone underwent strong mechanical compaction, became dense in the early diagenetic stage, and exhibited weak fluid activity and slight dissolution in the late stage. In tightly calcite- and laumontite-cemented sandstone, calcite and laumontite were interlocked, resulting in early-stage densification and late-stage weak fluid modification. The original composition and texture of sediments controlled the differences in the influencing patterns and degrees of diagenesis within reservoirs. The concept of petrofacies provides a systematic framework for identifying key petrographic parameters that influence reservoir porosity and permeability. In combination with well logging data, this approach can effectively guide reservoir property modeling.
-
图 2 四川盆地中部天府气区侏罗系沙溪庙组砂岩组分三角图(a)以及砂岩中填隙物和孔隙占比(b)
a图图版据参考文献[25]。
Figure 2. Ternary diagram of sandstone composition (a), and proportions of interstitial materials and pores in sandstones (b) in Jurassic Shaximiao Formation, Tianfu gas area, central Sichuan Basin
图 3 四川盆地中部天府气区侏罗系沙溪庙组砂岩典型显微照片
a.原生粒间孔隙和溶蚀孔隙发育,永浅6井,2 121.14 m;b.长石溶蚀形成粒内孔和扩大孔,遭受严重溶蚀的长石颗粒表面绿泥石薄膜未见明显压实弯曲痕迹,永浅6井,2 118.88 m;c.长石和岩屑溶蚀形成粒内孔、铸模孔及扩大孔;遭受不同程度溶蚀的颗粒及其表面绿泥石薄膜未见明显压实弯曲的现象;斑点状方解石填充孔隙,发育在绿泥石薄膜之后,永浅1井,2 185.74 m;d.长石溶蚀,永浅6井,2 279.4 m;e-f.岩屑遭受压实沿着石英和长石颗粒弯曲变形,部分粒间孔隙为泥质杂基填充,永浅6井,2 247.12 m;g. 斑点状方解石填充孔隙,发育在绿泥石薄膜之后,永浅6,2 232.52 m;h.方解石和浊沸石填充粒间孔隙,永浅1井,2 187.03 m;i.浊沸石填充孔隙和交代长石溶蚀残余,发育在石英加大边之后,永浅1井,2 192.40 m;j.石英加大边围限绿泥石薄膜,形成在其后;也见石英和钠长石晶体附着在绿泥石薄膜上,永浅6井,2 279.4 m;k.浊沸石形成在钠长石加大之后,永浅1井,2 200.75 m;l.伊利石黏土和石英晶体共存,永浅6井,1 865 m。
Figure 3. Typical photomicrographs of sandstones from Jurassic Shaximiao Formation, Tianfu gas area, central Sichuan Basin
图 7 四川盆地中部天府气区侏罗系沙溪庙组砂岩典型显微照片
a-b.岩屑遭受压实弯曲变形,黏土杂基填充孔隙,绿泥石薄膜发育,永浅6井,2 268.35 m;c-d.泥岩岩屑弯曲变形,局部发育方解石和浊沸石,永浅1井,2 157.43 m;e.伊蒙混层黏土呈鳞片状,永浅6井,2 268.35 m;f.方解石连晶式大量充填粒间孔隙,颗粒呈漂浮状,永浅6井,2 106.91 m;g.方解石沉淀之前绿泥石薄膜发育,且长石和岩屑等颗粒明显发生溶蚀,永浅6井,2 108.21 m;h.浊沸石连晶式大量充填粒间孔隙,颗粒呈漂浮状,永浅1井,2 180.47 m;i.浊沸石和少量的方解石共存,永浅1井,2 184.07 m。
Figure 7. Typical photomicrographs of sandstones from Jurassic Shaximiao Formation, Tianfu gas area, central Sichuan Basin
表 1 四川盆地中部天府气区侏罗系沙溪庙组砂岩不同岩石相岩石学特征
Table 1. Petrographic characteristics of different petrofacies of sandstones in Jurassic Shaximiao Formation, Tianfu gas area, central Sichuan Basin
结构组分 岩石相 贫塑性颗粒砂岩 富塑性颗粒砂岩 方解石致密胶结砂岩 沸石致密胶结砂岩 骨架颗粒占比/% 石英 $ \frac{27 \sim 37}{30}$ $ \frac{28 \sim 36}{31}$ $ \frac{19 \sim 23}{22}$ $ \frac{23 \sim 26}{24}$ 钾长石 $ \frac{20 \sim 25}{23}$ $ \frac{20 \sim 27}{23}$ $ \frac{17 \sim 20}{18}$ $ \frac{18 \sim 22}{20}$ 斜长石 $ \frac{7\sim 11}{10}$ $ \frac{6 \sim 11}{9}$ $ \frac{5 \sim 9}{7}$ $ \frac{7 \sim 9}{8}$ 燧石 $ \frac{0 \sim 2}{1}$ $ \frac{0 \sim 2}{1}$ $ \frac{0 \sim 2}{1}$ $ \frac{0 \sim 1}{1}$ 片状矿物 0~1 $ \frac{1 \sim 4}{2}$ 0~1 0~1 沉积岩岩屑 $ \frac{3 \sim 5}{4}$ $ \frac{4 \sim 10}{6}$ $ \frac{3 \sim 5}{4}$ $ \frac{3 \sim 6}{5}$ 变质岩岩屑 $ \frac{13 \sim 17}{14}$ $ \frac{13 \sim 17}{16}$ $ \frac{10 \sim 13}{11}$ $ \frac{12 \sim 15}{14}$ 岩浆岩岩屑 $ \frac{2 \sim 6}{4}$ $ \frac{3 \sim 5}{4}$ $ \frac{2 \sim 4}{3}$ $ \frac{2 \sim 4}{3}$ 塑性颗粒 $ \frac{10 \sim 17}{13}$ $ \frac{19 \sim 25}{22}$ $ \frac{6 \sim 9}{8}$ $ \frac{7 \sim 14}{10}$ 填隙物占比/% 黏土杂基 0 $ \frac{0 \sim 10}{5}$ $ \frac{0 \sim 5}{1}$ $ \frac{0 \sim 5}{2}$ 方解石 $ \frac{0 \sim 5}{1}$ $ \frac{0 \sim 2}{1}$ $ \frac{24 \sim 35}{31}$ $ \frac{0 \sim 2}{1}$ 浊沸石 $ \frac{0 \sim 3}{1}$ $ \frac{0 \sim 2}{1}$ 0~3 $ \frac{17 \sim 27}{21}$ 石英加大 $ \frac{0 \sim 2}{1}$ 0 0 0 长石加大 0~2 0 0 0 绿泥石薄膜 $ \frac{1 \sim 4}{2}$ $ \frac{0 \sim 2}{1}$ $ \frac{0 \sim 1}{1}$ $ \frac{0 \sim 1}{1}$ 高岭石 0~1 0 0 0 其他自生黏土 $ \frac{1 \sim 4}{2}$ $ \frac{0 \sim 3}{1}$ $ \frac{0 \sim 2}{1}$ $ \frac{0 \sim 2}{1}$ 孔隙占比/% 原生粒间孔 $ \frac{1 \sim 7}{4}$ 0 0 0~1 溶蚀孔隙 $ \frac{1 \sim 5}{2}$ $ \frac{0 \sim 2}{1}$ 0~1 $ \frac{0 \sim 1}{1}$ 面孔率 $ \frac{2 \sim 10}{6}$ $ \frac{0 \sim 2}{1}$ 0~1 $ \frac{0 \sim 2}{1}$ 注:表中分式意义为:$ \frac{\text { 最小值~最大值 }}{\text { 平均值 }}$。 表 2 四川盆地中部天府气区沙溪庙组砂岩不同产状方解石碳、氧同位素组成
Table 2. Carbon and oxygen isotope compositions of calcite in sandstones of different occurrences in Shaximiao Formation, Tianfu gas area, central Sichuan Basin
井号 层位 深度/m 方解石胶结形式 δ13CVPDB/‰ δ18OVPDB/‰ 沉淀温度/℃ 永浅6 沙一段 2 107.82 连晶式、致密 -8.6 -13.6 41 永浅6 沙一段 2 108.50 连晶式、致密 -9.4 -16.0 56 永浅6 沙一段 2 106.61 连晶式、致密 -8.2 -15.8 54 永浅6 沙一段 2 105.54 连晶式、致密 -6.5 -13.9 43 永浅6 沙二段 1 862.86 孔隙填充、斑状 -11.3 -15.0 55~85 永浅6 沙二段 1 865.04 孔隙填充、斑状 -11.7 -15.3 57~88 永浅3 沙一段 1 810.14 孔隙填充、斑状 -10.1 -16.5 65~89 永浅6 沙二段 1 864.09 孔隙填充、斑状 -12.6 -15.2 56~87 永浅6 沙一段 2 109.78 孔隙填充、斑状 -10.1 -17.1 70~105 永浅6 沙一段 2 257.85 孔隙填充、斑状 -12.2 -17.5 73~109 -
[1] 罗晓容, 王忠楠, 雷裕红, 等. 特超低渗砂岩油藏储层非均质性特征与成藏模式: 以鄂尔多斯盆地西部延长组下组合为例[J]. 石油学报, 2016, 37(S1): 87-98.LUO Xiaorong, WANG Zhongnan, LEI Yuhong, et al. Heterogeneity characteristics and accumulation model of ultra-low permeability sandstone reservoirs: a case study of the lower part of Yanchang Formation in the western Ordos Basin, China[J]. Acta Petrolei Sinica, 2016, 37(S1): 87-98. [2] WANG Zhongnan, LUO Xiaorong, LEI Yuhong, et al. Impact of detrital composition and diagenesis on the heterogeneity and quality of low-permeability to tight sandstone reservoirs: an example of the Upper Triassic Yanchang Formation in southeastern Ordos Basin[J]. Journal of Petroleum Science and Engineering, 2020, 195: 107596. [3] BJØRLYKKE K. Relationships between depositional environments, burial history and rock properties. Some principal aspects of diagenetic process in sedimentary basins[J]. Sedimentary Geology, 2014, 301: 1-14. [4] LAI Jin, WANG Guiwen, WANG Song, et al. Review of diagenetic facies in tight sandstones: diagenesis, diagenetic minerals, and prediction via well logs[J]. Earth-Science Reviews, 2018, 185: 234-258. [5] WANG Junjie, WU Shenghe, LI Qing, et al. Controls of diagenetic alteration on the reservoir quality of tight sandstone reservoirs in the Triassic Yanchang Formation of the Ordos Basin, China[J]. Journal of Asian Earth Sciences, 2020, 200: 104472. [6] CAO Binfeng, SUN Wei, LI Jun. Reservoir petrofacies—A tool for characterization of reservoir quality and pore structures in a tight sandstone reservoir: a study from the sixth member of Upper Triassic Yanchang Formation, Ordos Basin, China[J]. Journal of Petroleum Science and Engineering, 2021, 199: 108294. [7] HENARES S, CARACCIOLO L, VISERAS C, et al. Diagenetic constraints on heterogeneous reservoir quality assessment: a Triassic outcrop analog of meandering fluvial reservoirs[J]. AAPG Bulletin, 2016, 100(9), 1377-1398. [8] CAO Binfeng, LUO Xiaorong, ZHANG Likuan, et al. Diagenetic evolution of deep sandstones and multiple-stage oil entrapment: a case study from the Lower Jurassic Sangonghe Formation in the Fukang Sag, central Junggar Basin(NW China)[J]. Journal of Petroleum Science and Engineering, 2017, 152: 136-155. [9] CAO Binfeng, LUO Xiaorong, ZHANG Likuan, et al. Petrofacies prediction and 3-D geological model in tight gas sandstone reservoirs by integration of well logs and geostatistical modeling[J]. Marine and Petroleum Geology, 2020, 114: 104202. [10] 徐小童, 张立宽, 冶明泽, 等. 深层砂岩储层成岩作用差异性及与储层质量的关系: 以准噶尔盆地中部征沙村地区侏罗系为例[J]. 天然气地球科学, 2021, 32(7): 1022-1036.XU Xiaotong, ZHANG Likuan, YE Mingze, et al. Different diagenesis of deep sandstone reservoir and its relationship with reservoir property: case study of Jurassic in Zhengshacun area, central Junggar Basin[J]. Natural Gas Geoscience, 2021, 32(7): 1022- 1036. [11] 罗晓容, 张立宽, 张立强, 等. 深层碎屑岩储层有效性及其评价方法[J]. 西北大学学报(自然科学版), 2022, 52(6): 968-986.LUO Xiaorong, ZHANG Likuan, ZHANG Liqiang, et al. Effectiveness of deep-buried clastic reservoir beds and the evaluation methodology[J]. Journal of Northwest University (Natural Science Edition), 2022, 52(6): 968-986. [12] RUSHING J A, NEWSHAM K E, BLASINGAME T A. Rock typing: key to understanding productivity in tight gas sands[C]// SPE Unconventional Reservoirs Conference. Keystone, Colorado: SPE, 2008: 114164. [13] JIAO Yangquan, YAN Jiaxin, LI Sitian, et al. Architectural units and heterogeneity of channel reservoirs in the Karamay Formation, outcrop area of Karamay Oil Field, Junggar Basin, Northwest China[J]. AAPG Bulletin, 2005, 89(4): 529-545. [14] 赵俊峰, 屈红军, 林晋炎, 等. 湖泊三角洲沉积露头精细解剖: 以鄂尔多斯盆地裴庄剖面为例[J]. 沉积学报, 2014, 32(6): 1026-1034.ZHAO Junfeng, QU Hongjun, LIN Jinyan, et al. Outcrop-based anatomy of a lacustrine delta succession: a case study from Peizhuang Section, Ordos Basin[J]. Acta Sedimentologica Sinica, 2014, 32(6): 1026-1034. [15] 张响响, 邹才能, 朱如凯, 等. 川中地区上三叠统须家河组储层成岩相[J]. 石油学报, 2011, 32(2): 257-264.ZHANG Xiangxiang, ZOU Caineng, ZHU Rukai, et al. Reservoir diagenetic facies of the Upper Triassic Xujiahe Formation in the central Sichuan Basin[J]. Acta Petrolei Sinica, 2011, 32(2): 257-264. [16] 甯波, 任大忠, 王虎, 等. 致密砂岩气藏微观孔隙结构多尺度联合表征[J]. 断块油气田, 2024, 31(1): 34-41.NING Bo, REN Dazhong, WANG Hu, et al. Multi-scale combination characterization of micropore structure of tight sandstone gas reservoirs[J]. Fault-Block Oil & Gas Field, 2024, 31(1): 34-41. [17] 吴育平, 孙卫, 雒斌, 等. 鄂尔多斯盆地合水地区长81储层流动单元研究[J]. 非常规油气, 2019, 6(5): 38-46.WU Yuping, SUN Wei, LUO Bin, et al. Rearch on the flow unit of Chang 81 reservoir in Heshui area, Ordos Basin[J]. Unconventional Oil & Gas, 2019, 6(5): 38-46. [18] 张本健, 潘珂, 吴长江, 等. 四川盆地金秋气田侏罗系沙溪庙组多期砂组天然气复合成藏机理及模式[J]. 天然气工业, 2022, 42(1): 51-61.ZHANG Benjian, PAN Ke, WU Changjiang, et al. Compound gas accumulation mechanism and model of Jurassic Shaximiao Formation multi-stage sandstone formations in Jinqiu Gas Field of the Sichuan Basin[J]. Natural Gas Industry, 2022, 42(1): 51-61. [19] 陈少云, 杨勇强, 邱隆伟, 等. 川中地区侏罗系沙溪庙组储层特征及控制因素[J]. 天然气地球科学, 2022, 33(10): 1597-1610.CHEN Shaoyun, YANG Yongqiang, QIU Longwei, et al. Reservoir characteristics and controlling factors of Jurassic Shaximiao Formation in central Sichuan Basin[J]. Natural Gas Geoscience, 2022, 33(10): 1597-1610. [20] 王小娟, 洪海涛, 吴长江, 等. 四川盆地川中地区侏罗系沙溪庙组致密砂岩储层特征及成因[J]. 吉林大学学报(地球科学版), 2022, 52(4): 1037-1051.WANG Xiaojuan, HONG Haitao, WU Changjiang, et al. Characteristics and formation mechanisms of tight sandstone reservoirs in Jurassic Shaximiao Formation, central of Sichuan Basin[J]. Journal of Jilin University (Earth Science Edition), 2022, 52(4): 1037-1051. [21] 杨跃明, 王小娟, 陈双玲, 等. 四川盆地中部地区侏罗系沙溪庙组沉积体系演化及砂体发育特征[J]. 天然气工业, 2022, 42(1): 12-24.YANG Yueming, WANG Xiaojuan, CHEN Shuangling, et al. Sedimentary system evolution and sandbody development characteristics of Jurassic Shaximiao Formation in the central Sichuan Basin[J]. Natural Gas Industry, 2022, 42(1): 12-24. [22] 朱讯, 冯林杰, 吕乐, 等. 致密砂岩储层成岩相及孔隙演化过程: 以川中北部地区沙二1亚段为例[J]. 断块油气田, 2022, 29(2): 265-270.ZHU Xun, FENG Linjie, LV Le, et al. Diagenetic facies and pore evolution of tight sandstone reservoir: taking Sha21 sub-member in the north of central Sichuan Basin as an example[J]. Fault-Block Oil and Gas Field, 2022, 29(2): 265-270. [23] 何登发, 李德生, 张国伟, 等. 四川多旋回叠合盆地的形成与演化[J]. 地质科学, 2011, 46(3): 589-606.HE Dengfa, LI Desheng, ZHANG Guowei, et al. Formation and evolution of multi-cycle superposed Sichuan Basin, China[J]. Chinese Journal of Geology, 2011, 46(3): 589-606. [24] 邓宾. 四川盆地中—新生代盆—山结构与油气分布[D]. 成都: 成都理工大学, 2013.DENG Bin. Meso-Cenozoic architecture of basin-mountain system in the Sichuan Basin and its gas distribution[D]. Chengdu: Chengdu University of Technology, 2013. [25] FOLK R L. Petrology of sedimentary rocks[M]. Austin: Hamphill, 1974. [26] EHRENBERG S N. Assessing the relative importance of compaction processes and cementation to reduction of porosity in sandstones: discussion; compaction and porosity evolution of Pliocene sandstones, Ventura Basin, California: discussion[J]. AAPG Bulletin, 1989, 73(10): 1274-1276. [27] 卿元华, 吕正祥, 赵福, 等. 川中东北部中侏罗统沙一段致密砂岩中自生浊沸石形成机理[J]. 矿物岩石地球化学通报, 2020, 39(3): 536-547.QING Yuanhua, LYU Zhengxiang, ZHAO Fu, et al. Formation mechanism of authigenic laumonites in tight sandstone of member 1 of the Middle Jurassic Shaximiao Formation in the northeastern central Sichuan Basin[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2020, 39(3): 536-547. [28] FRIEDMAN I, O'NEIL J R. Compilation of stable isotope fractionation factors of geochemical interest[R]. US Geological Survey Professional Paper 440 KK. 12, 1977. [29] 梁斌, 王全伟, 阚泽忠. 四川盆地中侏罗统沙溪庙组钙质结核的碳、氧同位素特征[J]. 矿物岩石, 2007, 27(2): 54-58.LIANG Bin, WANG Quanwei, KAN Zezhong. Carbon and oxygen isotopic compositions of carbonate nodule in the Shaximiao Formation of the Middle Jurassic, Sichuan Basin[J]. Journal of Mineralogy and Petrology, 2007, 27(2): 54-58. [30] 杨海军, 张荣虎, 杨宪彰, 等. 超深层致密砂岩构造裂缝特征及其对储层的改造作用: 以塔里木盆地库车坳陷克深气田白垩系为例[J]. 天然气地球科学, 2018, 29(7): 942-950.YANG Haijun, ZHANG Ronghu, YANG Xianzhang, et al. Characteristics and reservoir improvement effect of structural fracture in ultra- deep tight sandstone reservoir: a case study of Keshen Gasfield, Kuqa Depression, Tarim Basin[J]. Natural Gas Geoscience, 2018, 29(7): 942-950. [31] 刘君龙, 胡宗全, 刘忠群, 等. 四川盆地川西坳陷新场须家河组二段气藏甜点模式及形成机理[J]. 石油与天然气地质, 2021, 42(4): 852-862.LIU Junlong, HU Zongquan, LIU Zhongqun, et al. Gas pool sweet spot models and their forming mechanism in the Xu 2 member in Xinchang area, Western Sichuan Depression, Sichuan Basin[J]. Oil & Gas Geology, 2021, 42(4): 852-862. [32] 李莉妃, 任启强, 杨田, 等. 多级构型界面下致密砂岩储层构造裂缝发育特征: 以川西坳陷须家河组二段为例[J]. 石油实验地质, 2024, 46(4): 722-734. doi: 10.11781/sysydz202404722LI Lifei, REN Qiqiang, YANG Tian, et al. Development characteristics of structural fractures in tight sandstone reservoirs under multi-level configuration interfaces: a case study of second member of Xujiahe Formation in Western Sichuan Depression[J]. Petroleum Geology & Experiment, 2024, 46(4): 722-734. doi: 10.11781/sysydz202404722 [33] Huang Y, Wang R. Characterization of natural fractures in tight sandstone reservoirs in Yuanba area, northern Sichuan Basin. Unconventional Resources 2023, 3, 155-163. [34] 刘子豪, 吴胜和, 郭睿, 等. 致密砂岩储层岩石相建模新思路[J]. 中国石油大学学报(自然科学版), 2024, 48(4): 33-42.LIU Zihao, WU Shenghe, GUO Rui, et al. New idea of lithofacies modeling for tight sandstone reservoir[J]. Journal of China University of Petroleum(Edition of Natural Science), 2024, 48(4): 33-42. [35] SIDDIQUI N A, RAMKUMAR M, RAHMAN A H A, et al. High resolution facies architecture and digital outcrop modeling of the Sandakan Formation sandstone reservoir, Borneo: implications for reservoir characterization and flow simulation[J]. Geoscience Frontiers, 2019, 10(3), 957-971. [36] 左毅, 赵腊腊, 史卓丽, 等. 曲流河点坝及其内部构型建模方法[J]. 天然气勘探与开发, 2023, 46(1): 50-56.ZUO Yi, ZHAO Lala, SHI Zhuoli, et al. A modeling method for meandering-river point bar and its internal configuration[J]. Natural Gas Exploration and Development, 2023, 46(1): 50-56. -