Characteristics and genesis analysis of dolomite in Lower Ordovician Penglaiba Formation in Tahe area
-
摘要: 下奥陶统蓬莱坝组白云岩是塔河油田油气勘探的重要接替领域,明确白云岩的沉积特征、成因机理对塔河油田的油气勘探与开发具有重要意义。综合岩心描述、薄片鉴定、扫描电镜、阴极发光及地球化学等分析手段,系统研究了塔河油田下奥陶统蓬莱坝组白云岩的地质地球化学特征及成因机制。结果表明:(1)研究区以晶粒白云岩为主,残余颗粒白云岩次之。泥—微晶白云石以他形为主,粉—中晶多呈半自形—自形,中—粗晶以异形为主;残余颗粒白云岩以粉—细晶为主,可见残余内碎屑结构。(2)阴极发光显示:泥—微晶呈暗淡蓝紫或暗褐色光;粉晶为暗淡紫红色;细—中晶具紫色核心、橙红色亮边环带结构;中—粗晶呈紫红与明亮棕红色环带发光。(3)泥—微晶白云岩主要为重稀土富集,δ18O值波动大,87Sr/86Sr值接近早奥陶世海水值,指示高盐度蒸发海水的准同生白云石化作用;残余颗粒白云岩主要为残余内碎屑结构,属埋藏云化成因;粉晶白云岩、细—中晶白云岩稀土元素(REE)配分模式与同期泥晶灰岩类似,重稀土富集,δ18O值跨度较大,87Sr/86Sr值部分高于同期海水锶同位素值,为浅—中埋藏云化叠加热液改造的产物;中—粗晶白云岩轻稀土相对富集,δ18O值偏负,87Sr/86Sr值高于同期海水值,属碎屑岩层热液交代成因。Abstract: The dolomite of the Lower Ordovician Penglaiba Formation is an important successor field for oil and gas exploration in the Tahe oilfield. Clarifying the sedimentary characteristics and genetic mechanisms of the dolomite is of great significance for oil and gas exploration and development in the Tahe oilfield. Based on this, the geological and geochemical characteristics and genetic mechanisms of the dolomite in the Lower Ordovician Penglaiba Formation of the Tahe Oilfield were systematically studied through core description, thin section identification, scanning electron microscopy, cathodoluminescence, and geochemical analyses. The results showed that: (1) The study area was dominated by crystalline dolomite, followed by residual granular dolomite. Mud-microcrystalline dolomite was mainly anhedral. Silty-medium crystalline dolomite was mostly subhedral to euhedral. Medium-coarse crystalline dolomite was predominantly xenomorphic. Residual granular dolomite was mainly composed of silty-fine crystalline dolomite, showing residual intraclastic texture. (2) Cathodoluminescence showed that the mud- microcrystalline dolomite emitted dull blue-purple or dark brown luminescence. Silty dolomite emitted dull purple-red luminescence. Fine-medium crystalline dolomite had a purple core with a bright orange-red rim-shaped band. Medium-coarse crystalline dolomite exhibited purple-red and a bright brown-red rim-shaped luminescent band. (3) Mud-microcrystalline dolomite was mainly enriched in heavy rare earth elements (REE), with large δ18O fluctuations and 87Sr/86Sr ratios close to those in the Early Ordovician seawater, indicating quasi-syngenetic dolomitization by high-salinity evaporative seawater. Residual granular dolomite was mainly characterized by residual intraclastic texture and its genetic mechanism was burial dolomitization. The REE distribution patterns of silty crystalline dolomite and fine-medium crystalline dolomite were similar to those of contemporaneous micrites, which were enriched in heavy REEs with large δ18O fluctuations. The 87Sr/86Sr values were partially higher compared with the strontium isotope values in contemporaneous seawater, indicating products of shallow-medium burial dolomitization superimposed with hydrothermal fluids. Medium-coarse crystalline dolomite was relatively enriched in light rare earth, with negative δ18O values and 87Sr/86Sr values higher than those in contemporaneous seawater, indicating formation by hydrothermal metasomatism related to clastic rock layers.
-
Key words:
- dolomite /
- genetic mechanism /
- Penglaiba Formation /
- Lower Ordovician /
- Tahe Oilfield
-
图 2 塔河地区奥陶系蓬莱坝组残余颗粒白云岩、泥—微晶白云岩岩石学特征
a.残余砂屑白云岩,S88井,6 552.61~6 552.70 m,表面呈深浅不一的斑块状,岩心照片;b.残余颗粒白云岩,TS2井,6 551.13 m铸体薄片,残余颗粒结构,可见多个颗粒幻影;c.残余砂屑白云岩,TS2井,6 550.55 m,见砂屑幻影,颗粒边缘清晰,原岩是亮晶砂屑灰岩,胶结物被晶粒更大的白云石所交代;d.残余砂屑白云岩,与c同视域,TS2井,6 650.55 m,颗粒发暗红色光—暗紫色光,胶结物发暗紫色光,阴极发光照片;e.微晶白云岩,S88井,6 564.20~6 564.28 m,块状构造,岩心照片;f.泥—微晶白云岩,TS2井,6 694.10 m,微晶结构;g.微晶白云岩,TS2井,6 553.08 m,扫描电镜,半自形,白云石晶间孔充填片状伊蒙混层;h.泥—微晶白云岩,与f同视域,6 694.10 m,阴极发光照片,基质泥—微晶白云石发暗淡的紫红色光。
Figure 2. Petrographic characteristics of residual granular dolomite and mud-microcrystalline dolomite of Ordovician Penglaiba Formation in Tahe area
图 3 塔河地区奥陶系蓬莱坝组晶粒白云岩岩石学特征
a.粉晶白云岩,TS2井,6 554.12~6 554.17 m,可见灰黑色沥青质,及部分后期充填形成的白云石,岩心照片;b.微—粉晶白云岩,TS2井,6 691.39 m,晶面浑浊,裂缝由白云石充填;c.粉晶白云岩,TS2井,6 691.84 m,自形,晶间见伊蒙混层充填,扫描电镜;d.微—粉晶白云岩,与b同视域,TS2井,6 691.39 m,基质白云石发红紫色光,裂缝中充填的白云石中央部位发红紫色光,边缘部位发较明亮的橙红色光,阴极发光;e.细晶白云岩,TS2井,6 555.10~6 555.16 m,发育深灰色纹层状构造,岩心照片;f.细晶白云岩,TS2井,6 651.32 m;g.细晶白云岩,TS2井,6 694.91 m,自形直面接触,扫描电镜;h.细—中晶白云岩,与f同视域,TS2井,6 651.32 m,白云石发光具暗蓝紫色核心和橙红色亮边环带结构,阴极发光;i.中—粗晶鞍形白云石,S88井,6 368.48 m,残余晶间孔,白云石晶粒受成岩改造,已无法分辨晶粒边界,晶面浑浊,铸体薄片;j. 裂缝边缘充填粗晶鞍形白云石,TS2井,6 691.84 m,裂缝中心充填粗晶方解石;k.中—粗晶鞍形白云石,S88井,6 562.25 m,自形程度差,晶体间曲面接触,扫描电镜;l.粗晶鞍形白云石,与j同视域,TS2井,6 691.84 m,白云石核部发紫红色光,边缘发亮红色光,裂缝中心充填方解石发棕色光,阴极发光。
Figure 3. Petrographic characteristics of crystalline dolomite in Ordovician Penglaiba Formation of Tahe area
表 1 塔河地区奥陶系蓬莱坝组白云岩碳氧同位素值
Table 1. Carbon and oxygen isotope values of dolomite from Ordovician Penglaiba Formation in Tahe area
井号 深度/m 岩性 δ13CV-PDB/‰ δ18OV-PDB/‰ TS2 6 550.14 泥—微晶白云岩 -0.90 -8.10 TS2 6 550.77 泥—微晶白云岩 -1.20 -7.20 TS2 6 551.88 泥—微晶白云岩 -0.70 -7.60 TS2 6 552.35 泥—微晶白云岩 -1.10 -8.40 TS2 6 552.75 泥—微晶白云岩 -0.80 -6.50 TS2 6 552.93 泥—微晶白云岩 -0.80 -8.30 TS2 6 553.72 泥—微晶白云岩 -1.20 -6.00 TS2 6 694.00 泥—微晶白云岩 -1.10 -7.30 TS2 6 694.80 泥—微晶白云岩 -1.20 -6.30 S88 6 423.03 粉晶白云岩 -1.57 -9.12 S88 6 453.15 粉晶白云岩 -1.55 -4.26 TS2 6 550.77 粉晶白云岩 -1.40 -7.30 TS2 6 551.79 粉晶白云岩 -1.00 -9.40 TP193 7 466.79 粉晶白云岩 -1.67 -4.23 TP193 7 471.55 粉晶白云岩 -1.22 -4.40 S88 6 423.03 粉晶白云岩 -1.57 -9.12 S88 6 337.15 细—中晶白云岩 -1.79 -7.58 S88 6 423.24 细—中晶白云岩 -1.96 -5.32 S88 6 457.13 细—中晶白云岩 -1.48 -8.78 TS2 6 550.84 细—中晶白云岩 -1.72 -6.63 S88 6 562.14 细—中晶白云岩 -1.39 -6.96 TP193 7 368.62 细—中晶白云岩 -1.24 -8.12 TP193 7 466.79 细—中晶白云岩 -1.89 -7.77 TP193 7 471.76 细—中晶白云岩 -1.62 -9.86 S88 6 368.71 中—粗晶白云岩 -1.40 -9.70 S88 6 428.80 中—粗晶白云岩 -1.30 -8.90 TS2 6 694.57 中—粗晶白云岩 -1.00 -8.40 TP193 7 472.81 中—粗晶白云岩 -1.30 -8.30 TS6 7 690.15 中—粗晶白云岩 -1.60 -8.90 表 2 塔河地区奥陶系蓬莱坝组白云岩锶同位素值
Table 2. Strontium isotope values of dolomite from Ordovician Penglaiba Formation in Tahe area
井号 深度/m 岩性 87Sr/86Sr S88 6 485.00 泥—微晶白云岩 0.709 046 S88 6 518.98 泥—微晶白云岩 0.709 023 TS2 6 550.61 泥—微晶白云岩 0.709 009 TS2 6 550.77 泥—微晶白云岩 0.708 926 S88 6 557.13 泥—微晶白云岩 0.708 999 TS2 6 691.84 泥—微晶白云岩 0.708 938 TS2 6 694.00 泥—微晶白云岩 0.709 005 TS2 6 694.80 泥—微晶白云岩 0.708 929 TS2 6 550.14 泥—微晶白云岩 0.708 789 TS2 6 550.55 泥—微晶白云岩 0.708 923 TS2 6 551.60 泥—微晶白云岩 0.708 887 TS2 6 551.88 泥—微晶白云岩 0.708 906 TS2 6 552.02 泥—微晶白云岩 0.708 949 TS2 6 552.35 泥—微晶白云岩 0.708 852 TS2 6 552.75 泥—微晶白云岩 0.708 920 TS2 6 552.93 泥—微晶白云岩 0.708 864 S88 6 485.00 粉晶白云岩 0.709 057 S88 6 519.20 粉晶白云岩 0.709 073 TS2 6 550.77 粉晶白云岩 0.708 924 TS2 6 551.79 粉晶白云岩 0.709 213 TS2 6 691.55 粉晶白云岩 0.709 020 TP193 7 468.86 粉晶白云岩 0.709 075 TP193 7 517.00 粉晶白云岩 0.708 853 TS6 7 561.49 粉晶白云岩 0.708 716 TS6 7 619.92 粉晶白云岩 0.708 825 TS6 7 691.86 粉晶白云岩 0.709 076 TS2 6 552.29 细—中晶白云岩 0.709 204 TS2 6 694.39 细—中晶白云岩 0.709 429 TP193 7 471.76 细—中晶白云岩 0.709 205 TP193 7 472.80 细—中晶白云岩 0.709 145 TS6 7 521.71 细—中晶白云岩 0.709 419 TP193 7 530.00 细—中晶白云岩 0.709 260 TS6 7 690.15 细—中晶白云岩 0.709 245 TS6 7 690.66 细—中晶白云岩 0.709 553 TS6 7 691.99 细—中晶白云岩 0.709 688 S88 6 367.05 中—粗晶白云岩 0.709 182 S88 6 368.46 中—粗晶白云岩 0.709 317 S88 6 428.80 中—粗晶白云岩 0.709 435 TS2 6 694.57 中—粗晶白云岩 0.709 219 TP193 7 471.76 中—粗晶白云岩 0.709 244 TP193 7 517.00 中—粗晶白云岩 0.709 262 表 3 塔河地区奥陶系蓬莱坝组白云岩稀土元素数据
Table 3. Rare earth element data of dolomite from Ordovician Penglaiba Formation in Tahe area
μg/g 井号 井深/m 岩性 La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu S88 6 369.15 泥晶灰岩 2.504 3.792 0.565 2.345 0.466 0.036 0.418 0.054 0.379 0.130 0.179 0.040 0.193 0.035 0 S88 6 369.40 泥晶灰岩 2.215 2.882 0.421 1.796 0.328 0.046 0.364 0.044 0.272 0.111 0.127 0.033 0.135 0.027 0 TS2 6 550.14 泥—微晶白云岩 1.310 2.240 0.242 0.871 0.157 0.031 0.144 0.024 0.120 0.022 0.061 0.010 0.071 0.009 0 TS2 6 551.60 泥—微晶白云岩 1.510 2.970 0.309 1.200 0.236 0.050 0.200 0.038 0.208 0.039 0.113 0.018 0.116 0.017 0 TS2 6 551.88 泥—微晶白云岩 0.925 1.610 0.176 0.648 0.118 0.025 0.117 0.020 0.115 0.021 0.058 0.010 0.061 0.016 0 TS2 6 552.93 泥—微晶白云岩 0.884 1.600 0.176 0.673 0.125 0.019 0.114 0.020 0.109 0.020 0.055 0.010 0.064 0.015 0 TS2 6 552.02 泥—微晶白云岩 1.380 2.560 0.265 1.020 0.195 0.035 0.175 0.032 0.170 0.031 0.087 0.013 0.093 0.014 0 TS2 6 552.35 泥—微晶白云岩 1.290 2.280 0.255 0.940 0.175 0.031 0.151 0.026 0.140 0.024 0.070 0.011 0.081 0.011 0 S88 6 421.23 粉晶白云岩 1.200 2.100 0.130 0.500 0.110 0.060 0.110 0.010 0.110 0.020 0.090 0.010 0.030 0.012 0 S88 6 453.15 粉晶白云岩 0.900 2.200 0.270 1.000 0.190 0.080 0.160 0.030 0.170 0.030 0.140 0.008 0.090 0.009 0 TS2 6 551.79 粉晶白云岩 0.400 0.900 0.090 0.300 0.060 0.040 0.070 0.010 0.120 0.025 0.060 0.008 0.030 0.009 0 TS2 6 551.79 粉晶白云岩 1.000 1.800 0.250 1.000 0.180 0.070 0.160 0.020 0.130 0.030 0.070 0.010 0.070 0.011 0 TS2 6 691.55 粉晶白云岩 0.800 2.100 0.270 1.000 0.160 0.070 0.140 0.020 0.150 0.030 0.120 0.009 0.070 0.014 0 TP193 7 466.79 粉晶白云岩 1.000 2.500 0.290 1.100 0.180 0.100 0.160 0.020 0.100 0.030 0.150 0.009 0.080 0.010 0 TP193 7 470.55 粉晶白云岩 1.000 2.700 0.310 1.100 0.190 0.090 0.190 0.030 0.250 0.040 0.180 0.008 0.070 0.012 0 S88 6 337.15 细—中晶白云岩 0.500 1.600 0.200 0.700 0.110 0.050 0.110 0.010 0.160 0.020 0.090 0.009 0.050 0.008 0 S88 6 423.24 细—中晶白云岩 0.400 2.300 0.150 0.500 0.080 0.050 0.090 0.020 0.090 0.020 0.070 0.008 0.050 0.009 0 TS2 6 550.77 细—中晶白云岩 0.200 0.700 0.100 0.400 0.030 0.030 0.060 0.010 0.050 0.010 0.030 0.009 0.020 0.009 8 TS2 6 550.84 细—中晶白云岩 0.300 2.800 0.320 1.100 0.200 0.110 0.200 0.030 0.120 0.040 0.190 0.009 0.090 0.008 9 S88 6 562.14 细—中晶白云岩 0.600 1.600 0.220 0.700 0.130 0.060 0.100 0.020 0.170 0.020 0.100 0.008 0.060 0.008 4 TP193 7 471.76 细—中晶白云岩 0.500 1.500 0.110 0.400 0.090 0.050 0.060 0.010 0.090 0.010 0.070 0.010 0.030 0.007 5 TP193 7 472.81 细—中晶白云岩 0.300 1.500 0.180 0.700 0.130 0.070 0.110 0.020 0.160 0.030 0.100 0.009 0.060 0.006 8 S88 6 368.71 中—粗晶白云岩 0.588 1.270 0.125 0.476 0.093 0.018 0.094 0.014 0.077 0.016 0.043 0.006 0.038 0.006 0 S88 6 428.80 中—粗晶白云岩 0.610 1.160 0.123 0.454 0.088 0.020 0.081 0.011 0.061 0.012 0.035 0.005 0.030 0.005 0 TS2 6 694.57 中—粗晶白云岩 0.570 1.230 0.126 0.482 0.095 0.019 0.096 0.014 0.078 0.016 0.043 0.006 0.038 0.006 0 TS6 7 690.15 中—粗晶白云岩 0.574 1.090 0.112 0.448 0.095 0.021 0.095 0.013 0.066 0.012 0.033 0.005 0.028 0.004 0 TS6 7 690.66 中—粗晶白云岩 0.673 1.280 0.138 0.513 0.098 0.019 0.092 0.014 0.076 0.015 0.042 0.006 0.037 0.006 0 表 4 塔河奥陶系蓬莱坝组不同岩性的LaSN/YbSN、δCe、δEu特征
Table 4. LaSN/YbSN, δCe, and δEu characteristics of different lithologies of Ordovician Penglaiba Formation in Tahe area
岩性 LaSN/YbSN δCe δEu 最小值 最大值 平均值 最小值 最大值 平均值 最小值 最大值 平均值 泥晶灰岩 0.797 0.831 0.813 0.81 0.84 0.82 0.42 0.73 0.58 泥—微晶白云岩 0.812 1.261 0.989 0.95 1.08 1.00 0.74 1.04 0.92 粉晶白云岩 0.569 0.976 0.879 0.83 1.79 1.02 2.07 3.21 2.62 细—中晶白云岩 0.599 0.856 0.774 0.67 1.48 1.00 2.29 3.52 2.79 中—粗晶白云岩 1.034 1.274 1.149 1.00 1.12 1.06 1.02 1.14 1.13 -
[1] 白国平. 世界碳酸盐岩大油气田分布特征[J]. 古地理学报, 2006, 8(2): 241-250. doi: 10.3969/j.issn.1671-1505.2006.02.010BAI Guoping. Distribution patterns of giant carbonate fields in the world[J]. Journal of Palaeogeography, 2006, 8(2): 241-250. doi: 10.3969/j.issn.1671-1505.2006.02.010 [2] 尤东华, 曹自成, 徐明军, 等. 塔里木盆地奥陶系鹰山组多类型白云岩储层成因机制[J]. 石油与天然气地质, 2020, 41(1): 92-101.YOU Donghua, CAO Zicheng, XU Mingjun, et al. Genetic mechanism of multi-type dolomite reservoirs in Ordovician Yingshan Formation, Tarim Basin[J]. Oil & Gas Geology, 2020, 41(1): 92-101. [3] 汪如军, 冯建伟, 李世银, 等. 塔北-塔中隆起奥陶系富油气三角带断裂特征及控藏分析[J]. 特种油气藏, 2023, 30(2): 26-35. doi: 10.3969/j.issn.1006-6535.2023.02.004WANG Rujun, FENG Jianwei, LI Shiyin, et al. Analysis on fault characteristics and reservoir control of Ordovician hydrocarbon-rich triangle zone in Tabei-Tazhong uplift[J]. Special Oil & Gas Reservoirs, 2023, 30(2): 26-35. doi: 10.3969/j.issn.1006-6535.2023.02.004 [4] 何治亮, 马永生, 张军涛, 等. 中国的白云岩与白云岩储层: 分布、成因与控制因素[J]. 石油与天然气地质, 2020, 41(1): 1-14.HE Zhiliang, MA Yongsheng, ZHANG Juntao, et al. Distribution, genetic mechanism and control factors of dolomite and dolomite reservoirs in China[J]. Oil & Gas Geology, 2020, 41(1): 1-14. [5] 胡文革, 马龙杰, 汪彦, 等. 关于塔里木盆地深层油气藏高效开发的实践与思考[J]. 油气藏评价与开发, 2024, 14(4): 519-528.HU Wenge, MA Longjie, WANG Yan, et al. Application and reflections on efficient development of deep oil and gas reservoirs in Tarim Basin[J]. Petroleum Reservoir Evaluation and Development, 2024, 14(4): 519-528. [6] 乔占峰, 张天付, 贺训云, 等. 塔里木盆地蓬莱坝组层状白云岩储层发育规律[J]. 地球科学(中国地质大学学报), 2023, 48(2): 673-689.QIAO Zhanfeng, ZHANG Tianfu, HE Xunyun, et al. Development and exploration direction of bedded massive dolomite reservoir of Lower Ordovician Penglaiba Formation in Tarim Basin[J]. Earth Science(Journal of China University of Geosciences), 2023, 48(2): 673-689. [7] 朱井泉, 吴仕强, 王国学, 等. 塔里木盆地寒武-奥陶系主要白云岩类型及孔隙发育特征[J]. 地学前缘, 2008, 15(2): 67-79. doi: 10.3321/j.issn:1005-2321.2008.02.009ZHU Jingquan, WU Shiqiang, WANG Guoxue, et al. Types and porosity characteristics of the Cambrian-Ordovician dolostones in Tarim Basin[J]. Earth Science Frontiers, 2008, 15(2): 67-79. doi: 10.3321/j.issn:1005-2321.2008.02.009 [8] 王丹. 塔北、塔中地区寒武系-奥陶系白云岩多成因模式[J]. 沉积学报, 2024, 42(3): 857-876.WANG Dan. Geochemical characteristics and origins of the Cambrian-Ordovician dolomites in northern and central Tarim Basin[J]. Acta Sedimentologica Sinica, 2024, 42(3): 857-876. [9] 郑剑锋, 沈安江, 刘永福, 等. 塔里木盆地寒武系与蒸发岩相关的白云岩储层特征及主控因素[J]. 沉积学报, 2013, 31(1): 89-98.ZHENG Jianfeng, SHEN Anjiang, LIU Yongfu, et al. Main controlling factors and characteristics of Cambrian dolomite reservoirs related to evaporite in Tarim Basin[J]. Acta Sedimentologica Sinica, 2013, 31(1): 89-98. [10] GUO Chuan, CHEN Daizhao, QING Hairuo, et al. Multiple dolomitization and later hydrothermal alteration on the Upper Cambrian-Lower Ordovician carbonates in the northern Tarim Basin, China[J]. Marine and Petroleum Geology, 2016, 72, 295-316. [11] 李洁. 塔里木盆地中央隆起带奥陶系白云岩成岩作用研究[D]. 西安: 西安石油大学, 2019.LI Jie. Research on dolomite diagenesis of Ordovician formation in central uplift belt, Tarim Basin[D]. Xi'an: Xi'an Shiyou University, 2019. [12] 王泽宇. 塔里木盆地柯坪-巴楚地区蓬莱坝组白云岩成因研究[D]. 北京: 中国石油大学(北京), 2021.WANG Zeyu. Origon of dolomite in the Penglaiba Formation of Keping-Bachu area, Tarim Basin[D]. Beijing: China University of Petroleum, 2021. [13] 宁博, 李百强, 吴珍珍, 等. 塔里木盆地中央隆起带寒武系-奥陶系白云岩成岩相及其地球化学特征[J]. 地质科技通报, 2022, 41(4): 46-56.NING Bo, LI Baiqiang, WU Zhenzhen, et al. Diagenetic facies of dolomite and geochemical characteristics across the Cambrian-Ordovician transitions in the central uplift zone, Tarim Basin[J]. Bulletin of Geological Science and Technology, 2022, 41(4): 46-56. [14] 戴逸晨, 高达, 黄理力, 等. 麦盖提斜坡中-下奥陶统碳酸盐岩多期白云石化作用[J]. 沉积学报, 2025, 43(1): 169-181.DAI Yichen, GAO Da, HUANG Lili, et al. Multi-stage dolomitization of Lower-Middle Ordovician carbonate rocks in the Maigaiti slope[J]. Acta Sedimentologica Sinica, 2025, 43(1): 169-181. [15] 赵文智, 沈安江, 胡素云, 等. 塔里木盆地寒武-奥陶系白云岩储层类型与分布特征[J]. 岩石学报, 2012, 28(3): 758-768.ZHAO Wenzhi, SHEN Anjiang, HU Suyun, et al. Types and distributional features of Cambrian-Ordovician dolostone reservoirs in Tarim Basin, Northwestern China[J]. Acta Petrologica Sinica, 2012, 28(3): 758-768. [16] 康仁东, 孟万斌, 肖春晖. 塔里木盆地顺南地区奥陶系鹰山组白云岩形成机制及其发育模式[J]. 石油实验地质, 2020, 42(6): 900-909. doi: 10.11781/sysydz202006900KANG Rendong, MENG Wanbin, XIAO Chunhui. Formation mechanisms and development models of dolomite reservoirs in Ordovician Yingshan Formation in Shunnan area, Tarim Basin[J]. Petroleum Geology & Experiment, 2020, 42(6): 900-909. doi: 10.11781/sysydz202006900 [17] 乔占峰, 邵冠铭, 罗宪婴, 等. 埋藏白云岩成因类型与规模储层发育规律-基于元素面扫和激光U-Pb定年的认识[J]. 天然气工业, 2021, 41(9): 46-56.QIAO Zhanfeng, SHAO Guanming, LUO Xianying, et al. Genetic classification and large-scale reservoir development law of burial dolomite: cognition based on LA-ICP-MS trace elemental mapping and U-Pb dating[J]. Natural Gas Industry, 2021, 41(9): 46-56. [18] 乔占峰, 沈安江, 梁峰, 等. 基于镁同位素的规模埋藏白云岩形成过程: 以塔里木盆地蓬莱坝组为例[J]. 地质学报, 2023, 97(7): 2293-2310. doi: 10.3969/j.issn.0001-5717.2023.07.012QIAO Zhanfeng, SHEN Anjiang, LIANG Feng, et al. Magnesium isotope-based forming process of large sized burial dolomite: a case study of the Penglaiba Formation in Tarim Basin[J]. Acta Geologica Sinica, 2023, 97(7): 2293-2310. doi: 10.3969/j.issn.0001-5717.2023.07.012 [19] 张友, 李强, 朱可丹, 等. 基于激光原位U-Pb定年和元素面扫描的白云岩储层关键成岩期次定量研究: 以塔东古城地区鹰山组为例[J]. 中国石油勘探, 2022, 27(4): 181-194.ZHANG You, LI Qiang, ZHU Kedan, et al. Quantitative study on key diagenetic periods of dolomite reservoir based on laser in-situ U-Pb dating and element area scanning: a case study of the Ordovician Yingshan Formation in Gucheng area, eastern Tarim Basin[J]. China Petroleum Exploration, 2022, 27(4): 181-194. [20] DONG Shaofeng, CHEN Daizhao, ZHOU Xiqiang, et al. Tectonically driven dolomitization of Cambrian to Lower Ordovician carbonates of the Quruqtagh area, north-eastern flank of Tarim Basin, north-west China[J]. Sedimentology, 2017, 64(4): 1079-1106. [21] 黄擎宇, 张哨楠, 孟祥豪, 等. 塔里木盆地中央隆起区寒武-奥陶系白云岩结构特征及成因探讨[J]. 沉积学报, 2014, 32(3): 537-549.HUANG Qingyu, ZHANG Shaonan, MENG Xianghao, et al. Textural types and origin of the Cambrian-Ordovician dolomite in the central Tarim Basin[J]. Acta Sedimentologica Sinica, 2014, 32(3): 537-549. [22] 黄擎宇. 塔里木盆地中央隆起区寒武-奥陶系白云石化作用及白云岩储层成因研究[D]. 成都: 成都理工大学, 2014.HUANG Qingyu. Dolomitization and origin of the Cambrian-Ordovician dolomite reservoirs in the cental uplift, Tarin Basin[D]. Chengdu: Chengdu University Technology, 2014. [23] 焦健, 李映涛, 张哨楠, 等. 塔里木盆地玉北地区蓬莱坝组鞍形白云石地球化学特征[J]. 石油实验地质, 2016, 38(1): 99-107. doi: 10.11781/sysydz201601099JIAO Jian, LI Yingtao, ZHANG Shaonan, et al. Geochemical features of saddle dolomites in the Penglaiba Formation, Yubei area, Tarim Basin[J]. Petroleum Geology and Experiment, 2016, 38(1): 99-107. doi: 10.11781/sysydz201601099 [24] WARD F J, VERDEL C, CAMPBELL J M, et al. Rare earth element geochemistry of Australian Neoproterozoic carbonate: constraints on the Neoproterozoic oxygenation events[J]. Precambrian Research, 2019, 335: 105471. [25] ZHAO Yanyan, WEI Wei, SANTOSH M, et al. A review of retrieving pristine rare earth element signatures from carbonates[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2022, 586: 110765. [26] 谭聪, 刘策, 王铜山, 等. 局部白云岩化作用研究: 以塔里木盆地阿克苏地区蓬莱坝剖面鹰山组为例[J]. 现代地质, 2023, 37(5): 1182-1193.TAN Cong, LIU Ce, WANG Tongshan, et al. Study on structural dolomitization: taking the Yingshan Formation of the Penglaiba section in Aksu area as an example[J]. Geoscience, 2023, 37(5): 1182-1193. [27] 曹俊娇. 沙雅隆起中部下丘里塔格群白云岩储层特征及主控因素研究[D]. 成都: 西南石油大学, 2017.CAO Junjiao. Study on the characteristics and main controlling factors of dolomite reservoirs in the Lower Qiulitag Group in the middle of the Shaya Uplift[D]. Chengdu: Southwest Petroleum University, 2017. [28] 顾家裕. 塔里木盆地下奥陶统白云岩特征及成因[J]. 新疆石油地质, 2000, 21(2): 120-122.GU Jiayu. Characteristics and origin analysis of dolomite in Lower Ordovician of Tarim Basin[J]. Xinjiang Petroleum Geology, 2000, 21(2): 120-122. [29] 乔占峰, 沈安江, 张丽娟, 等. 塔北南缘中奥陶统顺层岩溶储层特征及成因[J]. 海相油气地质, 2012, 17(4): 27-33.QIAO Zhanfeng, SHEN Anjiang, ZHANG Lijuan, et al. Characteristics and origin of Middle Ordovician karst reservoirs in south margin of northern Tarim Basin[J]. Marine Origin Petroleum Geology, 2012, 17(4): 27-33. [30] DONG Shaofeng, CHEN Daizhao, QING Hairuo, et al. Hydrothermal alteration of dolostones in the Lower Ordovician, Tarim Basin, NW China: multiple constraints from petrology, isotope geochemistry and fluid inclusion microthermometry[J]. Marine and Petroleum Geology, 2013, 46: 270-286. [31] HU Mingyi, NGIA N R, GAO Da. Dolomitization and hydrotectonic model of burial dolomitization of the Furongian-Lower Ordovician carbonates in the Tazhong Uplift, central Tarim Basin, NW China: implications from petrography and geochemistry[J]. Marine and Petroleum Geology, 2019, 106: 88-115. [32] 陈永权, 周新源, 赵葵东, 等. 塔里木盆地塔中19井奥陶系蓬莱坝组云灰互层段的岩性旋回特征与"顶侵型"埋藏云化模式的建立[J]. 沉积学报, 2009, 27(2): 202-210.CHEN Yongquan, ZHOU Xinyuan, ZHAO Kuidong, et al. The petrologic rhythm of Lower Ordovician Penglaiba Formation encountered by well Tazhong 19 and new dolomitization model, Tarim Basin[J]. Acta Sedimentologica Sinica, 2009, 27(2): 202-210. [33] 郑剑锋, 沈安江, 乔占峰, 等. 塔里木盆地下奥陶统蓬莱坝组白云岩成因及储层主控因素分析: 以巴楚大班塔格剖面为例[J]. 岩石学报, 2013, 29(9): 3223-3232.ZHENG Jianfeng, SHEN Anjiang, QIAO Zhanfeng, et al. Genesis of dolomite and main controlling factors of reservoir in Penglaiba Formation of Lower Ordovician, Tarim Basin: a case study of Dabantage outcrop in Bachu area[J]. Acta Petrologica Sinica, 2013, 29(9): 3223-3232. [34] 乔占峰, 沈安江, 郑剑锋, 等. 塔里木盆地下奥陶统白云岩类型及其成因[J]. 古地理学报, 2012, 14(1): 21-32.QIAO Zhanfeng, SHEN Anjiang, ZHENG Jianfeng, et al. Classification and origin of the Lower Ordovician dolostone in Tarim Basin[J]. Journal of Palaeogeography, 2012, 14(1): 21-32. [35] 马庆佑, 吕海涛, 蒋华山. 塔里木盆地台盆区构造单元划分方案[J]. 地质论评, 2015, 61(S1): 689-690.MA Qingyou, LV Haitao, JIANG Huashan. A division program of structural units in the Paleozoic platform-basin region, Tarim BasinJ]. Geological Review, 2015, 61(S1): 689-690. [36] 张长建, 吕艳萍, 文欢, 等. 塔河油田西部斜坡区加里东运动中期Ⅱ幕水文地貌特征及其对洞穴发育的控制[J]. 新疆石油地质, 2022, 43(2): 135-144.ZHANG Changjian, LV Yanping, WEN Huan, et al. Paleo-hydrogeomorphic characteristics of episode Ⅱ of Middle Caledonian movement and their controls on karst cave development in western slope area of Tahe Oilfield[J]. Xinjiang Petroleum Geology, 2022, 43(2): 135-144. [37] 张长建, 蒋林, 文欢, 等. 塔里木盆地塔河油田逆冲背斜区奥陶系古暗河系统发育特征[J]. 石油实验地质, 2024, 46(2): 333-341. doi: 10.11781/sysydz202402333ZHANG Changjian, JIANG Lin, WEN Huan, et al. Development characteristics of Ordovician ancient subterranean river system in thrust anticline area of Tahe Oilfield, Tarim Basin[J]. Petroleum Geology & Experiment, 2024, 46(2): 333-341. doi: 10.11781/sysydz202402333 [38] 韩鹏远, 丁文龙, 杨德彬, 等. 塔里木盆地塔河油田S80走滑断裂发育特征及其对奥陶系储层的控制作用[J]. 石油与天然气地质, 2024, 45(3): 770-786.HAN Pengyuan, DING Wenlong, YANG Debin, et al. Characteristics of the S80 strike-slip fault zone and its controlling effects on the Ordovician reservoirs in the Tahe oilfield, Tarim Basin[J]. Oil & Gas Geology, 2024, 45(3): 770-786. [39] 汪彦, 高济元, 杨德彬, 等. 海西早期大型树枝状岩溶暗河发育条件与地质模式: 以塔里木盆地塔河油田B94井区为例[J]. 断块油气田, 2023, 30(5): 758-769.WANG Yan, GAO Jiyuan, YANG Debin, et al. Development conditions and geological models of large dendritic karst conduit in early Hercynian: a case study of B94 well block of Tahe Oilfield, Tarim Basin[J]. Fault-Block Oil & Gas Field, 2023, 30(5): 758-769. [40] 张三, 金强, 乔贞, 等. 塔河油田奥陶系构造差异演化及油气地质意义[J]. 中国矿业大学学报, 2020, 49(3): 576-586.ZHANG San, JIN Qiang, QIAO Zhen, et al. Differential tectonic evolution of the Ordovician and its significance in petroleum geology in main area of Tahe oilfield[J]. Journal of China University of Mining & Technology, 2020, 49(3): 576-586. [41] 刘永立. 塔河油田西南部奥陶系中深层古岩溶缝洞储层发育特征与形成机制[D]. 北京: 中国地质大学, 2023.LIU Yongli. Development characteristics and formation mechanism of paleokarst fracture-cave reservoirs in the Ordovician middle and deep layers, southwestern Tahe Oilfield[D]. Beijing: China University of Geosciences, 2023. [42] 鄢伟, 樊太亮, 张光学, 等. 塔里木盆地塔中-顺托果勒地区奥陶系鹰山组碳酸盐岩颗粒滩沉积特征[J]. 地学前缘, 2023, 30(4): 76-87.YAN Wei, FAN Tailiang, ZHANG Guangxue, et al. Sedimentary characteristics of Ordovician carbonate intraclastic shoals of the Yingshan Formation, Tazhong-Shuntuoguole area, Tarim Basin[J]. Earth Science Frontiers, 2023, 30(4): 76-87. [43] LENG M J, MARSHALL J D. Palaeoclimate interpretation of stable isotope data from lake sediment archives[J]. Quaternary Science Reviews, 2004, 23(7/8): 811-831. [44] 张一范, 高远, 陈积权, 等. 松辽盆地晚白垩世湖相白云岩碳氧同位素特征及其古环境意义[J]. 现代地质, 2023, 37(5): 1243-1253.ZHANG Yifan, GAO Yuan, CHEN Jiquan, et al. Carbon and oxygen isotope characteristics of late cretaceous lacustrine dolomite in the Songliao Basin and their paleoenvironmental implications[J]. Geoscience, 2023, 37(5): 1243-1253. [45] VEIZER J, ALA D, AZMY K, et al. 87Sr/86Sr, δ13C and δ18O evolution of Phanerozoic seawater[J]. Chemical Geology, 1999, 161(1/3): 59-88. [46] 郭春涛, 宋海强, 梁洁, 等. 塔东地区米兰1井寒武系白云岩成因及其对储层的影响[J]. 石油与天然气地质, 2020, 41(5): 953-964.GUO Chuntao, SONG Haiqiang, LIANG Jie, et al. Origin of Cambrian dolomite from well Milan 1 in Tadong area and its significance to dolomite reservoirs[J]. Oil & Gas Geology, 2020, 41(5): 953-964. [47] MCLENNAN S M, BOCK B, HEMMING S R, et al. The roles of provenance sedimentary processes in the geochemistry of sedimentary rocks[M]//LENTZ D. Geochemistry of sediments and sedimentary rocks: evolutionary considerations to mineral deposit-forming environments. Toronto: Geological Association of Canada, 2003. [48] 胡文瑄, 陈琪, 王小林, 等. 白云岩储层形成演化过程中不同流体作用的稀土元素判别模式[J]. 石油与天然气地质, 2010, 31(6): 810-818.HU Wenxuan, CHEN Qi, WANG Xiaolin, et al. REE models for the discrimination of fluids in the formation and evolution of dolomite reservoirs[J]. Oil & Gas Geology, 2010, 31(6): 810-818. [49] WEBB G E, KAMBER B S. Rare earth elements in Holocene reefal microbialites: a new shallow seawater proxy[J]. Geochimica et Cosmochimica Acta, 2000, 64(9): 1557-1565. [50] BOLHAR R, VAN KRANENDONK M J. A non-marine depositional setting for the northern Fortescue Group, Pilbara Craton, inferred from trace element geochemistry of stromatolitic carbonates[J]. Precambrian Research, 2007, 155(3/4): 229-250. [51] LING Hongfei, CHEN Xi, LI Da, et al. Cerium anomaly variations in Ediacaran-earliest Cambrian carbonates from the Yangtze Gorges area, South China: implications for oxygenation of coeval shallow seawater[J]. Precambrian Research, 2013, 225: 110-127. [52] KOMIYA T, HIRATA T, KITAJIMA K, et al. Evolution of the composition of seawater through geologic time, and its influence on the evolution of life[J]. Gondwana Research, 2008, 14(1/2): 159-174. [53] 吴仕强, 朱井泉, 胡文瑄, 等. 塔里木盆地寒武系-奥陶系白云岩稀土元素特征及其成因意义[J]. 现代地质, 2009, 23(4): 638-647.WU Shiqiang, ZHU Jingquan, HU Wenxuan, et al. Rare earth element geochemistry characteristics of Cambrian-Ordovician dolostones in the Tarim Basin and their implications for the origin[J]. Geoscience, 2009, 23(4): 638-647. [54] 郑剑锋, 沈安江, 刘永福, 等. 多参数综合识别塔里木盆地下古生界白云岩成因[J]. 石油学报, 2012, 33(S2): 145-153.ZHENG Jianfeng, SHEN Anjiang, LIU Yongfu, et al. Multi-parameter comprehensive identification of the genesis of Lower Paleozoic dolomite in Tarim Basin, China[J]. Acta Petrolei Sinica, 2012, 33(S2): 145-153. [55] 高华华, 何登发, 童晓光, 等. 塔里木盆地寒武纪构造-沉积环境与原型盆地演化[J]. 现代地质, 2017, 31(1): 102-118.GAO Huahua, HE Dengfa, TONG Xiaoguang, et al. Tectonic-depositional environment and proto-type basin evolution of the Cambrian in the Tarim Basin[J]. Geoscience, 2017, 31(1): 102-118. [56] 高华华, 何登发, 童晓光, 等. 塔里木盆地鹰山组沉积期构造-沉积环境与原型盆地特征[J]. 地球科学, 2018, 43(2): 551-565.GAO Huahua, HE Dengfa, TONG Xiaoguang, et al. Tectonic-depositional environment and petroleum exploration of Yingshan Formation in the Tarim Basin[J]. Earth Science, 2018, 43(2): 551-565. [57] ZHAO Yangyang, ZHENG Yongfei, CHEN Fukun. Trace element and strontium isotope constraints on sedimentary environment of Ediacaran carbonates in southern Anhui, South China[J]. Chemical Geology, 2009, 265(3/4): 345-362. [58] 张舒扬. 塔里木盆地塔河地区奥陶系蓬莱坝组层序地层与沉积相研究[D]. 北京: 中国地质大学(北京), 2016.ZHANG Shuyang. Research on sequence stratigraphic and sedimentary facies of Ordovician Penglaiba Formation in Tahe area, Tarim Basin[D]. Beijing: China University of Petroleum(Beijing), 2016. [59] 宋倩, 马青, 董旭江, 等. 塔里木盆地北部地区奥陶系层序地层格架与沉积演化[J]. 古地理学报, 2016, 18(5): 731-742.SONG Qian, MA Qing, DONG Xujiang, et al. Sequence stratigraphic framework and sedimentary evolution of the Ordovician in northern Tarim Basin[J]. Journal of Palaeogeography, 2016, 18(5): 731-742. [60] 田家奇, 李国蓉, 刘永立, 等. 塔北地区鹰山组下段-蓬莱坝组白云岩成因及控储意义[J]. 新疆石油地质, 2024, 45(3): 306-316.TIAN Jiaqi, LI Guorong, LIU Yongli, et al. Genesis of dolomite and its controls on reservoir spaces in lower Yingshan Formation-Penglaiba Formation, northern Tarim Basin[J]. Xinjiang Petroleum Geology, 2024, 45(3): 306-316. [61] 李茜, 胡安平, 沈安江, 等. 白云岩的成因、储集空间及实验技术研究新进展[J]. 石油与天然气地质, 2024, 45(5): 1456-1482.LI Xi, HU Anping, SHEN Anjiang, et al. Recent advances in the study of the origin and reservoir space of dolomites and emerging experimental techniques[J]. Oil & Gas Geology, 2024, 45(5): 1456-1482. [62] 崔泽宏, 唐跃. 塔河地区海西晚期火山岩地球化学特征及地质意义[J]. 中国地质, 2010, 37(2): 334-346.CUI Zehong, TANG Yue. Geochemical characteristics and geological significance of Late Hercynian volcanic rocks in Tahe area[J]. Geology in China, 2010, 37(2): 334-346. [63] 韩俊, 董少峰, 尤东华, 等. 塔里木盆地顺南地区深层碳酸盐岩热液溶蚀及其油气勘探意义: 以顺南蓬1井为例[J]. 石油实验地质, 2023, 45(4): 770-779. doi: 10.11781/sysydz202304770HAN Jun, DONG Shaofeng, YOU Donghua, et al. Hydrothermal dissolution of deep-buried carbonate rocks and its significance for hydrocarbon exploration in Shunnan area, the Tarim Basin: taking well Peng-1 in Shunnan area as a case[J]. Petroleum Geology & Experiment, 2023, 45(4): 770-779. doi: 10.11781/sysydz202304770 [64] ZHU Dongya. Discussion for comments of Ehrenberg and Bjørlykke on paper "Formation mechanism of deep Cambrian dolomite reservoirs in the Tarim Basin, northwestern China"[J]. Marine and Petroleum Geology, 2016, 76: 478-479. [65] JIANG Lei, CAI Chunfang, WORDEN R H, et al. Multiphase dolomitization of deeply buried Cambrian petroleum reservoirs, Tarim Basin, north-west China[J]. Sedimentology, 2016, 63(7): 2130-2157. -