Organic matter characteristics of Eocene source rocks with different lithologies in Baiyun Sag of Pearl River Mouth Basin and their geological significance
-
摘要: 珠江口盆地珠二坳陷深水区白云凹陷发育泥岩、碳质泥岩和煤3类烃源岩。现有研究缺乏充分的实验数据支撑,难以准确评估不同岩性烃源岩生烃潜力差异及区域资源潜力。为厘清白云凹陷始新统烃源岩的岩性特征及生烃潜力,综合运用岩石薄片鉴定、X射线衍射分析、孢粉相识别及有机地球化学分析等手段,系统开展了岩性划分、有机质组成解析和生烃潜力评估。白云凹陷始新统烃源岩矿物成分和有机质组成差异大,沉积构造多样。按照总有机碳含量和矿物成分特征,凹陷内烃源岩可分为富砂泥岩、含砂泥岩、碳质泥岩和煤。不同岩性烃源岩特征差异大:含砂泥岩主要为块状构造,有机质丰度较高,以煤质有机质为主,含有一定量的无定形有机质,为偏腐泥型烃源岩,生烃潜力相对较大,倾向于生油;富砂泥岩主要为含碎屑块状构造,有机质丰度较低,以煤质和孢质为主,为偏腐殖型烃源岩,生烃潜力相对小于含砂泥岩,倾向于生气;碳质泥岩和煤分别以断续纹层状和纹层状构造为主,二者有机质丰度高,以煤质、木质和壳质有机质为主,为偏腐殖型烃源岩,倾向于生气。富砂泥岩主要分布于始新统恩平组和文昌组沉积期的凹陷东部和南部,含砂泥岩主要分布于恩平组和文昌组沉积期的凹陷东部,碳质泥岩和煤主要分布于下文昌组和恩平组沉积期的凹陷南部。Abstract: In the deep-water area of the Zhu Ⅱ Depression of the Pearl River Mouth Basin, the Baiyun Sag develops three types of source rocks: mudstone, carbonaceous mudstone, and coal. Existing studies lack experimental data support, making it difficult to accurately assess the differences in hydrocarbon generation potential among source rocks with different lithologies and from different regions. To clarify the lithologies and hydrocarbon generation potential of Eocene source rocks in the Baiyun Sag, comprehensive methods, including thin-section identification, X-ray diffraction analysis, palynofacies identification, and organic geochemical analysis, were used to systematically conduct lithological division, organic matter composition analysis, and hydrocarbon generation potential evaluation. The Eocene source rocks in the Baiyun Sag showed significant differences in mineral composition and organic matter content, with diverse sedimentary structures. Based on the total organic carbon content and mineral composition characteristics, the source rocks in the Baiyun Sag can be classified into sand-rich mudstone, sand-bearing mudstone, carbonaceous mudstone, and coal. The characteristics of these source rocks with different lithologies vary greatly. The sand-bearing mudstone has a massive structure with a relatively high organic matter abundance, mainly coaly organic matter, and contains some amorphous organic matter. Its source rocks are primarily sapropelic with relatively higher hydrocarbon generation potential and tend to generate oil. Sand-rich mudstone is primarily characterized by a clastic massive structure with a relatively low abundance of organic matter, mainly coaly and sporonic organic matter. The source rocks are mainly humic with relatively smaller hydrocarbon generation potential and tend to generate gas. Carbonaceous mudstone and coal are mainly characterized by discontinuous laminated structures and laminated structures, respectively, with high organic matter abundance, predominantly coaly, woody, and shell-type organic matter. Both are humic source rocks and tend to generate gas. The sand-rich mudstone is mainly distributed in the eastern and southern parts of the sag during the sedimentation periods of the Eocene Enping Formation and Wenchang Formation, the sand-bearing mudstone in the eastern part of the sag during the same periods, and the carbonaceous mudstone and coal in the southern part of the sag during the sedimentation periods of the Lower Wenchang Formation and Enping Formation.
-
图 1 珠江口盆地白云凹陷构造位置、钻井分布及始新统地层柱状图
修改自文献[35];左下角白云凹陷构造位置图基于自然资源部标准地图服务网站GS(2023)2762号的标准地图制作。
Figure 1. Structural location, well distribution, and Eocene stratigraphic column of Baiyun Sag, Pearl River Mouth Basin
图 2 珠江口盆地白云凹陷始新统烃源岩岩石薄片照片
a.L32井,4 611~4 614 m,泥岩,含碎屑块状构造,单偏光;b.L13井,3 705~3 710 m,泥岩,含碎屑块状构造,可见有机质填充裂缝,单偏光;c.L13井,3 635~3 640 m,泥岩,含碎屑块状构造,有机质填充于石英矿物缝隙中,单偏光;d.L13井,4 480~4 485 m,泥岩,含碎屑块状构造,可见有机质颗粒,单偏光;e.L32井,4 332~4 335 m,泥岩,块状构造,单偏光;f.PY25井,4 069.2 m,泥岩,块状构造,有机质定向排列,单偏光;g.L13井,4 360~4 365 m,碳质泥岩,断续纹层状构造,单偏光;h.L13井,4 480~4 485 m,煤岩,纹层状构造,单偏光;i.L13井,4 365~4 370 m,煤岩,纹层状构造,单偏光。
Figure 2. Images of Eocene source rock thin sections from Baiyun Sag, Pearl River Mouth Basin
-
[1] 朱筱敏. 沉积岩石学[M]. 4版. 北京: 石油工业出版社, 2008.ZHU Xiaomin. Sedimentary petrology[M]. 4th ed. Beijing: Petroleum Industry Press, 2008. [2] STOW D A V. Sedimentary rocks in the field: a colour guide[M]. London: CRC Press, 2005. [3] 付小东, 秦建中, 滕格尔, 等. 烃源岩矿物组成特征及油气地质意义: 以中上扬子古生界海相优质烃源岩为例[J]. 石油勘探与开发, 2011, 38(6): 671-684.FU Xiaodong, QIN Jianzhong, TENGER, et al. Mineral components of source rocks and their petroleum significance: a case from Paleozoic marine source rocks in the Middle-Upper Yangtze region[J]. Petroleum Exploration and Development, 2011, 38(6): 671-684. [4] 姜在兴, 梁超, 吴靖, 等. 含油气细粒沉积岩研究的几个问题[J]. 石油学报, 2013, 34(6): 1031-1039.JIANG Zaixing, LIANG Chao, WU Jing, et al. Several issues in sedimentological studies on hydrocarbon-bearing fine-grained sedimentary rocks[J]. Acta Petrolei Sinica, 2013, 34(6): 1031-1039. [5] 陈建平, 赵长毅, 何忠华. 煤系有机质生烃潜力评价标准探讨[J]. 石油勘探与开发, 1997, 24(1): 1-5.CHEN Jianping, ZHAO Zhangyi, HE Zhonghua. Criteria for evaluating the hydrocarbon generating potential of organic matter in coal measures[J]. Petroleum Exploration and Development, 1997, 24(1): 1-5. [6] 孙金山, 刘国宏, 孙明安, 等. 库车坳陷侏罗系煤系烃源岩评价[J]. 西南石油学院学报, 2003, 25(6): 1-4. doi: 10.3863/j.issn.1674-5086.2003.06.001SUN Jinshan, LIU Guohong, SUN Ming'an, et al. Source rock evaluation of coal-measures strata in Kuqa Depression of Tarim Basin[J]. Journal of Southwest Petroleum Institute, 2003, 25(6): 1-4. doi: 10.3863/j.issn.1674-5086.2003.06.001 [7] LI Yuanfeng, ZENG Xiang, CAI Jingong, et al. Mudrocks lithofacies characteristics and north-south hydrocarbon generation difference of the Shahejie Formation in the Dongpu Sag[J]. Minerals, 2021, 11(5): 535. [8] ZENG Xiang, CAI Jingong, DONG Zhe, et al. Relationship between mineral and organic matter in shales: the case of Shahejie Formation, Dongying Sag, China[J]. Minerals, 2018, 8(6): 222. [9] 柳波, 石佳欣, 付晓飞, 等. 陆相泥页岩层系岩相特征与页岩油富集条件: 以松辽盆地古龙凹陷白垩系青山口组一段富有机质泥页岩为例[J]. 石油勘探与开发, 2018, 45(5): 828-838.LIU Bo, SHI Jiaxin, FU Xiaofei, et al. Petrological characteristics and shale oil enrichment of lacustrine fine-grained sedimentary system: a case study of organic-rich shale in first member of Cretaceous Qingshankou Formation in Gulong Sag, Songliao Basin, NE China[J]. Petroleum Exploration and Development, 2018, 45(5): 828-838. [10] 彭军, 张新怡, 许天宇, 等. 四川盆地元坝地区千佛崖组二段细粒沉积岩岩相特征及储集性分析[J]. 石油实验地质, 2024, 46(2): 247-262. doi: 10.11781/sysydz202402247PENG Jun, ZHANG Xinyi, XU Tianyu, et al. Lithofacies characteristics and reservoir capacity of fine-grained sedimentary rocks of second member of Qianfoya Formation in Yuanba area, Sichuan Basin[J]. Petroleum Geology & Experiment, 2024, 46(2): 247-262. doi: 10.11781/sysydz202402247 [11] 王道军, 陈超, 刘珠江, 等. 四川盆地复兴地区侏罗系纹层型页岩油气富集主控因素[J]. 石油实验地质, 2024, 46(2): 319-332. doi: 10.11781/sysydz202402319WANG Daojun, CHEN Chao, LIU Zhujiang, et al. Main controlling factors for oil and gas enrichment in Jurassic laminated shale in Fuxing area of Sichuan Basin[J]. Petroleum Geology & Experiment, 2024, 46(2): 319-332. doi: 10.11781/sysydz202402319 [12] 李振明, 熊伟, 王斌, 等. 准噶尔盆地哈山地区二叠系风城组细粒沉积特征与演化模式[J]. 石油实验地质, 2023, 45(4): 693-704. doi: 10.11781/sysydz202304693LI Zhenming, XIONG Wei, WANG Bin, et al. Fine-grained sedimentary characteristics and evolution model of Permian Fengcheng Formation in Hashan area, Junggar Basin[J]. Petroleum Geology & Experiment, 2023, 45(4): 693-704. doi: 10.11781/sysydz202304693 [13] TEICHMÜLLER M. Organic petrology of source rocks, history and state of the art[J]. Organic Geochemistry, 1986, 10(1/3): 581-599. [14] 国家能源局. 透射光—荧光干酪根显微组分鉴定及类型划分方法: SY/T 5125—2014[S]. 北京: 石油工业出版社, 2015.National Energy Administration. Method of identification microscopically the macerals of kerogen and indivision the kerogen type by transmitted-light and fluorescence: SY/T 5125-2014[S]. Beijing: Petroleum Industry Press, 2015. [15] 涂建琪, 王淑芝, 费轩冬. 透射光—荧光下干酪根有机显微组分的划分[J]. 石油勘探与开发, 1998, 25(2): 27-29. doi: 10.3321/j.issn:1000-0747.1998.02.008TU Jianqi, WANG Shuzhi, FEI Xuandong. Classification of the macerals of kerogen in hydrocarbon source rocks by transmitted light-fluorescence[J]. Petroleum Exploration and Development, 1998, 25(2): 27-29. doi: 10.3321/j.issn:1000-0747.1998.02.008 [16] CAI Jingong, ZHU Xiaojun, ZHANG Jingqiao, et al. Heterogeneities of organic matter and its occurrence forms in mudrocks: evidence from comparisons of palynofacies[J]. Marine and Petroleum Geology, 2020, 111: 21-32. [17] 李建国, BATTEN D J. 孢粉相: 原理及方法[J]. 古生物学报, 2005, 44(1): 138-156. doi: 10.3969/j.issn.0001-6616.2005.01.015LI Jianguo, BATTEN D J. Palynofacies: principles and methods[J]. Acta Palaeontologica Sinica, 2005, 44(1): 138-156. doi: 10.3969/j.issn.0001-6616.2005.01.015 [18] DURAND B. Kerogen: insoluble organic matter from sedimentary rocks[M]. France: Editions Technip, 1980. [19] 关平, 徐永昌, 刘文汇. 烃源岩有机质的不同赋存状态及定量估算[J]. 科学通报, 1998, 43(14): 1556-1559. doi: 10.3321/j.issn:0023-074X.1998.14.026GUAN Ping, XU Yongchang, LIU Wenhui. Quantitative estimates of different existing state of organic matter in source rocks[J]. Chinese Science Bulletin, 1998, 43(14): 1556-1559. doi: 10.3321/j.issn:0023-074X.1998.14.026 [20] 阎存凤, 袁剑英, 陈启林. 柴达木盆地北缘东段中下侏罗统孢粉相及生烃潜力[J]. 地球科学进展, 2007, 22(12): 1268-1273. doi: 10.3321/j.issn:1001-8166.2007.12.007YAN Cunfeng, YUAN Jianying, CHEN Qilin. Palynofacies and oil potential of Lower-Middle Jurassic in the east part of northern Qaidam Basin[J]. Advances in Earth Science, 2007, 22(12): 1268-1273. doi: 10.3321/j.issn:1001-8166.2007.12.007 [21] 杨学英. 河北唐山南部早二叠世孢粉组合及油气意义[J]. 石油实验地质, 1994, 16(3): 308-312. doi: 10.11781/sysydz199403308YANG Xueying. On the Lower Permian sporopollen assemblage and petroleum significance in the southern Tangshan, Hebei Province[J]. Experimental Petroleum Geology, 1994, 16(3): 308-312. doi: 10.11781/sysydz199403308 [22] 张淼, 陈清华, 徐金鲤. 东营凹陷沙河街组四段孢粉相特征及其生烃潜力[J]. 中国石油大学学报(自然科学版), 2011, 35(6): 28-35. doi: 10.3969/j.issn.1673-5005.2011.06.005ZHANG Miao, CHEN Qinghua, XU Jinli. Characteristics of palynofacies and its hydrocarbon generation potential of member 4 of Shaheiie Formation in Dongying Depression[J]. Journal of China University of Petroleum (Edition of Natural Science), 2011, 35(6): 28-35. doi: 10.3969/j.issn.1673-5005.2011.06.005 [23] 涂建琪, 陈建平, 张大江, 等. 湖相碳酸盐岩烃源岩有机显微组分分类及其岩石学特征: 以酒西盆地为例[J]. 岩石学报, 2012, 28(3): 917-926.TU Jianqi, CHEN Jianping, ZHANG Dajiang, et al. A petrographic classification of macerals in lacustrine carbonate source rocks and their organic petrological characteristics: a case study on Jiuxi Basin, NW China[J]. Acta Petrologica Sinica, 2012, 28(3): 917-926. [24] 王飞宇, 傅家谟, 刘德汉. 煤和陆源有机质生油岩有机岩石学特点及评价[J]. 石油勘探与开发, 1994, 21(4): 30-35.WANG Feiyu, FU Jiamo, LIU Dehan. Organic petrological characteristics of coal and terrestrical organic matter and their assessment as an oil source rock[J]. Petroleum Exploration and Development, 1994, 21(4): 30-35. [25] 张晶巧, 蔡进功, 王学军, 等. 东营凹陷湖相烃源岩孢粉相特征及其意义[J]. 中南大学学报(自然科学版), 2013, 44(8): 3446-3452.ZHANG Jingqiao, CAI Jingong, WANG Xuejun, et al. Palynofacies of lacustrine source rocks in Dongying Depression and its significance[J]. Journal of Central South University (Science and Technology), 2013, 44(8): 3446-3452. [26] CAI Chuan, CAI Jingong, DU Jiazong, et al. Multistage hydrocarbon generation of saline lacustrine source rocks in hydrous pyrolysis: insights from clay mineral-organic matter interactions[J]. ACS Omega, 2023, 8(16): 14710-14729. [27] 邱林飞, 李子颖, 张字龙, 等. 鄂尔多斯盆地北部下白垩统赋矿砂岩中有机质特征及其与铀成矿的关系[J]. 地学前缘, 2024, 31(4): 281-296.QIU Linfei, LI Ziying, ZHANG Zilong, et al. Characteristics of organic matter in Lower Cretaceous ore-bearing sandstones and its relationship with uranium mineralization in the northern Ordos Basin[J]. Earth Science Frontiers, 2024, 31(4): 281-296. [28] Petrov SM, Lakhova A I, Moiseeva E G, et al. Investigation of the transformation of organic matter of carbonate deposits of the Semiluksky-Mendymsky horizon under hydrothermal conditions[J]. Petroleum, 2024, 10(2): 216-223. [29] 李二庭, 靳军, 高秀伟, 等. 黏土矿物对不同类型烃源岩热解参数影响[J]. 天然气地球科学, 2021, 32(4): 510-517.LI Erting, JIN Jun, GAO Xiuwei, et al. Effect of clay minerals on pyrolysis parameters of different types of source rocks[J]. Natural Gas Geoscience, 2021, 32(4): 510-517. [30] 陈聪, 龙祖烈, 熊永强, 等. 白云凹陷烃源岩分布与油气源差异性分析[J]. 山东科技大学学报(自然科学版), 2022, 41(1): 1-12.CHEN Cong, LONG Zulie, XIONG Yongqiang, et al. Analysis of source rock distribution and oil-gas source difference in Baiyun Sag[J]. Journal of Shandong University of Science and Technology (Natural Science), 2022, 41(1): 1-12. [31] JIANG Wenmin, LI Yun, YANG Chao, et al. Organic geochemistry of source rocks in the Baiyun Sag of the Pearl River Mouth Basin, South China Sea[J]. Marine and Petroleum Geology, 2021, 124: 104836. [32] 傅宁, 邓运华, 张功成, 等. 南海北部叠合断陷盆地海陆过渡相烃源岩及成藏贡献: 以珠二坳陷白云凹陷为例[J]. 石油学报, 2010, 31(4): 559-565.FU Ning, DENG Yunhua, ZHANG Gongcheng, et al. Transitional source rock and its contribution to hydrocarbon accumulation in superimpose rift-subsidence basin of northern South China Sea: taking Baiyun Sag of Zhu Ⅱ Depression as an example[J]. Acta Petrolei Sinica, 2010, 31(4): 559-565. [33] 张功成, 王琪, 苗顺德, 等. 中国近海海陆过渡相烃源岩二元分布模式: 以珠江口盆地白云凹陷为例[J]. 天然气地球科学, 2014, 25(9): 1299-1308.ZHANG Gongcheng, WANG Qi, MIAO Shunde, et al. The duality distribution pattern of marine-continental transitional hydrocarbon source rocks: a case study from Baiyun Sag in Pearl River Mouth Basin, China offshore[J]. Natural Gas Geoscience, 2014, 25(9): 1299-1308. [34] WANG Chen, ZENG Jianhui, ZHANG Zhongtao, et al. Geological characteristics and hydrocarbon potential of the detachment basin in the Baiyun Depression, Pearl River Mouth Basin, South China Sea[J]. Energy & Fuels, 2019, 33(11): 10519-10532. [35] PING Hongwei, CHEN Honghan, ZHU Junzhang, et al. Origin, source, mixing, and thermal maturity of natural gases in the Panyu lower uplift and the Baiyun Depression, Pearl River Mouth Basin, northern South China Sea[J]. AAPG Bulletin, 2018, 102(11): 2171-2200. [36] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 岩石热解分析: GB/T 18602—2012[S]. 北京: 中国标准出版社, 2013.General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, National Standardization Administration. Rock pyrolysis analysis: GB/T 18602-2012[S]. Beijing: China Standard Press, 2013. [37] BEHAR F, BEAUMONT V, PENTEADO H L D B. Rock-Eval 6 technology: performances and developments[J]. Oil & Gas Science and Technology, 2001, 56(2): 111-134. [38] CARVAJAL-ORTIZ H, GENTZIS T. Critical considerations when assessing hydrocarbon plays using Rock-Eval pyrolysis and organic petrology data: data quality revisited[J]. International Journal of Coal Geology, 2015, 152: 113-122. [39] 国家能源局. 沉积岩中黏土矿物和常见非黏土矿物X射线衍射分析方法: SY/T 5163—2018[S]. 北京: 石油工业出版社, 2018.National Energy Administration. Analysis method for clay minerals and ordinary non-clay minerals in sedimentary rocks by the X-ray diffraction: SY/T 5163-2018[S]. Beijing: Petroleum Industry Press, 2018. [40] ZENG Xiang, CAI Jingong, WANG Xuejun, et al. Research on the sedimentary characteristics of organic matter in lacustrine mudrocks and their hydrocarbon generation potential based on palynofacies analysis: Eocene Shahejie Formation, Dongying Sag[J]. Frontiers in Earth Science, 2022, 10: 936262. [41] 彭军, 曾垚, 杨一茗, 等. 细粒沉积岩岩石分类及命名方案探讨[J]. 石油勘探与开发, 2022, 49(1): 106-115.PENG Jun, ZENG Yao, YANG Yiming, et al. Discussion on classification and naming scheme of fine-grained sedimentary rocks[J]. Petroleum Exploration and Development, 2022, 49(1): 106-115. [42] 周杰, 庞雄奇. 一种生、排烃量计算方法探讨与应用[J]. 石油勘探与开发, 2002, 29(1): 24-27. doi: 10.3321/j.issn:1000-0747.2002.01.006ZHOU Jie, PANG Xiongqi. A method for calculating the quantity of hydrocarbon generation and expulsion[J]. Petroleum Exploration and Development, 2002, 29(1): 24-27. doi: 10.3321/j.issn:1000-0747.2002.01.006 [43] SEEWALD J S. Organic-inorganic interactions in petroleum-producing sedimentary basins[J]. Nature, 2003, 426(6964): 327-333. [44] YUAN Peng, LIU Hongmei, LIU Dong, et al. Role of the interlayer space of montmorillonite in hydrocarbon generation: an experimental study based on high temperature-pressure pyrolysis[J]. Applied Clay Science, 2013, 75-76: 82-91. [45] ZHU Xiaojun, GUO Min, CAI Jingong, et al. Fractionation of hydrocarbon generation induced by organic-mineral interactions in fine-grained sediments[J]. Journal of Petroleum Science and Engineering, 2022, 219: 111072. [46] 卢龙飞, 蔡进功, 刘文汇, 等. 泥质烃源岩中蒙皂石与有机质的水桥结合作用: 来自原位漫反射红外光谱的证据[J]. 石油与天然气地质, 2011, 32(1): 47-55.LU Longfei, CAI Jingong, LIU Wenhui, et al. Water bridges mechanism of organo-smectite interaction in argillaceous hydrocarbon source rocks: evidences from in situ DRIFT spectroscopic study[J]. Oil & Gas Geology, 2011, 32(1): 47-55. [47] 王行信, 蔡进功, 包于进. 黏土矿物对有机质生烃的催化作用[J]. 海相油气地质, 2006, 11(3): 27-38.WANG Xingxin, CAI Jingong, BAO Yujing. Catalysis of clay mineral to organic matter in hydrocarbon genesis[J]. Marine Origin Petroleum Geology, 2006, 11(3): 27-38. [48] HE Dashuang, HOU Dujie, CHEN Tao. Geochemical characteristics and analysis of crude-oil source in the deep-water area of the Baiyun Sag, South China Sea[J]. Russian Geology and Geophysics, 2018, 59(5): 499-511. [49] 米立军, 周守为, 谢玉洪, 等. 南海北部深水区油气勘探进展与未来展望[J]. 中国工程科学, 2022, 24(3): 58-65.MI Lijun, ZHOU Shouwei, XIE Yuhong, et al. Deep-water oil and gas exploration in northern South China Sea: progress and outlook[J]. Strategic Study of CAE, 2022, 24(3): 58-65. [50] 张功成, 杨海长, 陈莹, 等. 白云凹陷: 珠江口盆地深水区一个巨大的富生气凹陷[J]. 天然气工业, 2014, 34(11): 11-25.ZHANG Gongcheng, YANG Haichang, CHEN Ying, et al. The Baiyun Sag: a giant rich gas-generation sag in the deepwater area of the Pearl River Mouth Basin[J]. Natural Gas Industry, 2014, 34(11): 11-25. -